首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Vertical depth migrations into shallower waters at night by the chambered cephalopod Nautilus were first hypothesized early in the early 20(th) Century. Subsequent studies have supported the hypothesis that Nautilus spend daytime hours at depth and only ascend to around 200 m at night. Here we challenge this idea of a universal Nautilus behavior. Ultrasonic telemetry techniques were employed to track eleven specimens of Nautilus pompilius for variable times ranging from one to 78 days at Osprey Reef, Coral Sea, Australia. To supplement these observations, six remotely operated vehicle (ROV) dives were conducted at the same location to provide 29 hours of observations from 100 to 800 meter depths which sighted an additional 48 individuals, including five juveniles, all deeper than 489 m. The resulting data suggest virtually continuous, nightly movement between depths of 130 to 700 m, with daytime behavior split between either virtual stasis in the relatively shallow 160-225 m depths or active foraging in depths between 489 to 700 m. The findings also extend the known habitable depth range of Nautilus to 700 m, demonstrate juvenile distribution within the same habitat as adults and document daytime feeding behavior. These data support a hypothesis that, contrary to previously observed diurnal patterns of shallower at night than day, more complex vertical movement patterns may exist in at least this, and perhaps all other Nautilus populations. These are most likely dictated by optimal feeding substrate, avoidance of daytime visual predators, requirements for resting periods at 200 m to regain neutral buoyancy, upper temperature limits of around 25°C and implosion depths of 800 m. The slope, terrain and biological community of the various geographically separated Nautilus populations may provide different permutations and combinations of the above factors resulting in preferred vertical movement strategies most suited for each population.  相似文献   

2.
The cephalopod genus Nautilus is considered a “living fossil” with a contested number of extant and extinct species, and a benthic lifestyle that limits movement of animals between isolated seamounts and landmasses in the Indo‐Pacific. Nautiluses are fished for their shells, most heavily in the Philippines, and these fisheries have little monitoring or regulation. Here, we evaluate the hypothesis that multiple species of Nautilus (e.g., N. belauensis, N. repertus and N. stenomphalus) are in fact one species with a diverse phenotypic and geologic range. Using mitochondrial markers, we show that nautiluses from the Philippines, eastern Australia (Great Barrier Reef), Vanuatu, American Samoa, and Fiji fall into distinct geographical clades. For phylogenetic analysis of species complexes across the range of nautilus, we included sequences of Nautilus pompilius and other Nautilus species from GenBank from localities sampled in this study and others. We found that specimens from Western Australia cluster with samples from the Philippines, suggesting that interbreeding may be occurring between those locations, or that there is limited genetic drift due to large effective population sizes. Intriguingly, our data also show that nautilus identified in other studies as N. belauensis, N. stenomphalus, or N. repertus are likely N. pompilius displaying a diversity of morphological characters, suggesting that there is significant phenotypic plasticity within N. pompilius.  相似文献   

3.
The low fecundity, late maturity, long gestation and long life span of Nautilus suggest that this species is vulnerable to over-exploitation. Demand from the ornamental shell trade has contributed to their rapid decline in localized populations. More data from wild populations are needed to design management plans which ensure Nautilus persistence. We used a variety of techniques including capture-mark-recapture, baited remote underwater video systems, ultrasonic telemetry and remotely operated vehicles to estimate population size, growth rates, distribution and demographic characteristics of an unexploited Nautilus pompilius population at Osprey Reef (Coral Sea, Australia). We estimated a small and dispersed population of between 844 and 4467 individuals (14.6-77.4 km(-2)) dominated by males (83:17 male:female) and comprised of few juveniles (<10%).These results provide the first Nautilid population and density estimates which are essential elements for long-term management of populations via sustainable catch models. Results from baited remote underwater video systems provide confidence for their more widespread use to assess efficiently the size and density of exploited and unexploited Nautilus populations worldwide.  相似文献   

4.
 This study presents histological and scanning electron microscopical findings on the structural differentiation, and the nervous and vascular supply of the digestive tracts of Nautilus pompilius and N. macromphalus, including the foregut, stomach, vestibulum, caecum, midgut and rectum. The stereoscopic reconstruction of the vestibulocaecal complex gives an idea how the digestive cycle between the stomach, vestibulum, caecum and proximal midgut could possibly proceed. All parts of the digestive tract are covered luminally by a columnar epithelium which contains numerous goblet cells. The epithelium is ciliated in the vestibulum, caecum, proximal midgut and the longitudinal groove of the rectum. On this lamina epithelialis mucosae borders the lamina propria mucosae, which consists of connective tissue and some muscle cells. In the stomach it is differentiated, forming a special bolster-like layer. The lamina propria mucosae is followed by the tunica muscularis, which consists of a stratum circulare and a stratum longitudinale in the foregut, vestibulum, caecum, midgut and rectum. In the stomach, midgut and rectum, the tunica adventitia, which consists of a thin layer of connective tissue, is located between the tunica muscularis and the cuboidal tunica serosa. Accepted: 4 August 1997  相似文献   

5.
6.
Understanding the distribution of genetic diversity in exploited species is fundamental to successful conservation. Genetic structure and the degree of gene flow among populations must be assessed to design appropriate strategies to prevent the loss of distinct populations. The cephalopod Nautilus pompilius is fished unsustainably in the Philippines for the ornamental shell trade and has limited legislative protection, despite the species' recent dramatic decline in the region. Here, we use 14 microsatellite markers to evaluate the population structure of N. pompilius around Australia and the Philippines. Despite their relative geographical proximity, Great Barrier Reef individuals are genetically isolated from Osprey Reef and Shark Reef in the Coral Sea (FST = 0.312, 0.229, respectively). Conversely, despite the larger geographical distances between the Philippines and west Australian reefs, samples display a small degree of genetic structure (FST = 0.015). Demographic scenarios modelled using approximate Bayesian computation analysis indicate that this limited divergence is not due to contemporary gene flow between the Philippines and west Australia. Instead, present‐day genetic similarity can be explained by very limited genetic drift that has occurred due to large average effective population sizes that persisted at both locations following their separation. The lack of connectivity among populations suggests that immigrants from west Australia would not facilitate natural recolonization if Philippine populations were fished to extinction. These data help to rectify the paucity of information on the species' biology currently inhibiting their conservation classification. Understanding population structure can allow us to facilitate sustainable harvesting, thereby preserving the diversity of genetically distinct stocks.  相似文献   

7.
This study presents histological and cytological findings on the structural differentiation of the mantle of Nautilus pompilius in order to characterize the cells that are responsible for shell formation. The lateral and front mantle edges split distally into three folds: an outer, middle, and inner fold. Within the upper part of the mantle the mantle edge is divided into two folds only; the inner fold disappears where the hood is attached to the mantle. At the base of the outer fold of the lateral and front mantle edge an endo-epithelial gland, the mantle edge gland, is localized. The gland cells are distinguished by a distinct rough endoplasmic reticulum and by numerous secretory vesicles. Furthermore, they show a strong accumulation of calcium compounds, indicating that the formation of the shell takes place in this region of the mantle. Numerous synaptic contacts between the gland cells and the axons of the nerve fibers reveal that the secretion in the area of the mantle edge gland is under nervous control. The whole mantle tissue is covered with a columnar epithelium having a microvillar border. The analyses of the outer epithelium show ultrastructural characteristics of a transport active epithelium, indicating that this region of the mantle is involved in the sclerotization of the shell. Ultrastructural findings concerning the epithelium between the outer and middle fold suggest that the periostracum is formed in this area of the mantle, as it is in other conchiferan molluscs.  相似文献   

8.
Tsujino, Y & Shigeta, Y. 2012: Biological response to experimental damage of the phragmocone and siphuncle in Nautilus pompilius Linnaeus. Lethaia, Vol. 45, pp. 443–449. Three adult specimens of Nautilus pomplilius Linnaeus from the Philippines were experimented on to estimate the biological response to damage of the phragmocone and siphuncle in this cephalopod mollusc. In addition, the data obtained from the experiments were used for discussion of shell damage in ammonoids and in other extinct cephalopods. Specimen’s phragmocone and siphuncle were perforated and severed artificially, followed by observations in the laboratory tank during periods of 75 and 132 days. For at least 2 or 3 months, all individuals survived after damage to the phragmocone and siphuncle despite loss of neutral buoyancy. Based on our observations after completion of the experiments, the severed adoral remaining part of siphuncle healed by the siphunclar epithelium. In addition, perforation of the phragmocone was partly repaired by shell secretion from the dorsally extending mantle due to subsequent volution of shell growth. Our experiments revealed that damage to the phragmocone and siphuncle in Nautilus was not necessarily a lethal injury. It may be possible that such biological response also applies to extinct ammonoids and nautiloids. In a similar case of extinct ammonoids and nautiloids, damage to their phragmocone and siphuncle may also not have been a lethal injury as with Nautilus. However, some factors leading to death are likely to be dependent on the degree of damage to the phragmocone and siphuncle and influence of hydraulic pressure. □Ammonoids, injury, nautiloids, Nautilus, phragmocone, repair, siphuncle.  相似文献   

9.
This study employs closed-circuit respirometry to evaluate the effect of declining ambient oxygen partial pressure (PO2) and temperature on mass specific rates of oxygen uptake (O2) in Nautilus pompilius. At all temperatures investigated (11, 16, and 21 °C), O2 is relatively constant at high PO2 (oxyregulation) but declines sharply at low PO2 (oxyconformation). The critical PO2 below which oxyconformation begins (P c) is temperature dependent, higher at 21 °C (49 mmHg) than at 11 °C or 16 °C (21.7 mmHg and 30.8 mmHg respectively). In resting, post-absorptive animals, steady-state resting O2 increases significantly with temperature resulting in a Q10 value of approximately 2.5. The metabolic strategy of N. pompilius appears well suited to its lifestyle, providing sufficient metabolic scope for its extensive daily vertical migrations, but allowing for metabolic suppression when PO2 falls too low. The combination of low temperatures and low PO2 may suppress metabolic rate 16-fold (assuming negligible contributions from anaerobic metabolism and internal O2 stores), enhancing hypoxia tolerance. Accepted: 20 January 2000  相似文献   

10.
Nautiloidea is the oldest group within the cephalopoda, and modern Nautilus differs much in its outer morphology from all other recent species; its external shell and pinhole camera eye are the most prominent distinguishing characters. A further unique feature of Nautilus within the cephalopods is the lack of suckers or hooks on the tentacles. Instead, the animals use adhesive structures present on the digital tentacles. Earlier studies focused on the general tentacle morphology and put little attention on the adhesive gland system. Our results show that the epithelial parts on the oral adhesive ridge contain three secretory cell types (columnar, goblet, and cell type 1) that differ in shape and granule size. In the non-adhesive aboral epithelium, two glandular cell types (cell types 2 and 3) are present; these were not mentioned in any earlier study and differ from the cells in the adhesive area. The secretory material of all glandular cell types consists mainly of neutral mucopolysaccharide units, whereas one cell type in the non-adhesive epithelium also reacts positive for acidic mucopolysaccharides. The present data indicate that the glue in Nautilus consists mainly of neutral mucopolysaccharides. The glue seems to be a viscous carbohydrate gel, as known from another cephalopod species. De-attachment is apparently effectuated mechanically, i.e., by muscle contraction of the adhesive ridges and tentacle retraction.  相似文献   

11.
The foregut, stomach, caecum, midgut, and rectum of the digestive tract of Nautilus pompilius L.were investigated with ultrastructural and enzyme-cytological methods. Three different cell types were identified within the lamina epithelialis mucosae: main cells, goblet cells, and cells with secretory granules. The main cell type is the epithelial cell with microvilli, a basal nucleus surrounded by dictyosomes, rough endoplasmic reticulum, mitochondria, and electron-dense granules identified as lysosomes in the apical part of the cell. In the caecum this cell type contains endosymbiotic bacteria. The presence of endocytotic vesicles and the storage of lipids in the caecum indicate that this organ is involved in the process of absorption. In the caecum and the longitudinal groove of the rectum the main cells are, in addition, ciliated, facilitating the transport of food particles and faeces. Two types of goblet cells are found in all organs except in the stomach, forming a gliding path for food particles and protecting the epithelium. In the foregut and rectum, cells with electron-dense granules were recognized as the third type. The conspicuous secretory cells of the rectum represent a delimited rectal gland; its possible biological function is discussed. The tunica muscularis in all organs of the digestive tract consists of obliquely striated muscle cells innervated by axons containing transparent, osmiophilic and dense-cored vesicles. Positive reactions for acid and alkaline phosphatase, monoamine oxidase, β-glucuronidase, and trypsin- and chymotrypsin-like enzymes are localized in the lamina epithelialis mucosae.  相似文献   

12.
Specialization to extreme environments is often considered an evolutionary dead‐end, leading to irreversible adaptations and reduced evolvability. There is, however, mixed evidence for this macroevolutionary pattern, and limited data from speciose lineages. Here, we tested the effect of habitat specialization to hypersaline waters in the diversification rates of aquatic beetles of the genus Ochthebius (Coleoptera, Hydraenidae), using a molecular phylogeny with more than 50% of the 546 recognized species, including representatives of all but one of the nine recognized subgenera and 17 species groups. Phylogenies were built combining mitochondrial and nuclear genes, with the addition of 42 mitochondrial genomes. Using Bayesian methods of character reconstruction, we show that hypersaline tolerance is an irreversible ecological specialization that arose multiple times. Two lineages of Ochthebius experienced a significant increase in diversification rates, one of them inhabiting hypersaline waters, but there was no overall correlation with habitat or any significant decrease in diversification rates despite the irreversibility of hypersaline tolerance. Our study tested for the first time the impact of hypersaline habitat specialization on diversification rates, finding no support for it to be an evolutionary dead‐end. On the contrary, multiple and ancient lineages fully adapted to these extreme osmotic conditions have persisted and diversified over a long evolutionary timescale.  相似文献   

13.
Among egg trading hermaphrodites, any factor which limits the number of eggs released by a female role hermaphrodite can potentially limit the mating success of the male role hermaphrodite fertilizing those eggs. This work examines the hypothesis that the timing of ovulation constrains the size of egg parcels and thereby limits male mating success in the egg parceling hermaphroditic fish Serranus subligarius. Two alternatives were evaluated: (1) Ovulation is a discrete event preceding spawning. It does not constrain the size of egg parcels and therefore does not limit mating success of male role partners. (2) Ovulation is an incremental process occurring throughout the spawning period. It limits the number of eggs available for release in each parcel and thereby limits mating success of the male role partner. Assessment of ovulation was conducted in a field stock of S. subligarius. Fish from size matched pairs were manually stripped at the onset of the spawning period or quarantined and sampled at the end of the spawning period. Fish sampled at either time point had the same number of eggs, suggesting that ovulation was a discrete event occurring at the onset of the spawning period. The diurnal cycle of ovulation was observed in naturally spawning hermaphrodites captured at intervals throughout the day. Ovulation began 2–4 h before spawning began. Some fish appeared to ovulate the entire day's clutch of eggs before spawning, while other fish released egg parcels before completing ovulation. I conclude that the pattern of ovulation is not uniform throughout the spawning stock. Because of the variability in timing of ovulation relative to parcel release, ovulation does not consistently limit the size of egg parcels and therefore is unlikely to be a physiological limit to male role mating success in S. subligarius hermaphrodites.  相似文献   

14.
HÉLÈNE CYR 《Freshwater Biology》2008,53(12):2414-2425
1. Unionid mussels often account for a large portion of benthic biomass and contribute to nutrient cycling and sediment processes, but are thought to be limited to shallow areas (<2–3 m). 2. The depth distribution and body size of Elliptio complanata were compared in seven Canadian Shield lake basins of different sizes to test what factors determine the upper and lower limit of their depth range. Specifically, I tested whether (i) the upper range of their distribution is limited by exposure to winds and wave action and (ii) the lower range of their distribution is limited by the depth of the thermocline or by the boundary of mud deposition. 3. The average depth distribution of E. complanata shifted to greater depths in larger lake basins. When comparing individual transects, maximum mussel density was found deeper at more exposed sites. Mussel size decreased with increasing depth and was larger, on average, in larger lake basins. These results suggest that physical forces limit the upper range of mussel distribution in lakes. 4. The maximum depth at which mussels were found in different lakes was closely related to thermocline depth. However, mussels were commonly observed below the predicted depth of the mud deposition boundary. The thermocline limits the lower range of mussel distribution in lakes, probably by limiting food availability and by determining water temperature. Substratum type does not limit the lower distribution of mussels. 5. These results suggest that unionid mussels are present in the deeper parts of the littoral zone, especially in large lakes. Therefore, comparisons of mussel populations between sites and between lakes would be biased unless the full depth distribution of these mussels is considered. These results also suggest that long‐term changes in the thermal structure of lakes could affect the range of unionid mussel populations and their functional role in littoral ecosystems.  相似文献   

15.
Nautiloids are the subject of speculation as to their threatened status arising from the impacts of targeted fishing for the ornamental shell market. Life history knowledge is essential to understand the susceptibility of this group to overfishing and to the instigation of management frameworks. This study provides a comprehensive insight into the life of Nautilus in the wild. At Osprey Reef from 1998–2008, trapping for Nautilus was conducted on 354 occasions, with 2460 individuals of one species, Nautilus pompilius, captured and 247 individuals recaptured. Baited remote underwater video systems (BRUVS) were deployed on 15 occasions and six remotely operated vehicle (ROV) dives from 100–800 m were conducted to record Nautilus presence and behavior. Maturity, sex and size data were recorded, while measurements of recaptured individuals allowed estimation of growth rates to maturity, and longevity beyond maturity. We found sexual dimorphism in size at maturity (males: 131.9±SD = 2.6 mm; females: 118.9±7.5 mm shell diameter) in a population dominated by mature individuals (58%). Mean growth rates of 15 immature recaptured animals were 0.061±0.023 mm day−1 resulting in an estimate of around 15.5 years to maturation. Recaptures of mature animals after five years provide evidence of a lifespan exceeding 20 years. Juvenile Nautilus pompilius feeding behavior was recorded for the first time within the same depth range (200–610 m) as adults. Our results provide strong evidence of a K-selected life history for Nautilus from a detailed study of a ‘closed’ wild population. In conjunction with population size and density estimates established for the Osprey Reef Nautilus, this work allows calculations for sustainable catch and provides mechanisms to extrapolate these findings to other extant nautiloid populations (Nautilus and Allonautilus spp.) throughout the Indo-Pacific.  相似文献   

16.
In Nautilus pompilius, tracer experiments with 14C-labelled food show that the midgut gland, caecum and crop are involved in absorption of nutrients. According to liquid scintillation and light- and electron-microscopic autoradiography, the midgut gland exhibits the highest activity, followed by the caecum and crop. The density of silver precipitates is highest in the terminal alveoli of the midgut gland. Precipitates are also seen in the main cells of the caecal epithelium. Few precipitates are found in the lamina epithelialis mucosae of the crop, indicating that, in addition to food storage, digestive processes begin in this organ. These results have been confirmed by injection of the protein ferritin into the buccal cavity. The largest amount of ferritin is seen in the dense bodies of the main cells of the midgut gland, whereas those of the main cells of the caecum and crop contain less ferritin.  相似文献   

17.
The diurnal vertical distribution of a large number of speciesof zooplankton, icbthyoplankton and micronekton were determinedin the top 150 m in three locations in the Shelf Water, on theNova Scotia Shelf, and Slope and on Georges Bank during springand fall periods. Species were categorized as to their trophiclevel and their type of diurnal migration behaviour. The influenceof temperature, salinity, and water density on the diurnal verticaldistribution of the species was examined. Temperature was foundto have the greatest influence on the distribution of the largestnumber of species. Diurnal migration behavior of the same speciesin Shelf and Slope water and at different times of the yearwas examined. Results showed that species changed their behaviorin the two water masses, while some species changed their migrationbehavior at different times of the year. During the night inApril the most abundant copepod species, Calanus finmarchicus,making up about 80% of the biomass, was found concentrated abovethe thermocline and the main chlorophyll layer. The majorityof the less abundant species of copepods were found below thethermocline and the chlorophyll layer. At night in August thetwo most abundant copepod species, Centropoger typicus and Paracalanusparvus, making up at least 80% of the zooplankton biomass, werealso concentrated above the thermocline and the main chlorophyllLayer. Three species of copepods were concentrated at the depthof the main chlorophyll layer and two species were concentratedbelow the chlorophyll layer and thermocline. The vertical distributionof other zooplankton and ichthyoplankton species was examinedin relation to the thermocline and chlorophyll layer. Relationshipsbetween concentrations of six species of fish larvae and allspecies of copepods in the same samples showed a general increasein the numbers of larvae m–3 as the numbers of copepodsm–3 increased in a range of 500–4000 m–3.However, the concentration of Merluccius bilinearis decreasedas the concentration of copepods exceeded 4000 m–3 suggestingthat high concentrations of copepods may not be a favourableenvironment for the larvae.  相似文献   

18.
The pyriform appendage, an organ only found in nautiloid cephalopods was investigated with histological, histochemical and ultrastructural methods in order to characterize the anatomical and the cytological structure of this organ. The pyriform appendage is situated within the genital septum and lies in close contact with the ventricle of the heart. The proximal side ends blindly near the gonad whereas the distal side is developed into a duct. The duct was observed to open into the mantle cavity in juvenile and adult Nautilus pompilius of both sexes. Injections of India ink in the heart demonstrate that the organ is supplied with hemolymph from an artery that extends from the heart. The pyriform appendage is a hollow organ consisting mainly of glandular tissue. The lumen is covered with a columnar epithelium, the tunica mucosa, consisting of only one cell type containing vacuoles with different inclusions. Underneath the tunica mucosa is the tunica muscularis, which is embedded in connective tissue and folded, enlarging the internal surface. A cuboidal tunica serosa surrounds this organ. The vacuoles and the secretory products contain neutral mucopolysaccharides, glycoproteins and glycolipids. Acid phosphatase and serotonin were localized in the tunica mucosa. Acetylcholinesterase, catecholamines and the tetrapeptide FMRF‐amide were demonstrated within the nerve endings of the tunica muscularis indicating a dual “cholinergic‐aminergic” neuroregulation, possibly modulated by FMRF‐amide. These findings suggest that the pyriform appendage is not a rudimentary organ but instead has distinct biological functions in nautiloid cephalopods, possibly in intraspecific communication. J. Morphol. 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

19.
Nine intraepithelial ciliated cell types that are presumed to be sensory cells were identified in the epithelium of the pre- and postocular tentacles, the digital tentacles, and the rhinophore of the juvenile tetrabranchiate cephalopod Nautilus pompilius L. The morphological diversity and specialization in distribution of the different ciliated cell types analyzed by SEM methods suggest that these cells include receptors of several sensory functions. Ciliated cell types in different organs that show similar surface features were combined in named groups. The most striking cell, type I, is characterized by a tuft of long and numerous cilia. The highest density of this cell type occurs in ciliary fields in the epithelium of the lamellae of the pre- and postocular tentacles, in the olfactory pits of the rhinophores, and in the lamellae of four pairs of lateral digital tentacles, but not in the epithelium of the medial digital tentacles. The similar morphological data, together with behavioral observations on feeding habits, suggest that this cell type may serve in long-distance chemosensory function. The other ciliated cell types are solitary cells with specific spatial distributions in the various organs. Cell types with tufts of relatively short, stiff cilia (types III, IV, VIII), which are distributed in the lateral and aboral areas of the tentacles and at the base of the tentacle-like process of the rhinophore, are considered to be employed in mechanosensory transduction, while the solitary cells with bristle-like cilia at the margin of the ciliary fields (type II) and at the base of the rhinophore (type IX) may be involved in chemoreception. Histological investigation of the epithelium and the nerve structures of the different organs shows the proportion and distribution of the sensory pathways. Two different types of digital tentacles can be distinguished according to their putative functions: lateral slender digital tentacles in four pairs, of which the lowermost are the so-called long digital tentacles, participate in distance chemoreception, and the medial digital tentacles, whose terminal axial nerve cord may represent a specialized neuromechanosensory structure, appear to have contact chemoreceptive abilities.  相似文献   

20.
Observations on the growth rate of aquarium maintained Nautilus pompilius in different developmental stages, i.e. juveniles (shell length about 8.75 cm), late juveniles (approximately 10 cm), and early adolescent (approximately 13.5 cm), indicate that this species is fully grown at an age of 7.3-8 years. The age calculations are based on two different computations: (1) the measurement of the increase of the shell length per day and (2) the formation of new septa in time intervals of 150+/-5 days, as demonstrated by X-ray analyses. After N. pompilius hatches, its shell grows about 139 mm to reach full growth and approximately 28 septa are formed. With an increase of the shell length of 0.052 mm per day, it takes about 2,673 days (7.3 years) to reach maturity. Provided that the process of chamber formation follows an exponential function, these computations result in approximately 2,925 days (8 years) to reach full maturity. Supposing that N. pompilius may live for several years after onset of maturity like Nautilus belauensis, the total life span for this species may exceed 11-12 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号