首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leaves from annual young grape plants (Vitis vinifera L. cv. Jingxiu) were used as experimental materials. The ultrastructural characteristics of mesophyll cells in chilling-treated plants after heat acclimation (HA) and in heat-treated plants after cold acclimation (CA) were observed and compared using transmission electron microscopy. The results showed that slight injury appeared in the ultrastructure of mesophyll cells after either HA (38℃ for 10 h) or CA (8℃ for 2.5 d), but the tolerance to subsequent extreme temperature stress was remarkably improved by HA or CA pretreatment. The increases in membrane permeability and malondialdehyde concentration under chilling (0℃) or heat (45℃) stress were markedly inhibited by HA or CA pretreatment. The mesophyll cells of plants not pretreated with HA were markedly damaged following chilling stress. The chloroplasts appeared irregular in shape, the arrangement of the stroma lamellae was disordered, and no starch granules were present. The cristae of the mitochondria were disrupted and became empty. The nucleus became irregular in shape and the nuclear membrane was digested. In contrast, the mesophyll cells of HA-pretreated plants maintained an intact ultrastructure under chilling stress. The mesophyll cells of control plants were also severely damaged under heat stress. The chloroplast became round in shape, the stroma lamellae became swollen, and the contents of vacuoles formed clumps. In the case of mitochondria of control plants subjected to heat stress, the outer envelope was digested and the cristae were disrupted and became many small vesicles. Compared with cellular organelles in control plants, those in CA plant cells always maintained an integrated state during whole heat stress, except for the chloroplasts, which became round in shape after 10 h heat stress. From these data, we suggest that the stability of mesophyll cells under chilling stress can be increased by HA pretreatment. Similarly, CA pretreatment can protect chloroplasts, mitochondria, and the nucleus against subsequent heat stress; thus, the thermoresistance of grape seedlings was improved. The results obtained in the present study are the first, to our knowledge, to offered cytological evidence of cross-adaptation to temperature stresses in grape plants.  相似文献   

2.
以宁夏枸杞为材料,采用超薄切片技术制备样品,应用光学显微镜和透射电镜分析了不同浓度NaCl胁迫条件下宁夏枸杞叶和幼根显微及超微结构的变化。结果表明:随着NaCl胁迫的加重,(1)叶片上表皮细胞增厚,栅栏组织细胞出现缩短现象,排列疏松且紊乱;幼根的初生结构无明显变化。(2)叶片栅栏组织中叶绿体不再紧靠在细胞膜上,叶绿体双层膜破坏,基粒片层松散排列,杂乱无章,出现膨胀和空泡现象,淀粉粒和嗜锇颗粒增多,叶肉细胞中线粒体发生轻微变化;幼根中皮层薄壁细胞线粒体形状发生改变,结构破坏,内膜和外膜模糊甚至破裂,大多数嵴模糊,出现空泡现象;细胞核解体,基质外溢。研究表明, 不同浓度的NaCl胁迫对宁夏枸杞叶片和幼根细胞的显微及超微结构影响不同,NaCl浓度大于200 mmol/L时,宁夏枸杞叶片和幼根细胞的显微及超微结构发生了明显变化,且叶肉细胞中线粒体的变化没有叶绿体的变化显著,推测叶肉细胞中线粒体的耐盐性比叶绿体强。  相似文献   

3.
We investigated responses of chloroplasts from flag leaves of a newly-developed super-high-yield rice (Oryza sativa L.) hybrid LiangYouPeiJiu (LYPJ) to water stress (withholding irrigation) during the grain-filling period. In the early stage of water stress (0–6 d) only the activity of Hill reaction was inhibited, whereas activities of photophosphorylation and Ca2+-ATPase, and ATP content were increased and peaked in the day 6 of withholding irrigation. In the late stage of water stress (6-12 d), the activities of photosynthetic O2 evolution, Hill reaction, photophosphorylation, and Ca2+- ATPase, and ATP content were significantly reduced. The membrane lipid content was sharply decreased, especially of sulfoquinovosyl-diacylglycerol (SQDG) and phosphatidylglycerol (PG). The changes in the ultrastructure of chloroplasts included mainly a decrease in number of grana and increase in number of osmiophilic granules.This revised version was published online in March 2005 with corrections to the page numbers.  相似文献   

4.
We investigated responses of chloroplasts from flag leaves of a newly-developed super-high-yield rice (Oryza sativa L.) hybrid LiangYouPeiJiu (LYPJ) to water stress (withholding irrigation) during the grain-filling period. In the early stage of water stress (0–6 d) only the activity of Hill reaction was inhibited, whereas activities of photophosphorylation and Ca2+-ATPase, and ATP content were increased and peaked in the day 6 of withholding irrigation. In the late stage of water stress (6-12 d), the activities of photosynthetic O2 evolution, Hill reaction, photophosphorylation, and Ca2+- ATPase, and ATP content were significantly reduced. The membrane lipid content was sharply decreased, especially of sulfoquinovosyl-diacylglycerol (SQDG) and phosphatidylglycerol (PG). The changes in the ultrastructure of chloroplasts included mainly a decrease in number of grana and increase in number of osmiophilic granules.  相似文献   

5.
The effects of water stress on leaf surface morphology (stomatal density, size, and trichome density of both adaxial and abaxial surfaces) and leaf ultrastructure (chloroplasts, mitochondria, and cell nuclei) of eggplant (Solanum melongena L.) were investigated in this study. Higher stomata and trichome densities were observed on abaxial surface compared with the adaxial surface. Compared with well watered (WW) plants, the stomata and trichome density of the abaxial surface increased by 20.39% and 26.23% under water-stress condition, respectively. The number of chloroplasts per cell profile was lesser, the chloroplasts became round in a shape with more damaged structure of membranes, the number of osmiophilic granules increased, and the number of starch grains decreased. The cristae in mitochondria were disintegrated. The cell nuclei were smaller and the agglomerated nucleoli were bigger than those of WW plants. Our results indicated that the morphological and anatomical responses enhanced the capability of plants to survive and grow during stress periods.  相似文献   

6.
Changes in the chloroplast ultrastructure and starch and lipid content in the mesophyll and phloem companion cells of the phloem were studied after induction of source and sink functions in leaf tissues. A detached sugar-beet leaf, one half of which was treated with water (source part) and the other half of which was treated with 10–4 M benzyladenine (BA) (acceptor part), was used as a model. After 65-h exposure to diffuse light, starch disappeared and lipid content increased in the source part of the leaf, with simultaneous disorganization of the chloroplast structure, which was most pronounced in the companion cells. Changeover from the source to sink function, induced by BA treatment, did not lead to marked destructive changes in the chloroplast structure of companion cells and resulted in the appearance of starch and in further increase in the level of lipids. Smaller amounts of starch also appeared in the mesophyll chloroplasts in the sink part of the leaf. We suppose that: (1) BA promotes the storage of assimilates, which are imported from the source part of the leaf to the companion cells, in the form of starch and lipids within chloroplasts; and this storage contributes to the maintenance of the sucrose concentration gradient in the conducting system between donor and sink parts of the leaf and, thus, activates metabolite inflow and (2) a barrier exists in the sink part of the leaf for assimilates destined to mesophyll cells, which restricts their export from the phloem.  相似文献   

7.
Soybean plants grown in controlled environment cabinets under light intensities of 220 w/m2 or 90 w/m2 (400–700 nm) and day to night temperatures of 27.5–22.5 C or 20.0–12.5 C in all combinations, exhibited differences in growth rate, leaf anatomy, chloroplast ultrastructure, and leaf starch, chlorophyll, and chloroplast lipid contents. Leaves grown under the lower light intensity at both temperatures had palisade mesophyll chloroplasts containing well-formed grana. The corresponding leaves developed under the higher light intensity had very rudimentary grana. Chloroplasts from high temperature and high light had grana consisting of two or three appressed thylakoids, while grana from the low temperature were confined to occasional thylakoid overlap. Spongy mesophyll chloroplasts were less sensitive to growth conditions. Transfer experiments showed that the ultrastructure of chloroplasts from mature leaves could be modified by changing the conditions, though the effect was less marked than when the leaf was growing.  相似文献   

8.
We examined morphological and ultrastructural differences in chloroplasts of cotton leaves and the fruiting organs, bract, and capsule wall to advance our understanding of their commonly observed differences in photosynthetic efficiency. Chloroplasts from leaves were large (7.1 μm long in cross section), lens shaped with a well developed membrane system differentiated into grana and stroma lamellae that occupied the large cross-sectional area (12.3 μm2) of the organelle. A few small plastoglobuli and starch grains were scattered in the stroma region. The bract chloroplasts were correlative of leaf chloroplasts in size (6.8 μm in length) and shape with the exception that the bract chloroplasts exhibited greater thylakoid number per granum (15.8) than the leaf chloroplasts (10.5). In contrast to leaf and bract, the capsule wall chloroplasts were smaller in size (4.3 μm) and cross sectional area (6.8 μm2) than either the leaf or bract. The most intriguing feature of the capsule wall chloroplasts was its domination by large starch granules (5.3 μm2) in the stroma which filled the whole chloroplast coercing the membrane system to move towards the periphery of the organelle. Grana number and thylakoids per granum were lowest in the capsule wall chloroplasts. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
M. S. Buttrose  C. R. Hale 《Planta》1971,101(2):166-170
Summary The amount of starch accumulated in chloroplasts of grapevine leaves fell, with increasing temperature, from 23% of dry weight at 18/13° C (day/night) to 1% at 35/30° C, whereas total lipids in the leaf rose from 6 to 16% of dry weight. Preparations viewed by electron microscopy had large starch granules in the chloroplasts at 18/13° C, and large lipid droplets at 35/30° C. At 35/30° C chlorophyll content of chloroplasts was high and grana prominent, suggesting that the results were due to selective effects of temperature on metabolic pathways.  相似文献   

10.
Leaves from annual young grape plants (Vitis vinifera L. cv. Jingxiu) were used as experimentalmaterials. The ultrastructural characteristics of mesophyll cells in chilling-treated plants after heat acclima-tion (HA) and in heat-treated plants after cold acclimation (CA) were observed and compared using trans-mission electron microscopy. The results showed that slight injury appeared in the ultrastructure of meso-phyll cells after either HA (38℃ for 10 h) or CA (8℃ for 2.5 d), but the tolerance to subsequent extremetemperature stress was remarkably improved by HA or CA pretreatment. The increases in membrane perme-ability and malondialdehyde concentration under chilling (0℃) or heat (45℃) stress were markedly inhib-ited by HA or CA pretreatment. The mesophyll cells of plants not pretreated with HA were markedly dam-aged following chilling stress. The chloroplasts appeared irregular in shape, the arrangement of the stromalamellae was disordered, and no starch granules were present. The cristae of the mitochondria were dis-rupted and became empty. The nucleus became irregular in shape and the nuclear membrane was digested.In contrast, the mesophyll cells of HA-pretreated plants maintained an intact ultrastructure under chillingstress. The mesophyll cells of control plants were also severely damaged under heat stress. The chloroplastbecame round in shape, the stroma lamellae became swollen, and the contents of vacuoles formed clumps.In the case of mitochondria of control plants subjected to heat stress, the outer envelope was digested andthe cristae were disrupted and became many small vesicles. Compared with cellular organelles in controlplants, those in CA plant cells always maintained an integrated state during whole heat stress, except for thechloroplasts, which became round in shape after 10 h heat stress. From these data, we suggest that thestability of mesophyll cells under chilling stress can be increased by HA pretreatment. Similarly, CA pretreat-ment can protect chloroplasts, mitochondria, and the nucleus against subsequent heat stress; thus, thethermoresistance of grape seedlings was improved. The results obtained in the present study are the first,to our knowledge, to offered cytological evidence of cross-adaptation to temperature stresses in grapeplants.  相似文献   

11.
The structure of photosynthetic elements was investigated in leaves of 42 boreal plant species featuring different degrees of submergence (helophytes, neustophytes, and hydatophytes). The mesophyll structure types were identified for all these species. Chlorenchyma tissues and phototrophic cells were quantitatively described by such characteristics as the sizes of cells and chloroplasts in the mesophyll and epidermis, the abundance of cells and chloroplasts in these tissues, the total surface area of cells and chloroplasts per unit leaf area, the number of plastids per cell, etc. The hydrophytes typically had thick leaves (200–350 m) with a well-developed aerenchyma; their specific density per unit area (100–200 mg/dm2) was lower than in terrestrial plants. Mesophyll cells in aquatic plants occupied a larger volume (5–20 × 103m3) than epidermal cells (1–15 × 103m3). The number of mesophyll cells per unit leaf area was nearly 1.5 times higher than that of epidermal cells. Chloroplasts were present in the epidermis of almost all species, including emergent leaves, but the ratio of the chloroplast total number to the number of all plastids varied depending on the degree of leaf submergence. The total number of plastids per unit leaf area (2–6 × 106/cm2) and the surface of chloroplasts per unit leaf area (2–6 cm2/cm2) were lower in hydrophytes than in terrestrial plants from climatically similar habitats. The functional relations between mesophyll parameters were similar for hydrophytes and terrestrial plants (a positive correlation between the leaf weight per unit area, leaf thickness, and the number of mesophyll cells per unit leaf area), although no correlation was found in hydrophytes between the volume of mesophyll cells and the leaf thickness. Phototrophic tissues in aquatic plants contributed a larger fraction to the leaf weight than in terrestrial plants, because the mechanical tissues were less developed in hydrophytes. The CO2assimilation rates by leaves were lower in hydrophytes than in terrestrial plants, because the total surface area of chloroplasts per unit leaf area is comparatively small in hydrophytes, which reduces the conductivity for carbon dioxide diffusion towards the carboxylation sites.  相似文献   

12.
The interactions between macrophytes and water movement are not yet fully understood, and the causes responsible for the metabolic and ultrastructural variations in plant cells as a consequence of turbulence are largely unknown. In the present study, growth, metabolism and ultrastructural changes were evaluated in the aquatic macrophyte Elodea nuttallii, after exposure to turbulence for 30 days. The turbulence was generated with a vertically oscillating horizontal grid. The turbulence reduced plant growth, plasmolysed leaf cells and strengthened cell walls, and plants exposed to turbulence accumulated starch granules in stem chloroplasts. The size of the starch granules increased with the magnitude of the turbulence. Using capillary electrophoresis–mass spectrometry (CE‐MS), analysis of the metabolome found metabolite accumulation in response to the turbulence. Asparagine was the dominant amino acid that was concentrated in stressed plants, and organic acids such as citrate, ascorbate, oxalate and γ‐amino butyric acid (GABA) also accumulated in response to turbulence. These results indicate that turbulence caused severe stress that affected plant growth, cell ultrastructure and some metabolic functions of E. nuttallii. Our findings offer insights to explain the effects of water movement on the functions of aquatic plants.  相似文献   

13.
Plant growth, photosynthetic parameters, chloroplast ultrastructure, and the ascorbate-glutathione cycle system in chloroplasts of self-grafted and rootstock-grafted cucumber leaves were investigated. Grafted plants were grown hydroponically and were exposed to 0, 50, and 100 mM NaCl concentrations for 10 days. Under NaCl stress, the hydrogen peroxide (H2O2) content in cucumber chloroplasts increased, the chloroplast ultrastructure was damaged, and the gas stomatal conductance, intercellular CO2 concentration, as well as shoot dry weight, plant height, stem diameter, leaf area, and leaf relative water content were inhibited, whereas these changes were less severe in rootstock-grafted plants. The activities of ascorbate peroxidase (APX; EC 1.11.1.11), glutathione reductase (GR; EC 1.6.4.2), and dehydroascorbate reductase (DHAR EC 1.8.5.1) were higher in the chloroplasts of rootstock-grafted plants compared with those of self-grafted plants under 50 and 100 mM NaCl. Similar trends were shown in leaf net CO2 assimilation rate and transpiration rate, as well as reduced glutathione content under 100 mM NaCl. Results suggest that rootstock grafting enhances the H2O2-scavenging capacity of the ascorbate–glutathione cycle in cucumber chloroplasts under NaCl stress, thereby protecting the chloroplast structure and improving the photosynthetic performance of cucumber leaves. As a result, cucumber growth is promoted.  相似文献   

14.
Primary leaf segments from 8-day-old dark-grown, and from 4- and 8-day-old light-grown seedlings of Zea mays L. cv. Fronica, were treated with 10-bM benzyladenine (BA) in the dark for 14 h. The segments were then studied after an exposure to light for 14 h. Photosynthetic activity (O2 evolution and CO2 fixation) and chlorophyll accumulation were stimulated by BA in dark-grown leaf segments with etioplastids in the earliest stage of development. In these segments BA stimulated the activities of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39), phosphoenolpyruvate carboxylase (EC 4.1.1.31), NADP+-malic enzyme (EC 1.1.1.40) and pyruvate, orthophosphate dikinase (EC 2.7.9.1). In segments taken from 4- and 8-day light-grown seedlings, BA did not enhance the photosynthetic activity nor the chlorophyll accumulation. The activity of the enzymes mentioned above, was significantly enhanced by the BA-treatment. BA mainly affected grana stacking in mesophyll cell chloroplasts in primary leaf segments taken from 3- to 5-day light-grown seedlings. Stroma thylakoid development was stimulated only in leaf segments from 3-day-old plants. At the same time BA accelerated grana loss in chloroplasts of bundle sheath cells, a typical phenomenon of development in such chloroplasts. Stroma thylakoid length in these chloroplasts increased by a BA treatment in segments from 3- and 4-day light-grown plants. A significantly higher number of chloroplasts was only observed with segments taken from 8-day light-grown seedlings and treated with BA. The etiochloroplast number in segments taken from 8-day etiolated plants was significantly higher in BA-treated segments after 26 h illumination. In etiochloroplasts from both mesophyll and bundle sheath cells, BA enhanced grana stacking after illumination for 4 h or more, whereas stroma membrane length was significantly higher only after 26 h light. It is concluded that the effects of BA depend on the developmental stage. BA accelerates the development of mesophyll and bundle sheath cell (etio)chloroplasts, but does not affect the ultrastructure of mature chloroplasts.  相似文献   

15.
日光温室光温因子对黄瓜叶绿体超微结构及其功能的影响   总被引:12,自引:4,他引:12  
在日光温室内,研究了光温因子对黄瓜叶绿体超微结构及其功能的影响.结果表明,因季节之间光、温条件不同,日光温室黄瓜叶片显微结构和叶绿体超微结构有一定差异,1月份光照弱叶肉细胞较大,而5月份光照强叶绿体数较多.在该试验条件下,未发现叶片光合速率与叶绿体超微结构之间有直接或密切的相关性.在各生长季节其光合速率均为第4叶>初展叶>基部叶,与叶龄及各叶位的受光量有关.如果将不同叶位叶放在相同的光照下,则差异明显减少.黄瓜叶片的叶肉细胞、叶绿体和淀粉粒的大小以及叶绿体数、基粒数、基粒厚度、基粒片层数都随叶位的下降而呈增加趋势。不同品种、同品种不同生长时期的叶片显微结构和叶绿体超微结构及其功能也有一定的差异.限制日光温室冬季黄瓜光合作用的主要因素是光照弱、有效光照时数少,而在晴天温度的限制作用相对较小。阴天因光照弱而导致的室内低温则是限制黄瓜生长的关键因素.  相似文献   

16.
冷激对高温胁迫下番茄幼苗生长及花芽分化的影响   总被引:1,自引:1,他引:0  
为了解苗期冷激锻炼对番茄幼苗生长和花芽分化的影响,试验采用人工气候箱模拟夏季设施高温环境,每天对番茄幼苗进行10 ℃、10 min的冷激锻炼,研究冷激处理对高温胁迫下番茄幼苗生长、叶片超微结构和花芽分化进程的影响,并观察定植后开花和坐果情况.结果表明:在4叶期经过冷激锻炼的番茄幼苗茎粗、壮苗指数分别比对照提高了7.2%和55.5%;经过冷激锻炼处理的番茄幼苗叶片中叶绿体和线粒体等细胞器形状及结构正常完整,一定程度上缓解了高温对番茄幼苗叶肉细胞超微结构的破坏;冷激锻炼显著提高了番茄幼苗早期花芽分化的分化进程,但随着苗龄的延长这种差异变得不显著.定植后经冷激处理的番茄幼苗第1、2穗果的坐果数和坐果率显著高于未经冷激处理.表明冷激锻炼不仅能够缓解高温对番茄幼苗细胞超微结构的伤害和生长的胁迫,还有利于早期花芽分化进程的提前,提高番茄坐果数和坐果率.  相似文献   

17.
It is well known that saintpaulia leaf is damaged by the rapid temperature decrease when cold water is irrigated onto the leaf surface. We investigated this temperature sensitivity and the mechanisms of leaf damage in saintpaulia (Saintpaulia sp. cv. ‘Iceberg’) and other Gesneriaceae plants. Saintpaulia leaves were damaged and discolored when subjected to a rapid decrease in temperature, but not when the temperature was decreased gradually. Sensitivity to rapid temperature decrease increased within 10 to 20 min during pre-incubation at higher temperature. Injury was restricted to the palisade mesophyll cells, where there was an obvious change in the color of the chloroplasts. During a rapid temperature decrease, chlorophyll fluorescence monitored by a pulse amplitude modulated fluorometer diminished and did not recover even after rewarming to the initial temperature. Isolated chloroplasts were not directly affected by the rapid temperature decrease. Intracellular pH was monitored with a pH-dependent fluorescent dye. In palisade mesophyll cells damaged by rapid temperature decrease, the cytosolic pH decreased and the vacuolar membrane collapsed soon after a temperature decrease. In isolated chloroplasts, chlorophyll fluorescence declined when the pH of the medium was lowered. These results suggest that a rapid temperature decrease directly or indirectly affects the vacuolar membrane, resulting in a pH change in the cytosol that subsequently affects the chloroplasts in palisade mesophyll cells. We further confirmed that the same physiological damage occurs in other Gesneriaceae plants. These results strongly suggested that the vacuoles of palisade mesophyll cells collapsed during the initial phase of leaf injury.  相似文献   

18.
Cucumber (Cucumis sativus L.) varieties cv. Jinchun no. 4 (a North China ecotype) and cv. Lvfeng no. 6 (a South China ecotype) were cultivated to explore the effects of osmotic stress on the ultrastructure of chloroplasts and mitochondria, as well as to assess the possible protective effect of exogenous hydrogen peroxide (H2O2). Under osmotic stress induced by 10% polyethylene glycol 6000, 84.3% of the chloroplasts in Jinchun no. 4 were abnormal, whereas 88.6% were abnormal in Lvfeng no. 6. Abnormal mitochondria occurred in these two strains at rates of 78.5 and 87.1%, respectively. The stress condition disintegrated the membranes of most chloroplasts and mitochondria in the leaf cells of both cucumber ecotypes, and it also increased the malondialdehyde (MDA) content. We subjected the two cultivars to a combined treatment with H2O2 and osmotic stress and made the following observations: (1) Abnormal chloroplasts occurred at rates of 25.7 and 28.6%, and abnormal mitochondria were observed at rates of 22.9 and 32.8%, respectively. (2) Most of the investigated membranes were well organized in leaves of Jinchun no. 4 and Lvfeng no. 6, and the levels of endogenous H2O2, superoxide anion, and MDA were lower. Osmotic stress and exogenous H2O2 both increased the activities of antioxidative enzymes such as manganese superoxide dismutase, glutathione peroxidase, catalase, guaiacol peroxidase, ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase, dehydroascorbate reductase, and the antioxidants ascorbate and reduced glutathione. The combined effect of osmotic stress and exogenous H2O2 resulted in the highest antioxidant activities in both cucumber ecotypes. We propose that exogenous H2O2 increases antioxidant activity in cucumber leaves and thereby decreases lipid peroxidation to some extent, thus protecting the ultrastructure of most chloroplasts and mitochondria under osmotic stress.  相似文献   

19.
Isoetes sinensis Palmer (Isoetaceae) is a critically endangered fern that is a marsh plant (that is an aquatic or amphibious plant) in China. To evaluate damage or influence of lead (Pb) on cell ultrastructure in I. sinensis, we used 2000mg·L-1 Pb(NO3)2 solution to treat I. sinensis for 35d, and used transmission electron microscope (TEM) to observe the cell ultrastructure of leaf blades and roots of the plant. Our results indicated that Pb induced distinct changes of the organelles including chloroplast, mitochondria, nucleolus and vacuole. The level of damage organ was lower leaf > upper leaf > root The typical performance of the damages caused by lead shown that part of the nucleolus cracked; the cristae dilated, matrix vacuolized and membrane structure blurred in mitochondria; the vacuole cracked; grana lamella decreased, stroma lamella loosed, starch grains decreased, and membrane structure was disrupted in chloroplasts; Pb deposits were present on cell wall. The damages to chloroplasts and mitochondria were relatively severe, while damage to the nucleus was relatively lighter. The damage to the cell ultrastructure of leaf blades with direct contact with Pb was more severe than that without direct contact with Pb.  相似文献   

20.
We investigated the effects of drought stress on the ultrastructure of chloroplasts in rice plants. After the seedlings were grown in a glasshouse for 1 month, they were treated for drought stress using two methods. One drought treatment was imposed by reducing the water supply to the plants for 1 month. The other was imposed by withholding water for 2 weeks to examine the withering process of leaves by drought stress. The ultrastructural changes of chloroplasts in bundle sheath cells were more prominent than those in mesophyll cells under both drought stress treatments. Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) content in bundle sheath chloroplasts reduced more dramatically than in mesophyll chloroplasts by drought stress. Although a slight swelling of thylakoids was sometimes observed in bundle sheath chloroplasts in moderate stress for 1 month, the thylakoids were less affected by drought stress than chloroplast envelope. These results suggest that chloroplasts in bundle sheath cells were more sensitive to drought stress than those in mesophyll cells and the thylakoids were less damaged by drought stress compared with chloroplast envelope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号