首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 179 毫秒
1.
Resonance Raman measurements have been performed with solutions of iodine-complexed synthetic amyloses (DP 25–200), malto-oligomers (DP 3–18, and -cylodextrin. Interest was focused on the minimum chain length for helical complex formation and a possible preferred length for the polyiodine chain. Four fundamental vibrations are observed at 164, 112, 52 and 24 cm−1. The 112 cm−1 Raman line was shown to arise both from free I3 (enhanced at 363.8 nm excitation) and from bound iodine (relatively most intense at 457.9 nm excitation). The main signal of complexed iodine at 164 cm−1is enhanced at an excitation wavelength close to the long wavelength absorption maximum. This signal is observed firt with malto-octaose and -cyclodextrin. The less intense signals at 52 and 24−1 are only detected at DP 15 and higher. Raman spectra give no evidence for a preferred length of the polyiodine chain. Significantly identical Raman spectra are obtained when using different molar ratios of I2/KI solution or I2 solution initially free of I ions. The results are discussed in view of previous assignments of the Raman lines to I2, I3/I2, and I5 subunits. Our findings are incompatible with I3 units as the only bound species. They are compatible with both I3/I2 and I3 subunits under certain conditions. In the case of I2 solution used for complexation we favour the polyiodine chain model proposed previously by Cramer35,36. The I3 ions formed could function mainly as chain initiators, as has been suggested by Cesàro and Brant30.  相似文献   

2.
Treatment of 1-tributylstannylalkynes with Cp2Zr(H)CI affords olefinic intermediates substituted by both Bu3Sn and Cp2ZrCI groups on the terminal sp2-1ike carbon. These stereodefined reagents can be selectively transmetalated at zirconium to afford cuprates which deliver product vinyl stannanes in both substitution and Michael addition reactions.  相似文献   

3.
The reactivity, towards nucleophiles and electrophiles, of dimolybdenum allenylidene complexes of the type [Cp2Mo2(CO)4(μ,η2(4e)-C=C=CR1R2)] (Cp=η5-C5H5) has been investigated. The nucleophilic attacks occur at the Cγ carbon atom, while electrophiles affec the C atom. Variable temperature solution 1H NMR studies show a dynamic behavior of these complexes consisting of an equilibrium between two enantiomers with a symmetrical [Cp2Mo2(CO)4(μ-σ,σ(2e)-C=C=CR1R2)] transition state. Extended Hückel MO calculations have been carried out on the model [Cp2Mo2(CO)4(μ,η2-C=C=CH2]. The calculated charges of the allenylidene carbon atoms suggest that the electrophilic attacks are under charge control, while the nucleophilic attacks are rather under orbital control.  相似文献   

4.
The complex Ir(CH3) (CO) (CF3SO3)2 (dppe) (1) has been synthesized from the reaction of Ir(CH3)I2(CO) (dppe) and silver triflate. Methane and IrH(CO) (CF3SO3)2 (dppe) (2) are formed when a methylene chloride solution of 1 is placed under 760 torr dihydrogen. Conductivity studies indicate that methylene chloride solutions of complexes 1 and 2 are weak electrolytes and only partially ionized at concentrations above 1 mM. Complex 2 is an effective hydrogenation catalyst for ethylene and 1-hexene while acetone hydrogenation is inhibited by the formation of [IrH2(HOCH(CH3)2) (CO) (dppe)] (OTf) (3). Linear dimerization and polymerization of styrene occurs via a carbocationic mechanism initiated by triflic acid elimination from 2. Treatment of an acetonitrile solution of Ir(CH3)I2(CO) (dppe) with silver hexafluorophosphate produces the solvent promoted carbonyl insertion product [Ir(C(O)CH3) (NCCH3)3 (dppe)] [PF6]2 (7) which readily undergoes deinsertion in methylene chloride to form [Ir(CH3) (CO) (NCCH3)2 (dppe)] [PF6]2 (8) and acetonitrile.  相似文献   

5.
After reaction with alkyl iodides and subsequent oxidative removal of the M(CO)3 triprotection, molybdenum and chromium fac-LM(CO)3 complexes of cyclen (L) unexpectedly lead to N1,N7-dialkylated cyclen derivatives.  相似文献   

6.
Rhodium complexes, in the presence or absence of PEt3, catalyse the carbonylation of CH2I2 to dialkylmalonates in the presence of alcohols (ROH, R=Me, Et, Pr1, Bu) with side products from reactions in EtOH being CH2(OEt)2, EtI and traces of EtCO2Et and EtOAc. The active species when using PEt3 is shown to be [RhI(CO)(PEt3)2], formed via [Rh(OAc)(CO)(PEt3)2] from [Rh2(OAc)4 · 2MeOH] and PEt3. Mechanistic studies show that the first step of the catalytic cycle is oxidative addition of CH2I2 to give [Rh(CH2I)I2(CO)(PEt3)2], but that insertion of CO into the Rh---CH2I bond gives an iodoacyl complex which is unstable. The analogous [Rh(COCH2X)X2(CO)(PEt3)2], (X=Cl or Br) have been synthesised by oxidative addition of XCH2COX to [RhX(CO)(PEt3)2] and fully characterised (by X-ray crystallography, for X=Cl). [Rh(COCH2Br)Br2(CO)(PEt3)2] has also been formed from reaction of [Rh(COCH2Cl)Cl2(CO)(PEt3)2] with excess NaBr. However, the analogous reaction with NaI does not give the iodoethanoyl complex, but rather [RhI3(CO)(PEt3)2] and its decomposition products. It is proposed that [Rh(COCH2I)I2(CO)(PEt3)2] is unstable towards loss of I to form the ketene complex, [RhI2(CH2=C=O)(CO)(PEt3)2]I, which is transformed into [Rh(COCH2CO2Et)I2(CO)(PEt3)] by nucleophilic attack of ethanol at the central C atom, followed by CO insertion into the Rh---C bond. An analogue, [Rh(COCH2CO2Et)Cl2(CO)(PEt3)2], has been isolated by oxidative addition of EtO2CCH2COCl across [RhCl(CO)(PEt3)2], and characterised both spectroscopically and crystallographically. In refluxing ethanol, [Rh(COCH2CO2Et)Cl2(CO)(PEt3)2] produces diethylmalonate and [RhCl(CO)(PEt3)2], thus completing the catalytic cycle. Possible pathways of deactivation of the catalyst to give [RhI3(CO)(PEt3)2] are discussed. One involves the reaction of ketene with ethanol to give EtOAc, whilst the others involve protonation of the Rh---Z bond in [RhZI2(CO)(PEt3)2] (where Z =CH2I, CH2CO2Et or H) by HI. The isolation of CH2DCO2Et, when carrying out the reaction in EtOD, is consistent with all of these deactivation pathways except protonation of [RhHI2(CO)(PEt3)2].  相似文献   

7.
Abstract Inhibition of photosynthesis by a range of organotin compounds in Plectonema boryanum was concentration-dependent and decreased in the order tributyltin (Bu3SnCl) > tripropyltin (Pr3SnCl) ≥ dibutyltin (Bu2SnCl2) ≥ triphenyltin (Ph3SnCl) > triethyltin (Et3SnCl) > trimethyltin (Me3SnCl) > monobutyltin (BuSnCl3). IC50 values were determined for the most toxic organotin species and varied from approximately 1.2 μM for Bu3SnCl to approximately 13 μM for Ph3SnCl. A similar order of inhibition of photosynthesis was observed in Anabaena cylindrica , although here IC50 values were slightly lower (e.g. approximately 1 μM for Bu3SnCl and 5 μM for Ph3SnCl).Nitrogenase activity was generally more sensitive to inhibition by organotin compounds than photosynthesis in A. cylindrica and this was particularlyy evident for Bu2SnCl2; approximate IC50 values for Bu2SnCl2 were 3 and 9 μM, as estimated by nitrogenase activity and photosynthesis, respectively. These results indicate that organotin compounds have the potential to inhibit cyanobacterial metabolism in aquatic systems.  相似文献   

8.
An improved synthetic procedure for pentabenzylcyclopentadiene Bz5C5H was developed. Six new organomolybdenum and organotungsten halides η5-Bz5C5M(CO)3X(M = Mo, W; X = Cl, Br, I) were syntesized through the reaction of η5-Bz5C5M(CO)3Li (derived from Bz5C5H, n-BuLi and M(CO)6) with PCl3, PBr3 or I2 and characterized by elemental analysis, IR and 1H NMR spectroscopy. The structure of η5-Bz5C5Mo(CO)3I was determined by single-crystal X-ray diffraction techniques. It crystallized in the monoclinic space groupp P2/c with cell parameters a = 13.294(4), B = 15.147(4), C = 19.027(3) Å, β = 108.32(2)°, V = 3637(2) Å3, Z = 4 and Dx = 1.50 g cm−3. The final R value was 0.035 for 4564 observed reflections.  相似文献   

9.
Hydroformylation reactions of a series of alkenes and alkynes have been carried out using the heteronuclear Rh---W catalyst, (CO)4 hH(CO)(PPh3) (1). The results of these reactions have been compared with corresponding reactions using [Rh(OAc)2]2 as catalyst. Catalysis of a reaction of styrene using 1 gave a very high yield of the branched chain aldehyde containing only a trace of the straight chain isomer. Reactions of the phosphinoalkene, Ph2P(CH2)3CH=CH2 (7) and the corresponding alkyne, Ph2P(CH2)3CCH (11) gave similar products using either catalyst system with the alkryne reaction being significantly slower. Reaction of the alkenyl dithiane, H---CH2CH=CH2 (2), using the Rh---W catalyst (1) gave a higher ratio of linear to branched aldehydes (47 linear:53 branched) than the corresponding reaction using [Rh(OAc)2]2 (25 linear:75 branched). Reactions of vinyl acetate using 1 as catalyst gave a significant amount of linear aldehyde in contrast to reactions using [Rh(OAc)2]2 but reactions of allyl acetate gave similar products for both catalyst systems.  相似文献   

10.
[NBun4]2[W(C3Se5)3] (C3Se52− = 1,3-diselenole-2-selone-4,5- diselenolate(2−)) was prepared by the reaction of Na2[C3Se5] with WCl6 in ethanol, followed by addition of [NBun4]Br. The cyclic voltammogram in dichloromethane exhibits two oxidation peaks at −0.04 and +0.03 V (versus SCE). The complex reacted with [Fe(C5Me5)2][BF4], iodine or [TTF]3[BF4]2 (TTF·+ = the tetrathiafulvalenium radical cation) in acetonitrile to afford the oxidized complexes [Fe(C5Me5)2]0.5[W(C3Se5)3], [NBun4]0.1[W(C3Se5)3] and [TTF]0.5[W(C3Se5)3], respectively. Current-controlled electrochemical oxidation of the complex in acetonitrile gave [NBun4]0.6[W(C3Se5)3]. The oxidized complexes exhibit electrical conductivities of 4.7×10 −5−1.5×10−3 S cm−1 at room temperature measured for compacted pellets. Electronic absorption, IR and ESR spectra of these complexes are discussed.  相似文献   

11.
The paper describes remarkable reactions of the direct synthesis of aromatic amines from molecular nitrogen. Two types of systems capable of inducing such reactions are considered in detail. The first type involves systems based on titanium compounds (Cp2TiCl2, Cp2TiPh2, CpTiCl3, TiCl4, Ti(OBu)4) and excess aryllithium reagents (PhLi, p-, m- and o-MeC6H4Li, -C10H8Li, oPhC6H4Li) in ether. The second type is obtained by treating diaryltitanocenes Cp2TiAr2 (Ar = Ph, p- and m-MeC6H4) with metals of groups I and II (Li, Na, Mg) in ethereal media. In both cases the interaction with dinitrogen proceeds at room temperature and results in the formation of aromatic amines and ammonia after hydrolysis. The highest activity in amine production is displayed by the systems Cp2TiCl2 + PhLi in ether and Cp2TiPh2 + Li in THF. The mechanism of the reactions found is discussed.  相似文献   

12.
Carbonylation of the anionic iridium(III) methyl complex, [MeIr(CO)2I3] (1) is an important step in the new iridium-based process for acetic acid manufacture. A model study of the migratory insertion reactions of 1 with P-donor ligands is reported. Complex 1 reacts with phosphites to give neutral acetyl complexes, [Ir(COMe)(CO)I2L2] (L = P(OPh)3 (2), P(OMe)3 (3)). Complex 2 has been isolated and fully characterised from the reaction of Ph4As[MeIr(CO)2I3] with AgBF4 and P(OPh)3; comparison of spectroscopic properties suggests an analogous formulation for 3. IR and 31P NMR spectroscopy indicate initial formation of unstable isomers of 2 which isomerise to the thermodynamic product with trans phosphite ligands. Kinetic measurements for the reactions of 1 with phosphites in CH2Cl2 show first order dependence on [1], only when the reactions are carried out in the presence of excess iodide. The rates exhibit a saturation dependence on [L] and are inhibited by iodide. The reactions are accelerated by addition of alcohols (e.g. 18× enhancement for L = P (OMe)3 in 1:3 MeOH-CH2Cl2). A reaction mechanism is proposed which involves substitution of an iodide ligand by phosphite, prior to migratory CO insertion. The observed rate constants fit well to a rate law derived from this mechanism. Analysis of the kinetic data shows that k1, the rate constant for iodide dissociation, is independent of L, but is increased by a factor of 18 on adding 25% MeOH to CH2Cl2. Activation parameters for the k1 step are ΔH = 71 (±3) kJ mol, ΔS = −81 (±9) J mol−1 K−1 in CH2Cl2 and ΔH = 60(±4) kJ mol−1, ΔS = −93(± 12) J mol−1 K−1 in 1:3 MeOH-CH2Cl2. Solvent assistance of the iodide dissociation step gives the observed rate enhancement in protic solvents. The mechanism is similar to that proposed for the carbonylation of 1.  相似文献   

13.
The relationship between the electrochemical reduction potential of a ligand and the ability of that ligand to form a kinetically inert 18+δ complex in a reaction with a 17-electron radical was investigated. (18+δ complexes are 19-electron adducts in which the unpaired electron is primarily located on a ligand orbital.) To probe the relationship, a series of 18+δ complexes was generated by irradiating the Cp′2Mo2(CO)6, Cp2Fe2(CO)4 and Co2(CO)8 dimers in the presence of a series of bidentate phosphorus ligands. (Irradiation of the dimers formed 17-electron metal radicals by photolysis of the metal-metal bonds.) These experiments showed that bidentate phosphorus ligands with reduction potentials more positive than −1 volt (versus SCE) formed long-lived 18+δ complexes (in THF or CH2Cl2 solutions at 23 °C), while ligands with potentials more negative than −1 V formed reactive 18+δ complexes. The inability to detect 18+δ complexes in the latter case is attributed to kinetic factors: the 18+δ complexes are powerful reductants and they readily initiate a chain disproportionation of the dimers by electron transfer. Analogous experiments with bidentate nitrogen ligands did not produce any detectable 18+δ complexes. In this case, the undetectability of the 18+δ complexes is probably thermodynamic in origin: the hard nitrogen ligands and soft metal centers form adducts that are unstable with respect to metal-nitrogen bond cleavage. 18+δ complexes are the subject of increasing interest, especially as models for their more reactive 19-electron-complex counterparts. These results provide some guidelines for the design of 18+δ complexes that can be synthesized, isolated and characterized for such studies.  相似文献   

14.
不同地下滴灌制度下黄瓜根际微生物活性及功能多样性   总被引:3,自引:0,他引:3  
采用微生物培养、BIOLOG碳素利用法和土壤酶活性测定等方法,分析了日光温室不同地下灌溉制度下黄瓜根际土壤中微生物活性及功能多样性.结果表明: 根际土壤微生物生物量C、N含量、基础呼吸、代谢熵、AWCD值、Shannon指数和McIntosh指数随灌水量的增加呈先升高后下降的趋势;在0.8Ep(Ep为20 cm标准蒸发皿蒸发量)灌溉水平下,I2处理(灌水周期8 d)根际土壤微生物生物量C、N含量、基础呼吸、代谢熵、AWCD值、Shannon指数和McIntosh指数显著高于I1处理(灌水周期4 d).0.8Ep处理下,细菌、放线菌、自生固氮菌数量及脲酶、磷酸酶、蔗糖酶、过氧化氢酶和多酚氧化酶活性显著高于其他2个灌水量处理(0.6Ep和1.0Ep);I2处理的细菌和自生固氮菌数量、脲酶、磷酸酶和蔗糖酶活性显著高于I1处理,放线菌数量、过氧化氢酶和多酚氧化酶活性与I1处理差异不显著,而真菌数量显著低于I1处理.I 20.8Ep处理使黄瓜根际土壤中微生物代谢活性和微生物群落功能多样性升高,微生物区系得以改善,土壤酶活性提高,促进黄瓜生长.  相似文献   

15.
The observation of homolytic S---CH3 bond cleavage in (Ph2P(o-C6H4)SCH3)2Ni0 under photochemical conditions has prompted further investigation of nickel(0) complexes and their stability. Tetradentate P2S′2 donor ligands (S′ = thioether type S donor) with aromatic rings incorporated into the P to S links, Ph2P(o-C6H4)S(CH2)3S(o-C6H4)PPh2 (arom-PSSP), or the S to S links, Ph2P(CH2)2SCH2(o-C6H4)CH2S(CH2)2PPh2 (PS-xy-SP), have been used to form four-coordinate, square planar nickel(II) complexes, [(arom-PSSP)Ni](BF4)2 (2) and [(PS-xy-SP)Ni](BF4)2 (3). The bidentate and tetradentate ligands, Ph2P(o-C6H4)SCH2CH3 (arom-PSEt) and Ph2P(CH2)2S(CH2)3S(CH2)2PPh2 (PSSP), give similar complexes, [(arom-PSEt)2Ni](BF4)2 (1) and [(PSSP)Ni](BF4)2 (4), respectively. Cyclic voltammograms of the Ni11 complexes in CH3CN show two reversible redox events assigned to and . The one-electron reduction product produced by stoichiometric amounts of Cp2Co can be characterized by EPR. At 100 K rhombic signals show hyperfine coupling to two phosphorus atoms. Complete bulk chemical reduction of complexes 1, 2, 3 and 4 with Na/Hg amalgam provided the corresponding nickel(0) complexes 1R, 2R, 3R and 4R which were isolated as red solutions or solids characterized by magnetic resonance properties and reaction products. Photolysis of these nickel(0) complexes leads to S-dealkylation to produce alkyl radicals and dithiolate nickel(II) complexes. Complex 3 crystallized in the monoclinic space group P2t/c with a=20.740(5), B=9.879(3), C=17.801(4) åA, ß=92.59(2)°, V=3644(2) Å3 and Z=4; complex 4: P21/c with A=13.815(4), B=13.815(4), C=15.457(5) åA, V=3365.4(14) Å3 and Z=4.  相似文献   

16.
Treatment of the A-ring aromatic steroids estrone 3-methyl ether and β-estradiol 3, 17-dimethyl ether with Mn(CO)5+BF4 in CH2Cl2 yields the corresponding [(steroid)Mn(CO)3]BF4 salts 1 and 2 as mixtures of and β isomers. The X-ray structure of [(estrone 3-methyl ether)Mn(CO)3]BF4 · CH2Cl2 (1) having the Mn(CO)3 moiety on the side of the steroid is reported: space group P21 with a=10.3958(9), b=10.9020(6), c=12.6848(9) Å, β=111.857(6)°, Z=2, V=1334.3(2) Å3, calc=.481 cm−3, R=0.0508, and wR=0.0635. The molecule has the traditional ‘piano stool’ structure with a planar arene ring and linear Mn---C---O linkages. The nucleophiles NaBH4 and LiCH2C(O)CMe3 add to [(β-estradiol 3,17-dimethyl ether)Mn(CO)3]BF4 (2) in high yield to give the corresponding - and β-cyclohexadienyl manganese tricarbonyl complexes (3). The nucleophiles add meta to the arene -OMe substituent and exo to the metal. The and β isomers of 3 were separated by fractional crystallization and the X-ray structure of the β isomer with an exo-CH2C(O)CMe3 substituent is reported (complex 4): space group P212121 with a=7.5154(8), b=15.160(2), c=25.230(3) Å, Z=4, V=2874.4(5) Å3, calc=1.244 g cm−3, R=0.0529 and wR2=0.1176. The molecule 4 has a planar set of dienyl carbon atoms with the saturated C(1) carbon being 0.592 Å out of the plane away from the metal. The results suggest that the manganese-mediated functionalization of aromatic steroids is a viable synthetic procedure with a range of nucleophiles of varying strengths.  相似文献   

17.
Lithiation of [p-But-calix[4]-(OMe)2(OH)2] (1), followed by reaction with TiCl3(thf)3 or TiCl4(thf)2, led to the corresponding titanium-calix[4]arene complexes [p-But-calix[4]-(OMe)2(O)2]TiCl] (2) and [p-But-calix[4]-(OMe)2(O)2]TiCl2] (3), respectively. Reaction of 1 with TiCl4(thf)2 results in demethylation of the calix[4]arene and the obtention of [p-But-calix[4]-(OMe)2(O)3]TiCl] (4), whose hydrolysis led to [p-But-calix[4]-(OMe)(OH)3] (6). The preparation of 6 can be carried out as a one-pot synthesis. Both 2 and 4 undergo alkylation reactions using conventional procedures, thus forming surprisingly stable organometallic species, namely [p-But-calix[4]-(OMe)2(O)2Ti(R)] (R = Me (7); CH2Ph (8), p-MeC6H4 (9) and [p-But-calix[4]-(OMe)(O)3Ti(R)] (R = Me (10); CH2Ph (11); p-MeC6H4 (12)). Complexes 7 and 9 undergo a thermal oxidative conversion into 10 and 12, occurring with the demethylation of one of the methoxy groups. A solid state structural property of 9 and 12 has been revealed by X-ray analysis showing a self-assembly of the monomeric units into a columnar polymer, where the p-tolyl substituent at the metal functions as a guest group for an adjacent titanium-calixarene. Reductive alkylation of 3 with Mg(CH2Ph)2 gave 8 instead of forming the corresponding dialkyl derivative. Two synthetic routes have been devised for the synthesis of the Ti(III)-Ti(III) dimer [p-But-calix[4]-(OMe)(O)3Ti]2] (13): the reduction of 4 and the reaction of TiCl3(thf)3 with the lithiated form of 6. A very strong antiferromagnetic coupling is responsible for the peculiar magnetic behavior of 13. The proposed structures have been supported by the X-ray analyses of 4, 9, 12 and 13.  相似文献   

18.
19.
The complex [(PP3)OsH(N2)]BPh4 is a catalyst precursor for the regio- and stereoselective dimerization of HCCR (R=Ph, SiMe3) to (Z)-1,4-disubstituted-but-3-en-l-ynes (PP3=P(CH2CH2PPh2)3). In the presence of H2O or C2H5OH, the catalytic reaction with HCCSiMe3 selectively gives but-3-en-l-ynyl-trimethyisilane. A detailed study under different experimental conditions, the detection of some intermediates, and the use of isolated complexes in independent reactions, taken altogether, permit mechanistic conclusions which account for the observed products. A key-role is played by (vinylidene)σ-alkynyl complexes which transform into η3-butenynyl derivatives via intramolecular C---C bond formation. The Os(II) η3-butenynyl complexes are likely reagents in the rate determining step of the catalytic cycle, and produce free (Z)-1,4-disubstituted-but-3-en-l-ynes upon σ-bond metathesis reaction with HCCR. The 16-electron fragments [(PP3)OsX]+ (X = H, Cl, CCR) are capable of promoting the 1-alkyne to vinylidene tautomerism. In particular, the (vinylidene)hydride [(PP3)OsH{C=C(H)-SiMe3}]BPh4 has been isolated and properly characterized. Since the stoichiometric reaction of the latter compound with HCCSiMe3 gives vinyltrimethylsilane, the formation of (vinylidene)hydride species is suggested to be an effective step, alternative to 1-alkyne insertion, in the reduction of 1-alkynes to alkenes assisted by hydrido metal complexes.  相似文献   

20.
The dinuclear Pt---Si complex {(Ph3P)Pt{μ-η2-H---SiH(IMP)]}2 (trans-1a–cis-1b=3:1; IMP=2-isopropyl-6-methylphenyl) reacted with basic phosphines such as 1,2-bis(diphenylphosphino)ethane (dppe) and dimethylphenylphosphine (PMe2Ph) to afford different dinuclear Pt---Si complexes with loss of H2, {(P)2Pt[μ-SiH(IMP)]}2 [P=dppe, trans-2a (major), cis-2b (trace); PMe2Ph, 3 (trans only)]. Complexes 2 and 3 were characterized by multinuclear NMR spectroscopy and X-ray crystallography (2a). In contrast, the reaction of 1a,b with the sterically demanding tricyclohexylphosphine (PCy3) afforded {(Cy3P)Pt{μ-η2-H---SiH(IMP)]}2 (trans-4a–cis-4b 2:1) analogous to 1a,b where the central Pt2Si2(μ-H)2 core remains intact but the PPh3 ligands have been replaced by PCy3. Complexes 4a and 4b was characterized by multinuclear NMR and IR spectroscopies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号