首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence for the participation of conductive and non-conductive (exchange) transmembrane anion pathways in the luminal acidification, alkalinization, and chloride-reabsorptive functions of the turtle bladder is provided from the pattern of Cl- -induced changes in transepithelial electrical parameters of isolated urinary bladders from three groups of donor turtles: control or post-absorptive turtles (those killed 5 days after feeding); acidotic turtles (NH4Cl-loaded); and alkalotic turtles (NaHCO3-loaded). The predominance of each of the three aforementioned transport functions as well as the response to Cl- -addition is altered by the in-vivo electrolyte balance of the turtle. In post-absorptive bladders, which are poised for acidification and Cl- reabsorption, the mucosal and serosal addition of Cl- to Na+-free, (HCO3- + CO2)-containing media increases the negative short-circuiting current (Isc). In acidotic bladders, which are poised for acidification but not Cl- reabsorption, mucosal Cl- addition has no effect on this Isc whereas serosal Cl- addition increases the negative Isc in a manner identical to that observed in the post-absorptive bladders. Alkalotic bladders do not possess an acidification function but instead are poised for Cl- reabsorption and cAMP-dependent electrogenic alkali secretion (positive Isc). In these bladders, serosal Cl- addition is without effect while mucosal Cl- addition produces transient changes in this positive Isc. It is found that these results can be replicated by a model of the turtle bladder in which transmembrane Cl- and HCO3- conductive and exchange paths mediate transepithelial acidification, alkalinization and Cl- reabsorption.  相似文献   

2.
This study was done to determine if insulin mediates H+ and NH+4 excretion in the urinary bladder of Bufo marinus. Acidosis was induced by gavaging with 10 ml of 120 mM NH4Cl 3X daily for 2 days. Hemibladders were mounted between Lucite chambers. Insulin (porcine) was added to the serosal solution of the experimental bladder (10(2) mU/ml). After a 15-min equilibration the flux was measured for 2 hr. H+ excretion was measured from change in pH of the mucosal fluid and the NH+4 measured colorimetrically. The excretion was normalized for weight of bladder and reported in units of nanomoles (100 mg bladder)-1(min)-1. Plasma insulin was determined by radioimmunoassay and glucose by the glucose oxidase method. In 14 control bladders H+ excretion was 8.75 +/- 1.28 and experimental was 16.35 +/- 2.50 (P less than 0.025), while NH+4 excretion in control bladder was 3.29 +/- 0.95 and experimental was 6.58 +/- 1.89 (P less than 0.01). This response was absent when the insulin was heat inactivated (P greater than 0.2 and P greater than 0.3 respectively). Plasma insulin-like levels in 10 normal toads was 0.57 +/- 0.16 ngm/ml and in acidotic toads 1.25 +/- 0.16 ng/ml (P less than 0.025). Plasma glucose levels in 10 normal toads were 22.0 +/- 3.5 mg/dl and in 12 acidotic toads 17.8 +/- 0.75 mg/dl (P less than 0.025). We conclude that plasma insulin is increased in acidosis and that insulin stimulates excretion of H+ and NH+4 in the toad urinary bladder.  相似文献   

3.
The present study was conducted to elucidate the mechanisms by which Helicobacter pylori (HP)-derived ammonia causes gastric mucosal injury. Intact sheets of guinea pig gastric fundic mucosae were incubated in Ussing chambers. Both the luminal and the serosal pH were kept at 7.4. Transmucosal potential difference (PD) and electrical resistance (R) were monitored as indices of mucosal integrity. Restitution was evaluated by recovery of PD, R, and transmucosal [(3)H]mannitol flux after Triton X-100-induced mucosal injury. The effects of luminal or serosal NH(4)Cl on function and morphology of uninjured or injured mucosae were examined. In uninjured mucosae, serosal NH(4)Cl induced more profound decreases in PD and R and more prominent vacuolation in gastric epithelial cells than did luminal NH(4)Cl. In contrast, luminal NH(4)Cl markedly inhibited restitution in injured mucosae and caused an extensive vacuolation in gastric epithelial cells, as did serosal NH(4)Cl. Transmucosal ammonia flux was greater in the injured than in the uninjured mucosae. These results suggest that 1) basolateral membrane of gastric epithelial cells is more permeable to ammonia than apical membrane and 2) luminal ammonia, at concentrations detected in HP-infected gastric lumen, retards restitution in injured mucosae.  相似文献   

4.
Captopril (CA), a specific inhibitor of kininase II, did not alter osmotic water permeability (Posm) when present in the mucosal bath of the urinary bladder isolated from the toad Bufo arenarum at a concentration of 2.3 X 10(-3) M. This treatment, however, caused a 65% enhancement in the increase in Posm following serosal exposure to vasopressin, oxytocin or theophylline, agents that increase intracellular cyclic AMP levels. The effect of captopril was prevented by procedures that reduce the kallikrein (KK)-like alkaline esterase activity present in the bladder (such as simultaneous exposure to 2.3 X 10(-5) M aprotinin, or pretreatment of the toads with 0.1 N NaCl for several days before the experiment) or by replacing the mucosal bath with fresh solution of identical composition after exposure to captopril. In contrast, changing the serosal bath did not alter the effect of the drug. These results are consistent with an effect of CA at a step beyond cAMP generation, and suggest it is mediated by release of a soluble factor, probably a kinin, into the mucosal bath. These observations, together with data previously published, suggest that the KK-kinin system may participate in the control of epithelial water and electrolyte permeability in the toad bladder. In particular, under environmental stress, it may become important in the regulation of the animal's extracellular fluid volume, thus exhibiting an adaptive value.  相似文献   

5.
The role of atrial natriuretic factor (ANF) in regulation of osmotic water permeability was studied in isolated frog Rana temporaria L. urinary bladder. It was found that ANF (rANF, 1-28) added to the serosal solution at concentrations 5 x 10(-8) M and higher dosedependently stimulated the arginine-vasotocin (AVT)-induced increase of osmotic water permeability. The effect of ANF was revealed only in presence of 3-isobuthyl-1-methylxantine (180 microM) and was accompanied by significant elevation of cGMP level in urinary bladder homogenate and isolated mucosal epithelial cells. C-ANF (des[Gln18, Ser19, Gly20, Leu21, Gly22]-ANF-(4-23)-NH2), a specific agonist of NPR-C receptor, exerted no effect on osmotic water permeability. ANF induced a significant increase of cAMP in urinary bladder homogenates (AVT, 5 x 10(-11) M: 52.3 +/- 10.6; AVT + ANF, 10(-7) M: 114.2 +/- 26.9 pmol/mg protein, n = 5, p < 0.05). The activity of adenylate cyclase in crude plasmatic membrane fraction was not changed. Milrinone, a specific inhibitor of phosphodiesterase 3, at concentrations from 25 to 80 microM, enhanced both the hydroosmotic response to AVT and AVT-stimulated cAMP production. Altogether these data demonstrate that, in the frog urinary bladder, ANF stimulates the AVT-induced increase of osmotic water permeability acting probably through NPR-A receptor-coupled mobilization of cGMP and cGMP-dependent inhibition of phosphodiesterase 3.  相似文献   

6.
The transport of ammonia/ammonium is fundamental to nitrogen metabolism in all forms of life. So far, no clear picture has emerged as to whether a protein channel is capable of transporting exclusively neutral NH(3) while excluding H(+) and NH(4)(+). Our research is the first stoichiometric study to show the selective transport of NH(3) by a membrane channel. The purified water channel protein aquaporin-8 was reconstituted into planar bilayers, and the exclusion of NH(4)(+) or H(+) was established by ensuring a lack of current under voltage clamp conditions. The single channel water permeability coefficient of 1.2 x 10(-14) cm(3)/subunit/s was established by imposing an osmotic gradient across reconstituted planar bilayers, and resulting minute changes in ionic concentration close to the membrane surface were detected. It is more than 2-fold smaller than the single channel ammonia permeability (2.7 x 10(-14) cm(3)/subunit/s) that was derived by establishing a transmembrane ammonium concentration gradient and measuring the resulting concentration increases adjacent to the membrane. This permeability ratio suggests that electrically silent ammonia transport may be the main function of AQP8.  相似文献   

7.
Summary In the urinary bladder of amphibia, hypertonicity of the serosal bath (SH) evokes an increase in transepithelial water permeability, the characteristics of which resemble the response to antidiuretic hormone (ADH). The ionic dependency, in particular for Ca2+, appears very similar forSH- and ADH-induced water fluxes. In the present experiments La3+ was used as a probe to study the Ca2+-dependency of the hydrosmotic response toSH in isolated urinary bladder of the toadBufo marinus.Addition of La3+ (5mm) on the serosal side of the membrane produced a significant and reversible increase in basal transepithelial water flux. The hydrosmotic response elicited by adding 250mm mannitol to the serosal Ringer's solution was inhibited by 30% in the absence of serosal Ca2+. Similarly, the hydrosmotic response toSH was inhibited by 37%, 30% and 40% when 5mm La3+ was added to the serosal medium 30 min before, concommitantly with, or 60 min after induction ofSH. The inhibition of transepithelial water flux observed in the absence of serosal Ca2+ or in the presence of serosal La3+ was reversible.The results support a critical role for Ca2+ in the modulation of transepithelial water permeability in the urinary bladder of amphibia. Ca2+ presumably exerts its effects at a post-cyclic AMP step.  相似文献   

8.
膜-生物硝化反应器处理含氨废水效能的研究   总被引:1,自引:0,他引:1  
武小鹰  郑平  胡宝兰   《生物工程学报》2005,21(2):279-283
研究了膜 生物硝化反应器对含氨废水的处理效能以及分离膜的截留和渗透效能。膜_生物反应器启动迅速 ,在水力停留时间为 1d的情况下 ,反应器最高进水浓度达 80mmol(NH4+-N)·L-1 ,最高容积负荷达 1 12kg(NH4+ -N)·m-3·d-1 ,氨氮去除率保持在 95%以上。试验证明 ,分离膜对微生物有良好的截留作用 ,50天内反应器的污泥浓度从 5g·L-1 增长到 10g·L-1 ,分离膜表面附着的生物层则对废水氨氮和亚硝氮有进一步的转化作用。在液位差低于 80cm时 ,提高液位差可增大膜渗透通量 ;液位差超过 80cm后 ,增大液位差的膜渗透通量效应很小 ;其中 ,当液位差为 2 0cm左右时 ,膜通量达 2 . 5 1L·m-2 ·h-1 ,阻力最小 [(2 . 6 3× 10-5)m-1]。该膜_生物硝化反应器可依靠液位差压力驱动出水 ,无需外加动力。  相似文献   

9.
Maximal flux responses after multiple challenges with vasopressin   总被引:1,自引:0,他引:1  
Antidiuretic hormone (ADH) increases transepithelial flux of water and particular solutes across the amphibian urinary bladder and mammalian collecting duct by increasing the permeability of the apical surface. We find that if each challenge with ADH is ended by replacing the medium bathing both the mucosal and serosal surfaces of the toad bladder, then rechallenge with the same supramaximal dose of ADH 36-100 min later produces flux equivalent to or greater than the original response, but rechallenge after 15 min produces only 68% of the original response. If the medium bathing the mucosal surface is neither replaced nor returned to its original volume, complete recovery of the osmotic flux response to ADH does not occur. Maximal restimulation by ADH occurs with transepithelial osmotic gradients between 119 and 180 mosmol/kg during both challenges (the serosal bath is always isotonic amphibian Ringers). In addition, ADH-containing serosal baths that have maximally activated transport across bladders for 30-60 min can be reused and again produce maximal activation of ADH responses in fresh bladders or in the original bladders after washing. These results are in contradistinction to reports of desensitization of transepithelial flux upon rechallenge with ADH after an initial stimulation under many conditions. Our findings suggest that desensitization in vitro may result from experimental design rather than intrinsic biological characteristics of the system.  相似文献   

10.
It is well known that arginine vasopressin (AVP) produces up to a 40-fold increase (0.1 to 4,0 μL/min·cm2) in net water flux across the amphibian urinary bladder under an osmotic gradient (mucosal side 10% hypotonic). No AVP effect is observed when the gradient is in the opposite direction (serosal hypotonic). Similar asymmetrical behavior to osmotic gradients occurs in the frog corneal epithelium. This rectification phenomenon has not been satisfactorily explained. We measured net water fluxes in bladder sacs and confirmed that AVP has no effect when the serosal bath is hypotonic. We reasoned that the ‘abnormal’ serosal osmolarity was inducing changes in membrane water permeability, the very parameter being measured. Thus, we studied the effect of solution osmolarity on diffusional water flow (Jdw) across the frog bladder using 3H2O. As expected, AVP doubled Jdw (in either direction from 12 to 21 μL/min·cm2) when the serosal solution was iso-osmolar regardless of mucosal osmolarity. However, in the AVP-stimulated bladders, hypo-osmolarity of the serosal solution reduced Jdw by 42%, an effect that was reversible when normal osmolarity was re-established. Amphotericin B (instead of AVP) was used to irreversibly increase the permeability to water of the apical membrane. Under these conditions, basolateral hypotonicity also reversibly decreased Jdw by 32%, suggesting the basolateral membrane as the site where permeability is reduced. SEM and TEM of the tissue shows extreme swelling when it was exposed to serosal hypotonicity with or without AVP and typical surface morphology changes following hormone stimulation. We conclude that this swelling may initiate a signaling mechanism that reduces basolateral water permeability. These findings constitute evidence of basolateral water channel permeability regulation, which can also contribute to cell volume regulation.  相似文献   

11.
Ca2+ channel blocker (sensit) and calmodulin antagonists (thioridazine, perphenazine, oxyprothepine) applied to the mucosal side of frog urinary bladder, weakened the response of epithelial cells to vasopressin. Thioridazine (2.7 X 10(-5) mol X l-1) and sensit (1.7 X 10(-4) mol X l-1) applied to the serosal side rapidly increased the permeability of the epithelia for sodium and potassium ions along the concentration gradient (from serosa to mucosa). The same concentrations of these blockers when applied to the mucosal side of frog urinary bladder selectively decreased vasopressin stimulated water permeability and did not influence ionic permeability. Both thioridazine and sensit decreased the short-circuit current across frog skin. The results show that the Ca2+ channel blocker and the calmodulin antagonists tested influenced water and ionic transport across the epithelial cell membranes, and had different effects upon the apical and the basolateral cell membranes.  相似文献   

12.
We used a perfused gill preparation from dogfish to investigate the origin of low branchial permeability to urea. Urea permeability (14C-urea) was measured simultaneously with diffusional water permeability (3H2O). Permeability coefficients for urea and ammonia in the perfused preparation were almost identical to in vivo values. The permeability coefficient of urea was 0.032 x 10(-6) cm/sec and of 3H2O 6.55 x 10(-6) cm/sec. Adrenalin (1 x 10(-6) M) increased water and ammonia effluxes by a factor of 1.5 and urea efflux by a factor of 3.1. Urea efflux was almost independent of the urea concentration in the perfusion medium. The urea analogue thiourea in the perfusate had no effect on urea efflux, whereas the non-competitive inhibitor of urea transport, phloretin, increased efflux markedly. The basolateral membrane is approximately 14 times more permeable to urea than the apical membrane. We conclude that the dogfish apical membrane is extremely tight to urea, but the low apparent branchial permeability may also relate to the presence of an active urea transporter on the basolateral membrane that returns urea to the blood and hence reduces the apical urea gradient.  相似文献   

13.
The hydroosmotic responses induced by oxytocin and 8-bromo-cyclic AMP, in frog and toad urinary bladders, were recorded minute by minute. 3HHO and 45Ca unidirectional fluxes as well as prostaglandin B2 liberation were also measured. It was observed that: (1) Addition of the calcium ionophore A23187 or quinidine to the serosal bath inhibited the response to oxytocin, but not to 8-bromo-cyclic AMP, while increasing prostaglandin E1 liberation into the serosal but not into the mucosal bath. (2) Addition of A23187 to the mucosal bath induced a transient and temperature-dependent inhibition of the response elicited by 8-bromo-cyclic AMP. The time-course of this reduction in water permeability and its sensitivity to medium temperature were similar to those observed after the withdrawal of agonist, but clearly different of those observed after intracellular acidification. (3) The hydroosmotic response was also transitorily inhibited when the Ca2+ concentration was step-changed in the mucosal bath. (4) When added to the mucosal or to the serosal baths, the ionophore increased either the apical or the laterobasal Ca2+ permeabilities. It is concluded that manipulation of intracellular Ca2+ interferes with the hydroosmotic response at two different levels. (1) A first target point located 'pre-cyclic-AMP production'. This effect would be mediated by prostaglandin liberation. (2) A second target point located after cyclic AMP production and before the 'temperature-dependent rate-limiting step'. This effect is probably related to the mechanism controlling the insertion and removal of water channels.  相似文献   

14.
The urinary bladder of Bufo marinus excretes H+ and NH+4, and the H+ excretion is increased after the animal is placed in metabolic acidosis. The present study was done to determine if parathyroid hormone could stimulate the bladder to increase the excretion of H+ and/or NH+4. Parathyroid hormone added to the serosal solution in a final concentration of 10 mug/ml was found to increase H+ excretion by 50 per cent above the control hemibladders, while there was no effect on NH+4 excretion. Parathyroid hormone had no effect on H+ excretion when added to the mucosal solution. We also performed experiments utilizing theophylline and dibutyryl cyclic AMP which mimicked those of the parathyroid hormone experiments. A dose-response analysis was performed and the results indicate that 1 mug/ml of parathyroid hormone was the minimal effective dose. These results suggest that parathyroid hormone can stimulate H+ excretion in the toad urinary bladder and this effect seems to be mediated by cyclic AMP. In addition, it was found that parathyroid hormone has no effect on NH+4 excretion.  相似文献   

15.
The diuretic furosemide inhibits acid-base transport in the short-circuited turtle bladder. It inhibits luminal acidification when present in either mucosal or serosal bathing fluids, but decreases alkalinization only from the serosal side of the tissue. The inhibition of both acid-base transport processes is independent of ambient Cl-; and the disulfonic stilbene, SITS, an inhibitor of Cl--HCO3- exchange, fails to prevent the furosemide-elicited inhibition of alkalinization. These results preclude an absolute requirement of a furosemide-sensitive Cl--HCO3- exchange by these transport processes. The drug also interferes with the CO2-induced stimulation of acidification and alkalinization. The inhibition of the residual acidification in acetazolamide-treated, acidotic bladders, however, suggests an action at sites other than cytosolic carbonic anhydrase. Although active Na+ and Cl- reabsorption and tissue oxygen uptake are also decreased by furosemide, the rate of oxygen consumption uncoupled by 2,4-dinitrophenol is not diminished, indicating a primary inhibition of the various ion transport processes, not of metabolism. It is proposed that inhibition of transepithelial acid-base transport by furosemide in the turtle bladder includes inhibition of the acid-base pumps.  相似文献   

16.
Experiments were performed to determine whether prostaglandins (PG) play a role in H+ and NH4+ excretion in the urinary bladder of Bufo marinus. Ten paired hemibladders from normal toads were mounted in chambers. One was control and the other hemibladder received PGE2 in the serosal medium (10(-5) M). H+ excretion was measured by change in pH in the mucosal fluid and reported in units of nmol (100 mg tissue)-1 (min)-1. NH4+ excretion was measured colorimetrically and reported in the same units. The control group H+ excretion was 8.4 +/- 1.67, while the experimental group was 16.3 +/- 2.64 (P less than 0.01). The NH4+ excretion in the experimental and control group was not significantly different. Bladders from toads in a 48-hr NH4+Cl acidosis (metabolic) did not demonstrate this response to PGE2 (P greater than 0.30). Toads were put in metabolic acidosis by gavaging with 10 ml of 120 mM NH4+Cl 3 x day for 2 days. In another experiment, we measured levels of PG in bladders from control (N) and animals placed in metabolic acidosis (MA). Bladders were removed from the respective toad, homogenized, extracted, and PG separated using high-pressure liquid chromatography and quantified against PG standards. The results are reported in ng (mg tissue)-1. PGE2 fraction in N was 1.09 +/- 0.14 and in MA was 3.21 +/- 0.63 (P less than 0.01). PGF1 alpha, F2 alpha and I2 were not significantly different in N and MA toads. Bladders were also removed from N and MA toads, and incubated in Ringer's solution containing [3H]arachidonic acid (0.2 microCi/ml) at 25 degrees C for 2 hr. Bladders were then extracted for PG and the extracts separated by thin layer chromatography. PG were identified using standards and autoradiography, scraped from plates, and counted in a scintillation detector. The results are reported in cpm/mg tissue x hr +/- SEM. In MA toads, PG6-keto-F1 alpha = 1964 +/- 342, PGF2 alpha = 1016 +/- 228, and PGE2 = 904 +/- 188; in N animals PG6-keto-F1 alpha = 625 +/- 280, PGF2 alpha = 364 +/- 85, and PGE2 = 404 +/- 104; (P less than 0.01, less than 0.025, less than 0.05, respectively). We conclude that PGE2 may be an important mediator of H+ excretion in toad urinary bladder and that endogenous PGE2 levels are increased in response to MA.  相似文献   

17.
To define aspects of lipid composition and bilayer asymmetry critical to barrier function, we examined the permeabilities of liposomes that model individual leaflets of the apical membrane of a barrier epithelium, Madin-Darby canine kidney type 1 cells. Using published lipid compositions we prepared exofacial liposomes containing phosphatidylcholine, sphingomyelin, glycosphingolipids, and cholesterol; and cytoplasmic liposomes containing phosphatidylethanolamine, phosphatidylserine, and cholesterol. The osmotic permeability of cytoplasmic liposomes to water (P(f)), solutes, and NH(3) was 18-90-fold higher than for the exofacial liposomes (P(f(ex)) = 2.4 +/- 0.4 x 10(-4) cm/s, P(f(cy)) = 4.4 +/- 0.3 x 10(-3) cm/s; P(glycerol(ex)) = 2.5 +/- 0.3 x 10(-8) cm/s, P(glycerol(cy)) = 2.2 +/- 0.02 x 10(-6) cm/s; P(NH3(ex)) = 0. 13 +/- 0.4 x 10(-4) cm/s, P(NH3(cy)) = 7.9 +/- 1.0 x 10(-3) cm/s). By contrast, the apparent proton permeability of exofacial liposomes was 4-fold higher than cytoplasmic liposomes (P(H+(ex)) = 1.1 +/- 0. 1 x 10(-2) cm/s, P(H+(cy)) = 2.7 +/- 0.6 x 10(-3) cm/s). By adding single leaflet permeabilities, we calculated a theoretical P(f) for a Madin-Darby canine kidney apical membrane of 4.6 x 10(-4) cm/s, which compares favorably with experimentally determined values. In exofacial liposomes lacking glycosphingolipids or sphingomyelin, permeabilities were 2-7-fold higher, indicating that both species play a role in barrier function. Removal of cholesterol resulted in 40-280-fold increases in permeability. We conclude: 1) that we have reconstituted the biophysical properties of a barrier membrane, 2) that the barrier resides in the exofacial leaflet, 3) that both sphingomyelin and glycosphingolipids play a role in reducing membrane permeability but that there is an absolute requirement for cholesterol to mediate this effect, 4) that these results further validate the hypothesis that each leaflet offers an independent resistance to permeation, and 5) that proton permeation was enhanced by sphingolipid/cholesterol interactions.  相似文献   

18.
Summary The rate of shrinkage of the mucosal folds of goldfish intestine in response to mucosal hypertonicity was measured by microscopic means. Because of the geometry of the intestinal folds the rate of shrinkage could be directly related to the loss of volume from the fold through the brush border membranes and tight junctions. Experimentally a wide range of velocities was observed, reflecting the difficulty of rapidly estabilishing a uniform osmotic gradient at the preparation's mucosal surface. The initial velocity of volume loss provided a measure of the filtration permeability (P f ) of the mucosal surface. From the highest velocities observed the filtration permeability was estimated to be approximately 14×10–3 cm/sec related to the folded mucosal surface and 65×10–3 cm/sec related to the straight serosal surface. Consideration of the experimental errors and unstirred layer effects make it probable that the latter value is still an underestimate of the trueP f . The series barriers of the epithelium cause the total tissueP f to be less than theP f of the mucosal surface alone. In addition theP f measured in the presence of an osmotic gradient may differ substantially from the tissue filtration permeability which exists in the absence of a change in osmolarity.  相似文献   

19.
Alanine Efflux across the Serosal Border of Turtle Intestine   总被引:1,自引:0,他引:1  
The exit of alanine across the serosal border of the epithelial cells of turtle intestine was measured by direct and indirect techniques. A decrease or an increase in cell Na did not affect the amino acid flux from cell to serosal solution. Cells loaded with Na and alanine did not exhibit any extrusion of alanine when their serosal membranes were exposed to an Na-free medium containing alanine. However, substantial amino acid extrusion was observed across the mucosal cell border under similar conditions. Although alanine flux across the serosal membrane appeared to be Na-independent, it showed a tendency toward saturation as cellular alanine concentration was elevated. The results are consistent with the postulate that the serosal and mucosal membranes of intestinal cells are asymmetrical with respect to amino acid transport mechanisms. The serosal membrane appears to have an Na-independent carrier-mediated mechanism responsible for alanine transport while transport across the mucosal border involves an Na-dependent process.  相似文献   

20.
Thiazides inhibit voltage-independent NaCl absorption in the urinary bladder of the winter flounder presumably by blocking an electroneutral mucosal Na/Cl co-transporter. As thiazides stimulate calcium absorption in mammalian distal convoluted tubule while inhibiting NaCl absorption, we studied the effects of hydrochlorothiazide (HCTZ) on unidirectional 45Ca fluxes and intracellular electrical potential in short-circuited bladders to examine possible mechanisms of HCTZ effects on calcium transport. Basal secretory calcium flux was, on average, slightly larger than absorptive flux, reflecting small net calcium secretion. Mucosal addition of HCTZ (10(-4) M) stimulated absorptive calcium flux by 46% while the secretory flux was unaltered. Thus, HCTZ tended to induce net calcium absorption. Pre-treatment with serosal ouabain (10(-4) M) attenuated the HCTZ-induced increase in absorptive calcium flux. Moreover, HCTZ hyperpolarized the mucosal membrane potential by 18% as measured by conventional open-tip microelectrodes. These effects of HCTZ are consistent with the hypothesis that HCTZ indirectly stimulates Na/Ca exchange located at the serosal membrane. In conclusion, HCTZ in flounder urinary bladder, as in mammalian distal convoluted tubule, simultaneously inhibits NaCl absorption and stimulates calcium absorption. This study expands on the functional similarities between the flounder urinary bladder and the mammalian distal convoluted tubule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号