首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
固态间歇补料乙醇生料发酵新工艺   总被引:6,自引:2,他引:6  
浓醪发酵是酒精生产的发展方向。与现行酒精厂普遍采用的热蒸煮工艺相比, 生料发酵技术的发展使得浓醪发酵更容易进行。本研究首次在生料发酵中直接采用固态原料间歇补料, 比较了STARGENTM生淀粉水解酶间歇补料工艺和传统无补料工艺, 并对不同补料方式进行了研究。结果表明: 与传统无补料生料发酵工艺相比, 在相同的干基配料浓度30%、相同的生料酶添加量0.22%(W/W)的条件下, 采用15%的起始配料浓度、发酵15~25 h进行间歇补料的新工艺, 酒精产量从17.06%提高到18.50%。该间歇补料优化工艺的建立, 丰富了生料发酵技术的应用。  相似文献   

2.
木薯淀粉原料生料酒精发酵的研究   总被引:1,自引:0,他引:1  
利用木薯淀粉原料生料酒精发酵,对影响其发酵的主要因素进行单因素和正交试验,确定其发酵温度、pH值、料水比和发酵剂及氮磷添加量等最佳的工艺条件,结果表明:在木薯淀粉中添加占原料重0.4% 的尿素和0.2%的磷酸氢二钾、0.7% 的生料酒精发酵剂以及在料水比1:4、起始pH6.0、35℃条件下发酵5~6d,原料淀粉利用率和酒精产率分别达到85.3% 和48.4%.  相似文献   

3.
早期的生料水解研究主要基于节能的目的.最新的技术进步、研究和工业实践发现以前未被注意的很多优点,如生料发酵生产提高酒精转化率、单元操作少及体系黏度低等优点.新的生料水解酶的出现使得高浓高强度生料发酵来生产工业酒精和燃料酒精具有很强的竞争力,是未来生物酒精生产的一个重要发展方向.由于生料体系的非均相特性,与传统的发酵过程有相当的不同.控制颗粒的大小,保持良好的传质对发酵的顺利进行很重要.在高浓度发酵时,系统的温度梯度控制也很重要.加强生料发酵体系工程研究对以后的工程设计和工厂优化有重要意义.  相似文献   

4.
玉米原料无蒸煮酒精发酵工艺的研究   总被引:21,自引:0,他引:21  
薛正莲 《工业微生物》1999,29(4):31-33,36
在玉米原料无蒸煮酒精发酵过程中,添加少量的纤维素酶,酸性蛋白酶可提高糖化酶对生淀粉的糖化作用,减少糖化酶用量。在料水比1:2.5,糖化酶加量200u/g,纤维素酶加量5u/g,酸性蛋白酶加量0.01%,30℃,pH3.5条件下,No.214菌株经96h发酵,醪液酒精度达12.8%,淀粉利用率达92.1%。  相似文献   

5.
依据同源重组的原理将来源于里氏木霉的β-葡萄糖苷酶基因bglⅡ整合到工业酿酒酵母染色体上的3-磷酸甘油脱氢酶基因GPD1中,通过G418抗性筛选得到重组子。实验数据表明,重组子Saccharomyces cerevisiaeCG1利用纤维二糖的能力显著提高,产甘油能力下降。引入外源基因后酵母性状与亲代相比没有显著差异,但生长时具自絮凝能力。当S·cerevisiaeCG1以玉米粉为原料进行浓醪酒精发酵,与亲代工业酿酒酵母比较,发酵液乙醇浓度得到提高,甘油含量降低,纤维二糖含量显著减少。  相似文献   

6.
固定化细胞载体的选择及发酵酒精特性   总被引:4,自引:0,他引:4  
本文报道了采用聚乙稀醇复合凝胶为包埋介质材料,通过物理和化学方法制成不同形状的凝胶载体。载体机械强度达40~60kg/cm2,在初糖为14.6%的玉米糖化醪中,发酵周期为30~35h,酒精含量体积比达9.0%。从生产实际出发,以降低成本为目的,经生产实验证明,空心载体为最佳选择,成功的为工业化生产酒精提供了优质的固定化细胞凝胶载体。  相似文献   

7.
生淀粉高浓度酒精发酵的研究   总被引:14,自引:1,他引:14  
本研究利用国内常用的糖化酶制剂糖化生玉米面中的淀粉,同时接种酵母菌,在30℃下,探讨了玉米淀粉的高浓度酒精发酵工艺。选择到了一株产高浓度酒精酵母菌,H0菌株。发酵温度为30℃、pH4一s、加糖化酶量为每克原料300单位、酵母接种量3%(v/v)和原料加量为33.0%(w/v)时,这株酵母菌在70小时内可产生17.5%(v/v)的乙醇。如果原料加量为36.0%(w/v)时,该菌株在96小时内可以产生18.O%(v/v)的乙醇。在前一种加料情况下,成熟发酵醪中的pH为5、残还原糖为O.19%、残总糖为3.5“。在后一种加料情况下,成熟发酵醪中的pH为5、残还原糖为0.81%、残总糖为5.1%。  相似文献   

8.
NaF是EMP途径的抑制剂,然而,目前酒精发酵生产中却用以提高出酒率,这与酒精发酵机理是矛盾的。通过实验研究,分析比较NaF对酵母菌酒精发酵,革兰氏阳性菌(乳酸杆菌)和阴性菌(醋酸杆菌)代谢活动的影响,加入NaF对发酵液中钙,镁离子浓度的改变,结果发现钙,镁离子浓度与酒精发酵密切相关,生产上,NaF之所以能改善酵母菌的酒精发酵,主要是降低了水的硬度。NaF的用量应以水的硬度而定。过量NaF对酵母菌  相似文献   

9.
添加营养盐对酒精酵母发酵的影响   总被引:9,自引:0,他引:9  
在以瓜干为原料的酒精生产中,选择添加适量营养盐及其复合物,能改善酵母菌生长环境,提高发酵产物酒精度,缩短发酵周期  相似文献   

10.
固定化酵母发酵糖化醪生产酒精及其动力学研究   总被引:3,自引:0,他引:3  
以糖化醪为底物,对其增殖固定化酵母和固定化连续酒精发酵的特征进行了研究。根据实验数据,通过拟合,得出了在此条件下较佳的发酵动力学模型及其动力学参数。  相似文献   

11.
前期实验在稀释速率为0.027h-1的高浓度乙醇连续发酵过程中,发现了一种长周期、宽振幅的参数振荡现象。本实验进一步考察了不同稀释速率下的连续发酵过程,发现在稀释速率为0.04h-1条件下,也能出现类似的振荡现象;在稀释速率为0.027h-1或0.04h-1的条件下,改变系统的初始状态可以得到振荡和稳态两种不同的发酵过程。比较振荡和稳态过程的实验数据后,发现在稀释速率为0.04h-1的条件下,与稳态过程相比,振荡过程的平均残糖浓度降低了14.8%,平均乙醇浓度提高了12.6%,平均设备生产强度提高了12.3%。进一步分析表明:与稳态过程相比,振荡过程动力学行为不仅存在滞后,而且在相同残糖和乙醇浓度条件下,所对应的平均比生长速率提高了53.8%。  相似文献   

12.
The quasi-steady-states, marked by small fluctuations of residual glucose, ethanol, and biomass concentrations, and sustainable oscillations marked by big fluctuations of these monitored fermentation parameters were observed during the continuous ethanol fermentation of Saccharomyces cerevisiae when very high gravity media were fed and correspondingly high ethanol concentrations reached. A high ethanol concentration was shown to be one of the main factors that incited these oscillations, although the residual glucose level affected the patterns of these oscillations to some extent. The lag response of S. cerevisiae to high ethanol stress that causes the shifts of morphology, viability loss, and death of yeast cells is assumed to be one of the probable mechanisms behind these oscillations. It was predicted that the longer the delay of this response was, the longer the oscillation periods would be, which was validated by the experimental data and the comparison with the oscillatory behaviors reported for the ethanologen bacterium, Zymomonas mobilis. Furthermore, three tubular bioreactors in series were arranged to follow a stirred tank bioreactor to attenuate these oscillations. However, exaggerated oscillations were observed for the residual glucose, ethanol, and biomass concentrations measured in the broth from these tubular bioreactors. After the tubular reactors were packed with Intalox ceramic saddle packing, these oscillations were effectively attenuated and quasi-steady-states were observed during which there were very small fluctuations of residual glucose, ethanol, and biomass within the entire experimental run.  相似文献   

13.
AIMS: To determine the effect of osmotic stress on yeast and to investigate the protective role of horse gram flour during very high gravity (VHG) ethanol fermentation. METHODS AND RESULTS: Saccharomyces cerevisiae was inoculated into high sugar (30-40%, w/v) containing medium with and without supplementation of horse gram flour. The fermentation experiments were carried out in batch mode. The effect of 4 or 6% of horse gram flour to the medium on the metabolic behaviour and viability of yeast was studied. Significant increase in ethanol yield up to 50% and dramatic decrease in glycerol production up to 100% was observed in the presence of horse gram flour. The fermentation rate was increased from 3 to 5 days with increased viable cell count. The physical and chemical factors of horse gram flour may aid in reducing the osmotic stress of high gravity fermentation of ethanol as well as enhancing ethanol yield. CONCLUSIONS: It was found that horse gram flour not only reduced fermentation time but also enhanced ethanol production by better utilization of sugar. SIGNIFICANCE AND IMPACT OF THE STUDY: Production of high ethanol concentration by using VHG sugar fermentation eliminates the expensive steps in the conventional process and saves time.  相似文献   

14.
A laboratory strain and an industrial strain of Saccharomyces cerevisiae were grown at high substrate concentration, so-called very high gravity (VHG) fermentation. Simultaneous saccharification and fermentation (SSF) was applied in a batch process using 280 g/L maltodextrin as carbon source. It was shown that known ethanol and osmotic stress responses such as decreased growth rate, lower viability, higher energy consumption, and intracellular trehalose accumulation occur in VHG SSF for both strains when compared with standard laboratory medium (20 g/L glucose). The laboratory strain was the most affected. GC-MS metabolite profiling was applied for assessing the yeast stress response influence on cellular metabolism. It was found that metabolite profiles originating from different strains and/or fermentation conditions were unique and could be distinguished with the help of multivariate data analysis. Several differences in the metabolic responses to stressing conditions were revealed, particularly the increased energy consumption of stressed cells was also reflected in increased intracellular concentrations of pyruvate and related metabolites.  相似文献   

15.
高温高浓发酵技术作为一项新兴的啤酒生产技术,它为啤酒生产带来诸多利益的同时,也存在着发酵结束后酵母絮凝性下降、高级醇生成量过高等系列问题。为提高高温高浓发酵条件下酿酒酵母的絮凝性同时降低高级醇的合成能力,首先构建了以酿酒酵母BAT2基因为整合位点过表达FLO5基因的菌株,重组菌株S6-BF的絮凝性达到67.67%,比出发菌株S6提高了29%,而高级醇生成量仅降低5.9%;进一步构建以BAT2基因为整合位点再次过表达FLO5基因的菌株,与出发菌株S6相比,重组菌株S6-BF2的絮凝性提高了63%,达到85.44%,高级醇生成量下降至159.58 mg/L,降低了9.0%;通过弱化线粒体支链氨基酸转氨酶(BAT1)的表达,高级醇的生成量得到进一步的降低,达到142.13 mg/L,比原始菌株S6降低了18.4%,同时重组菌株S6-BF2B1的絮凝性没有受到影响;风味物质的测定结果表明啤酒中醇酯比例较为合理。研究结果对工业啤酒酵母发酵后的沉降分离和提高啤酒风味品质有着重要的意义。  相似文献   

16.
Using calcium alginate-entrapped yeast, 24% (w/w) wort was successfully fermented within 8 days. This is half the time needed for fermentation by free yeast. The highest ethanol concentration obtained was 10.5% (v/v). When the original wort gravity was increased, the specific rate of ethanol production remained constant 0.16 g gh–1 and the viability did not fall bellow 95% of living cells. Protection of cell against osmotic stress by gel matrix was also confirmed by trehalose measurement. The maximum intracellular trehalose content in calcium alginate-entrapped yeast was 3 times lower compared to free yeast at 30% (w/w) wort fermentation.  相似文献   

17.
Taking continuous ethanol fermentation with the self‐flocculating yeast SPSC01 under very high concentration conditions as an example, the fermentation performance of the yeast flocs and their metabolic flux distribution were investigated by controlling their average sizes at 100, 200, and 300 µm using the focused beam reflectance online measurement system. In addition, the impact of zinc supplementation was evaluated for the yeast flocs at the size of 300 µm grown in presence or absence of 0.05 g L?1 zinc sulfate. Among the yeast flocs with different sizes, the group with the average size of 300 µm exhibited highest ethanol production (110.0 g L?1) and glucose uptake rate (286.69 C mmol L?1 h?1), which are in accordance with the increased flux from pyruvate to ethanol and decreased flux to glycerol. And in the meantime, zinc supplementation further increased ethanol production and cell viability comparing with the control. Zinc addition enhanced the carbon fluxes to the biosynthesis of ergosterol (28.6%) and trehalose (43.3%), whereas the fluxes towards glycerol, protein biosynthesis, and tricarboxylic acid cycle significantly decreased by 37.7%, 19.5%, and 27.8%, respectively. This work presents the first report on the regulation of metabolic flux by the size of yeast flocs and zinc supplementation, which provides the potential for developing engineering strategy to optimize the fermentation system. Biotechnol. Bioeng. 2010;105: 935–944. © 2009 Wiley Periodicals, Inc.  相似文献   

18.
在1.5L搅拌式发酵罐中,使用葡萄糖质量浓度分别为120、200、280g/L的培养基进行酿酒酵母Saccharomyces cerevisiae连续发酵生成酒精的动力学研究。研究发现,当培养基中葡萄糖浓度为200和280g/L时,发酵液中残糖浓度、酒精浓度以及菌体生物量从小幅度波动的准稳态发展到大幅度波动的振荡状态。提出了伴有周期性振荡现象准稳态过程的概念,并针对该过程,建立了兼有底物和产物抑制的酵母细胞生长和产物酒精生成动力学模型。  相似文献   

19.
A bioreactor system composed of a stirred tank and three tubular bioreactors in series was established, and continuous ethanol fermentation was carried out using a general Saccharomyces cerevisiae strain and a very high gravity medium containing 280 g L(-1) glucose, supplemented with 5 g L(-1) yeast extract and 3 g L(-1) peptone. Sustainable oscillations of glucose, ethanol, and biomass were observed when the tank was operated at the dilution rate of 0.027 h(-1), which significantly affected ethanol fermentation performance of the system. After the tubular bioreactors were packed with 1/2' Intalox ceramic saddles, the oscillations were attenuated and quasi-steady states were achieved. Residence time distributions were studied for the packed bioreactors by the step input response technique using xylose as a tracer, which was added into the medium at a concentration of 20 g L(-1), indicating that the backmixing alleviation assumed for the packed tubular bioreactors could not be established, and its contribution to the oscillation attenuation could not be verified. Furthermore, the role of the packing's yeast cell immobilization in the oscillation attenuation was investigated by packing the tubular bioreactors with packings with significant difference in yeast cell immobilization effects, and the experimental results revealed that only the Intalox ceramic saddles and wood chips with moderate yeast cell immobilization effects could attenuate the oscillations, and correspondingly, improved the ethanol fermentation performance of the system, while the porous polyurethane particles with good yeast cell immobilization effect could not. And the viability analysis for the immobilized yeast cells illustrated that the extremely lower yeast cell viability within the tubular bioreactors packed with the porous polyurethane particles could be the reason for their inefficiency, while the yeast cells loosely immobilized onto the surfaces of the Intalox ceramic saddles and wood chips could be renewed during the fermentation, guaranteeing their viability and making them more efficient in attenuating the oscillations. The packing Raschig rings without yeast cell immobilization effect did not affect the oscillatory behavior of the tubular bioreactors, further supporting the role of the yeast cell immobilization in the oscillation attenuation.  相似文献   

20.
Summary Very high gravity wheat mashes containing 300 g or more sugares per liter were prepared by enzymatic hydrolysis of starch and fermented with a commercial preparation of active dry yeast. The active dry yeast used in this study was a blend of several strains ofSaccharomyces cerevisiae. The fermentation was carried out at 20°C at different pitching rates (inoculation levels) with and without the addition of yeast extract as nutrient supplement. At a pitching rate of 76 million cells per g of mash an ethanol yield of 20.4% (v/v) was obtained. To achieve this yeast extract must be added to the wheat mash as nutrient supplement. When the pitching rate was raised to 750 million cells per g of mash, the ethanol yield increased to 21.5% (v/v) and no nutrient supplement was required. The efficiency of conversion of sugar to ethanol was 97.6% at the highest pitching rate. This declined slightly with decreasing pitching rate. A high proportion of yeast cells lost viability at high pitching rates. It is suggested that nutrients released from yeast cells that lost viability and lysed, contributed to the high yield of ethanol in the absence of any added nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号