首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
1. Leaf litter breakdown by shredders in the field is affected by leaf toughness, nutritional value and the presence of secondary compounds such as polyphenols. However, experiments involving the use of single fungal strains have not supported the assumption that leaf parameters determine food selection by shredders perhaps because of a failure to test for high consumption prior to isolation of fungal strains, overrepresentation of hyphomycetes or the potential effects of accompanying bacteria. In this study, we used bacteria‐free, actively growing fungi and oomycetes isolated from conditioned leaf litter for which a shredder had already shown high consumption rates. 2. Black alder (Alnus glutinosa) leaf litter was exposed to the littoral zone of Lake Constance in autumn, and subsamples were analysed for leaf parameters and consumption by Gammarus roeselii under standard conditions at regular intervals. On dates with a high consumption rate of the exposed leaves, 14 single strains of fungi and oomycetes were isolated, freed of bacteria and grown on autoclaved leaves. 3. Six of eight measured leaf parameters of exposed leaves were significantly correlated with Gammarus consumption rates, with high colinearity among leaf parameters hampering the identification of causal relations between leaf parameters and feeding activity. 4. When single strains of fungi and oomycetes were grown on autoclaved leaf litter, toughness of colonised leaves was always lower than in the control and the content of protein, N and P were increased. There were pronounced strain‐specific effects on leaf parameters. Consumption rates also differed significantly, with nine of fourteen isolates consumed at higher rates than controls and none proving to be a deterrent. Protein and polyphenol content were significantly correlated with consumption rates. Oomycete‐colonised leaves were consumed at similar rates but were of lower food quality than fungi‐colonised leaves. 5. We argue that direct strain‐specific attractant or repellent effects of fungi and oomycetes on consumption by G. roeselii are not important. However, we found indirect strain‐specific role operating via effects on leaf parameters.  相似文献   

2.
Abstract The leaf surface of a plant, especially its chemical components, constitutes the first line of resistance to herbivores and other pests. Our previous research indicated that ‘Valmaine’ (Val) romaine lettuce, Lactuca sativa L., was highly resistant to feeding by adult banded cucumber beetle, Diabrotica balteata LeConte, while ‘Tall Guzmaine’ (TG) was highly susceptible. We investigated the leaf surface chemistry of these two cultivars for its possible role in their resistance to D. balteata. Three solvents with different polarity (hexane, methylene chloride, and methanol) were tested to remove leaf surface chemicals, but only methylene chloride and methanol extracts were used in feeding bioassays. Adult D. balteata consumed much more of the leaf tissue of Val and TG when their surface chemicals were removed with methylene chloride, but not methanol, compared to nonextracted leaf tissue, leading us to hypothesize that methylene‐chloride extractable leaf surface chemicals may have a role in the expression of lettuce resistance. However, leaf surface chemicals extracted from Val with methylene chloride were not a deterrent to adult D. balteata when applied to palatable lima bean leaf surfaces at various concentrations in dual‐choice tests. Furthermore, the application of surface extracts from TG did not stimulate beetle feeding in similar choice tests. In a no‐choice feeding test, there was no significant difference in leaf area consumption on lima bean leaves sprayed with extracts of Val or TG. These results suggest that leaf surface chemicals in romaine lettuce do not explain the resistance of Val to adult D. balteata, and that factors inside the leaf may play a role in resistance. We discuss the possibility that the solvent may have increased the palatability of lettuce leaves to D. balteata by causing enzymatic browning and cellular damage, which is likely to have degraded internal feeding deterrents and impaired the plant's ability to emit latex.  相似文献   

3.
The aqueous and different solvent extracts viz., petroleum ether, chloroform, methanol and ethanol extracts of leaf and leaf derived callus of Cardiospermum halicacabum L. (Sapindaceae) at different concentrations were screened in vitro for antifungal activity by the poisoned food technique against a wide array of seed-borne phytopathogenic fungi. The test organisms include Aspergillus flavus, A. niger, Curvularia lunata, Drechslera halodes, Fusarium moniliforme, F. solani, and F. oxysporum, which are frequently associated with sorghum [Sorghum bicolor (L.) Moench], maize (Zea mays L.) and paddy (Oryza sativa L.) seeds. Aqueous leaf extracts of C. halicacabum showed significant inhibition was observed at 50% concentration particularly in Aspergillus species. With regard to the comparative efficiency of leaf and leaf derived callus extracts, aqueous leaf extract was found to be more effective than callus extract. Among the different solvent extracts, it was observed that at 3000 ppm concentration methanol extract of C. halicacabum leaf recorded the highest degree of activity and percentage inhibition was more, but in petroleum ether and chloroform extracts did not show any significant activity. C. halicacabum leaf derived callus at 3000 ppm methanol extract showed significant antifungal activity on Fusarium species. Leaf of C. halicacabum aqueous and methanol extract showed significant antifungal activity against all the tested fungi. C. halicacabum has significant medicinal value, hence the results of the present investigation indicate that it could be exploited in the management of seed-borne pathogenic fungi.  相似文献   

4.
This research highlights the chemical composition, antioxidant and antibacterial activities of essential oils and various crude extracts (using methanol and methylene chloride) from Syzygium cumini leaves. Essential oils were analyzed by gas chromatography-mass spectrometry (GC-MS).The abundant constituents of the oils were: α-pinene (32.32%), β-pinene (12.44%), trans-caryophyllene (11.19%), 1, 3, 6-octatriene (8.41%), delta-3-carene (5.55%), α-caryophyllene (4.36%), and α-limonene (3.42%).The antioxidant activities of all extracts were examined using two complementary methods, namely diphenylpicrylhydrazyl (DPPH) and ferric reducing power (FRAP). In both methods, the methanol extract exhibited a higher activity than methylene chloride and essential oil extracts. A higher content of both total phenolics and flavonoids were found in the methanolic extract compared with other extracts. Furthermore, the methanol extract had higher antibacterial activity compared to methylene chloride and the essential oil extracts. Due to their antioxidant and antibacterial properties, the leaf extracts from S. cumini may be used as natural preservative ingredients in food and/or pharmaceutical industries.  相似文献   

5.
Aims: Developing new bio‐agents to control plant disease is desirable. Entomopathogenic bacteria Xenorhabdus spp. have potential antimicrobial activity in agriculture. This work was conducted to evaluate the antimicrobial activity of Xenorhabdus bovienii YL002 on plant pathogenic fungi and oomycete in vitro and the efficiency of this strain to reduce the in vivo incidence of grey mould rot on tomato plants caused by Botrytis cinerea and leaf scorch on pepper plants caused by Phytophthora capsici. Methods and Results: The antimicrobial activity of X. bovienii YL002 was firstly determined on in vitro plant pathogenic fungi and oomycete and then on tomato fruits and plants infected with B. cinerea and pepper plants infected with P. capsici. The cell‐free filtrate of X. bovienii YL002 exhibited highest inhibition effects (>98%) on mycelia growth of P. capsici and B. cinerea. The 50% inhibition concentration (EC50) of the methanol‐extracted bioactive compounds (methanol extract) of the cell‐free filtrate against P. capsici and B. cinerea were 164·83 and 42·16 μg ml?1. The methanol extract also had a strong effect on the spore germination of P. capsici and B. cinerea, with a EC50 of 70·38 and 69·33 μg ml?1, respectively. At 1000 μg ml?1, the methanol extract showed a therapeutic effect of 70·82% and a protective effect of 77·4% against B. cinerea on tomato plants compared with the control. The methanol extract also showed potent effect against P. capsici, with a therapeutic effect of 68·14% and a protective effect of 65·46% on pepper plants compared with the control. Conclusions: Xenorhabdus bovienii YL002 produces antimicrobial compounds with strong activity on plant pathogenic fungi and oomycete and has the potential for controlling grey mould rot of tomato plants and leaf scorch of pepper and could be useful in integrated control against diverse plant pathogenic fungi and oomycete. Significance and Impact of the Study: This study showed the potential that X. bovienii YL002 can be used to control the grey mould rot caused by B. cinerea on tomato plants and leaf scorch caused by P. capsici on pepper plants with the objective to reduce treatments with chemical fungicides.  相似文献   

6.
Methanol and ethanol extracts of mansonia wood inhibited the growth of three wood-rotting fungi, Pleurotus ostreatus, Gloeophyllum sepiarium and Gloeophyllum sp. An aqueous extract only inhibited the growth of P. ostreatus. Extracted obeche wood impregnated with ethanol extracts of mansonia showed significant improvement in decay resistance. Impregnation with methanol extracts only significantly retarded decay by P. ostreatus and the aqueous extracts did not increase obeche wood resistance to any of the test fungi.  相似文献   

7.
8.
This study investigates behavioural responses of adult western flower thrips (Frankliniella occidentalis Pergande; Thysan., Thripidae) females to direct contact with repellent phenylpropanoid plant compounds (salicylaldehyde and methyl salicylate) applied on bean and cucumber leaves. The residence time of F. occidentalis females until take off was significantly shorter on bean or cucumber leaf discs treated with salicylaldehyde at 1% concentration compared with control leaf discs. A methyl salicylate (1%) treatment of cucumber resulted in shorter time periods until thrips took off the treated leaf discs compared with the control leaf discs. In a choice experiment thrips avoided to settle on a 1% salicylaldehyde treatment of bean and cucumber leaf discs for a maximum of 3 h, on a 1% methyl salicylate treatment for a 5‐h period. Within a 24‐h period neither the egg‐laying nor the feeding activity of F. occidentalis was affected after salicylaldehyde application (0.1%, 1%) on bean or cucumber. In contrast, methyl salicylate (1%) applied on bean and cucumber significantly prevented thrips females from oviposition and reduced the percentage of damaged area caused by their feeding activity for 24 h. As olfactory repellent plant volatiles applied on crop plants may elicit diverse post‐landing responses of F. occidentalis, short‐ and long‐term effects should be considered when evaluating the factual applicability of secondary plant compounds in a successful thrips management strategy.  相似文献   

9.
The present study was designated to evaluate the antifungal activity and to root out the antifungal plant leaf extracts from this Indian folk-flore. The in vitro antifungal assay was performed by agar diffusion test and minimum inhibitory concentration (MIC) for hexane, ethyl acetate, methanol and distilled water plant leaf extracts. Extraction of 17 different plant leaves was carried out in different solvents such as hexane, ethyl acetate, methanol and distilled water. Among them extractive yield of methanol was maximum than the rest of the three solvents. These extracts were screened for their antifungal activity against nine different fungi. Among these ethyl acetate extracts of Adhatoda vasica, Ocimum sanctum and Holoptelea integrifolia exhibited maximum antifungal activity against Alternaria sp., Aspergillus parasi, Aspergillus nidulans, Trichoderma harzianum and Aspergillus flavus with MIC of 80, 40 and 20 ppm against Aspergillus nidulans and Alternaria sp. Ethyl acetate extracts showed promising antifungal activity against Adhatoda vasica, Ocimum sanctum and Holoptelea integrifolia against Aspergillus nidulans, and Alternaria sp. might be applicable as fungicide against fungal plants disease.  相似文献   

10.
Host preference bioassays for adults of the sweetpotato whitefly were performed with leaves of the chinaberry tree Melia azedarach L., tomato, cucumber and bean. Fruit and leaf extracts of the chinaberry tree were tested against adults of the sweetpotato whitefly. Fruit extracts were tested against eggs, first and second instar nymphs, and pupae of the insect. Treatments included aqueous, methanol, and acetone fruit extracts of 200 mg ml?1 and serial dilutions of 20.0 and 2.00 mg ml?1, ether extract, the botanical insecticides Azatin® and Margosan® ‐O and the control, water or water with Triton®. Mortality data was collected at 6, 7, and 8 days after treatment of the eggs, nymphs and pupae, respectively. Results of the host preference bioassays indicated a significantly lower number of live insects on leaves of the chinaberry tree vs leaves of bean, cucumber, and tomato after 24 h. This indicates that M. azedarach is not a good host for the sweetpotato whitefly. Adults of the insect were significantly more repelled from tomato plants treated with the undiluted extracts when compared to the control after 72 h. There were significant differences in percent mortality of nymphal instars when exposed to the undiluted extracts compared to other extracts and the control. However, there was no significant effect of the fruit extracts on the egg and pupa instars. Thus M. azedarach extracts were found to be repellent to the whitefly adults, while the fruit extracts have shown a significant detrimental effect against early nymphal instars. In general, the methanol extracts were more active against B. tabaci than extracts with other solvents.  相似文献   

11.
Abstract

Melaleuca styphelioides is considered as medicinal plant. This study was carried out to evaluate for the first time the phytochemical composition and to compare the antifungal activities of essential oil (EOs), methanol and aqueous extracts of M. styphelioides Sm. leaves against three fungi (Aspergillus niger, Rhizopus nigricans and Penicillium digitatum). A total of 10 components of the EO were identified, with the principal compound being methyl eugenol (87.2%). Results of the phytochemical analysis of leaves extract exhibited the presence of different phytoconstituents (phenolic compounds, flavonoids, tannins and anthocyanins). Volatile and non-volatile extracts were found to express dose-dependent inhibition against all tested fungi. Indeed, the EO oil showed significant inhibition of fungal growth and the IC50 was 2.08?µL/mL for A. niger indicating that M. styphelioides leaf EO was particularly effective against this pathogen. The most susceptible species for the aqueous extract was P. digitatum (IC50= 9.54?mg/mL) whereas R. nigricans was found to be more susceptible to the methanolic extract (IC50= 8.31?mg/mL). Thus, the EO and aqueous as well as methanol extracts of M. styphelioides leaves possess antifungal activity and hence, it can be suggested for use in the food or pharmaceutical industries as an alternative to chemical preservatives.  相似文献   

12.
The use of inert absorbent polymeric supports for cellular attachment in solid-state fungal fermentation influenced growth, morphology, and production of bioactive secondary metabolites. Two filamentous fungi exemplified the utility of this approach to facilitate the discovery of new antimicrobial compounds. Cylindrocarpon sp. LL-Cyan426 produced pyrrocidines A and B and Acremonium sp. LL-Cyan416 produced acremonidins A–E when grown on agar bearing moist polyester–cellulose paper and generated distinctly different metabolite profiles than the conventional shaken or stationary liquid fermentations. Differences were also apparent when tenfold concentrated methanol extracts from these fermentations were tested against antibiotic-susceptible and antibiotic-resistant Gram-positive bacteria, and zones of inhibition were compared. Shaken broth cultures of Acremonium sp. or Cylindrocarpon sp. showed complex HPLC patterns, lower levels of target compounds, and high levels of unwanted compounds and medium components, while agar/solid support cultures showed significantly increased yields of pyrrocidines A and B and acremonidins A–E, respectively. This method, mixed-phase fermentation (fermentation with an inert solid support bearing liquid medium), exploited the increase in surface area available for fungal growth on the supports and the tendency of some microorganisms to adhere to solid surfaces, possibly mimicking their natural growth habits. The production of dimeric anthraquinones by Penicillium sp. LL-WF159 was investigated in liquid fermentation using various inert polymeric immobilization supports composed of polypropylene, polypropylene cellulose, polyester–cellulose, or polyurethane. This culture produced rugulosin, skyrin, flavomannin, and a new bisanthracene, WF159-A, after fermentation in the presence and absence of polymeric supports for mycelial attachment. The physical nature of the different support systems influenced culture morphology and relative metabolite yields, as determined by HPLC analysis and measurement of antimicrobial activity. The application of such immobilized-cell fermentation methods under solid and liquid conditions facilitated the discovery of new antibiotic compounds, and offers new approaches to fungal fermentation for natural product discovery.  相似文献   

13.
Choice tests with whole plants and leaf discs indicated that fourth instar Spodoptera exigua (Hübner) (Noctuidae: Amphypyrini) were found more frequently and ate significantly more of the weed Chenopodium murale than the associated crop plant Apium graveolens. In order to explain the preference, plant extracts, plant volatiles, soluble protein concentrations, water contents, and leaf toughness of the two plants were investigated. Bioassays of aqueous methanol (90%) and hexane extracts of leaves on cellulose discs indicated that neither attractants in C. murale nor repellents in A. graveolens could account for the observed preference. No significant difference could be found between the effects of plant volatiles from C. murale, A. graveolens and a control on larval dispersal by S. exigua. Selective feeding for higher levels of proteins also was not a factor, because A. graveolens had nearly twice the soluble protein of C. murale. Water content was approximately 6% higher (by weight) in C. murale than A. graveolens but most polyphagous larvae do not typically show compensatory feeding for water alone. However, the potentially related characteristic of leaf toughness was significantly different, with A. graveolens exhibiting 1.53 times the toughness of C. murale. Studies comparing five types of larval behavior on both plant species showed that the time spent in swallowing behavior was significantly greater on the tougher A. graveolens leaves relative to C. murale. To test the hypothesis that leaf toughness was affecting larval host choice, both plants were finely ground and incorporated into agar blocks. No differences in feeding behavior were detected. The implications of leaf toughness for larval diet and host choice are discussed.  相似文献   

14.
A substance inducing teliospore production inPuccinia racondita f. sp.tritici was found in water and methanol extracts of wheat leaves with telia of the wheat leaf rust just before harvest time. Methanol (MeOH) and water extracts from uninfected wheat leaves also showed telia-inducing activity. However, the MeOH and water extracts from wheat leaves covered with telia showed much stronger activity than those from uninfected wheat leaves. We obtained a fraction (0.2 mg) showing activity at 2 ng/ml by purification of the water extract.  相似文献   

15.
Herbivore‐induced plant volatiles are often involved in direct and indirect plant defence against herbivores. Linalool is a common floral scent and found to be released from leaves by many plants after herbivore attack. In this study, a linalool/nerolidol synthase, FaNES1, was overexpressed in the plastids of chrysanthemum plants (Chrysanthemum morifolium). The volatiles of FaNES1 chrysanthemum leaves were strongly dominated by linalool, but they also emitted small amount of the C11‐homoterpene, (3E)‐4,8‐dimethyl‐1,3,7‐nonatriene, a derivative of nerolidol. Four nonvolatile linalool glycosides in methanolic extracts were found to be significantly increased in the leaves of FaNES1 plants compared to wild‐type plants. They were putatively identified by LC‐MS‐MS as two linalool–malonyl–hexoses, a linalool–pentose–hexose and a glycoside of hydroxy–linalool. A leaf‐disc dual‐choice assay with western flower thrips (WFT, Frankliniella occidentalis) showed, initially during the first 15 min of WFT release, that FaNES1 plants were significantly preferred. This gradually reversed into significant preference for the control, however, at 20–28 h after WFT release. The initial preference was shown to be based on the linalool odour of FaNES1 plants by olfactory dual‐choice assays using paper discs emitting pure linalool at similar rates as leaf discs. The reversal of preference into deterrence could be explained by the initial nonvolatile composition of the FaNES1 plants, as methanolic extracts were less preferred by WFT. Considering the common occurrence of linalool and its glycosides in plant tissues, it suggests that plants may balance attractive fragrance with ‘poor taste’ using the same precursor compound.  相似文献   

16.
The pattern of feeding of Eastern spruce budworm Choristoneura fumiferana (Clem.) (Lepidoptera, Tortricidae) is compared on foliage from white spruce Picea glauca (Moench) Voss. (Pinaceae) trees previously determined to be susceptible and resistant to defoliation by budworm. No differences are observed in electrophysiological responses from taste sensilla to aqueous extracts of the two foliage types, nor is there a preference for either extract type in a choice test. Acetone extracts from the two foliage types are both preferred to a control sucrose solution, although neither elicits a preference relative to the other. These results suggest that there is no difference in phagostimulatory power of internal leaf contents of the two foliage types. Longer‐term observation of feeding behaviour in a no‐choice situation shows no difference in meal duration, confirming the lack of difference in phagostimulatory power. However, on average, intermeal intervals are twice as long on the resistant foliage, leading to an overall lower food consumption during the assay. This result suggests an anti‐digestive or toxic effect of the resistant foliage that slows behaviour and limits food intake. Previous research has shown that waxes of the resistant foliage deter initiation of feeding by the spruce budworm and that this foliage contains higher levels of tannins and monoterpenes. The data suggest that the resistant foliage contains a post‐ingestive second line of defence against the spruce budworm.  相似文献   

17.
The aim of this study was to evaluate flower and leaf methanol extracts of Artemisia alba Turra for their total phenolic and flavonoid contents, antioxidant capacity and to investigate their phenolic composition. The flower extract was richer in total phenolics and flavonoids and possessed higher antioxidant activity through DPPH and ABTS assays. The UHPLC‐PDA‐MS analysis of the flower and leaf methanol extracts revealed similar phenolic profile and allowed identification of 31 phenolic compounds (flavonoids, coumarins, and phenolic acids) by comparison with the respective reference compounds or tentatively characterized by their chromatographic behavior, UV patterns, and MS fragmentations. The presence of hispidulin, jaceosidin, desmethoxycentaureidin, and dicaffeoyl esters of quinic acid in Aalba is reported herein for the first time. The distribution of flavonoids in Aalba from different origins was discussed from chemotaxonomic point of view.  相似文献   

18.
This study assessed the feeding preference of larvae of Triplectides sp. (Trichoptera, Leptoceridae) exposed to leaves of native (Hoffmannia dusenii Standley, 1931) and exotic (Eucalyptus globulus Labillardiere, 1799) trees. We hypothesized that, regardless of the origin of the leaves, larval preference is determined mainly by leaf anatomy and quality. Leaves from both species were conditioned with and without nutrient enrichment (NPK), and the four food items were offered in paired combinations to 162 larvae. Larval preference varied according to leaf combinations. In treatments containing both species, larvae preferred to feed on H. dusenii because of softer tissues and anatomical structure. The only exception was the treatment containing discs of enriched E. globulus and non-enriched H. dusenii where enhanced microbial activity on enriched leaves provided a softer resource to shredders. Our results corroborate the initial hypothesis and suggest that introduction of exotic leaves and changes in nutrient availability may affect shredder activity in streams and, consequently, organic-matter processing and ecosystem functioning.  相似文献   

19.
The use of plant‐based compounds to control insect pests is an alternative to the use of synthetic pesticides. We evaluated the repellent and antifeedant effects of Cordeauxia edulis Hemsley (Fabaceae) and Rhododendron tomentosum Harmaja (Ericaceae) extracts against Hylobius abietis L. (Coleoptera: Curculionidae) and Phyllodecta laticollis Suffrian (Coleoptera: Chrysomelidae). Repellent properties were evaluated by monitoring responses of adult insects toward the odor from extracts or extraction solvents (controls) in a Y‐tube olfactometer, and choice or no‐choice feeding tests were conducted by applying extracts or extraction solvents on stems of Scots pine [Pinus sylvestris L. (Pinaceae)] and European aspen [Populus tremula L. (Salicaceae)], host plants of H. abietis and P. laticollis, respectively. Extracts of R. tomentosum repelled adults of both insect species effectively. However, extracts of C. edulis did not repel H. abietis although its ethyl acetate extract showed repellence against the adults of P. laticollis. Feeding by H. abietis was significantly reduced by a methanol extract of C. edulis, and methanol and hexane extracts of R. tomentosum. Feeding by the adults and larvae of P. laticollis was significantly reduced by extracts from both plant species. Concomitant with less feeding, larval growth was retarded by ethyl acetate extracts of both plant species. Gas chromatography‐mass spectrometry analyses of the volatile components of the extracts showed that extracts from both plant species were mixtures of various terpene and non‐terpene compounds, which showed quantitative and/or qualitative variations between plant species and extraction solvents. This experiment showed that extracts from both plant species effectively manipulated the orientation and/or feeding behavior of the two beetle species. Hence, they may be considered as potential alternatives to synthetic chemical pesticides.  相似文献   

20.
Zanthoxylum bungeanum extracts were prepared using seven solvents: water, methanol, ethanol, acetic acid, ethyl acetate, chloroform, and benzene. The volatile composition in the extracts was qualitatively analyzed using headspace solid‐phase microextraction coupled with gas chromatography mass spectrometry detection, and the alkylamide composition was determined using high‐performance liquid chromatography. The extract compositions differed with respect to the solvents. A total of 49 volatile components belonging to four groups, terpenoids, alcohols, esters, and ketones, were identified in the extracts. The Z. bungeanum extracts were either ester or terpenoid type, dominated by linalyl acetate. The extracts were divided into three distinct groups based on principal component analysis and hierarchical clustering analysis. Water, methanol, and ethanol extracts could be applied in the food and pharmaceutical industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号