首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Background

Nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome is associated with metabolic disorder and cell death, which are important triggers in diabetic cardiomyopathy (DCM). We aimed to explore whether NLRP3 inflammasome activation contributes to DCM and the mechanism involved.

Methods

Type 2 diabetic rat model was induced by high fat diet and low dose streptozotocin. The characteristics of type 2 DCM were evaluated by metabolic tests, echocardiography and histopathology. Gene silencing therapy was used to investigate the role of NLRP3 in the pathogenesis of DCM. High glucose treated H9c2 cardiomyocytes were used to determine the mechanism by which NLRP3 modulated the DCM. The cell death in vitro was detected by TUNEL and EthD-III staining. TXNIP-siRNA and pharmacological inhibitors of ROS and NF-kB were used to explore the mechanism of NLRP3 inflammasome activation.

Results

Diabetic rats showed severe metabolic disorder, cardiac inflammation, cell death, disorganized ultrastructure, fibrosis and excessive activation of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), pro-caspase-1, activated caspase-1 and mature interleukin-1β (IL-1β). Evidence for pyroptosis was found in vivo, and the caspase-1 dependent pyroptosis was found in vitro. Silencing of NLRP3 in vivo did not attenuate systemic metabolic disturbances. However, NLRP3 gene silencing therapy ameliorated cardiac inflammation, pyroptosis, fibrosis and cardiac function. Silencing of NLRP3 in H9c2 cardiomyocytes suppressed pyroptosis under high glucose. ROS inhibition markedly decreased nuclear factor-kB (NF-kB) phosphorylation, thioredoxin interacting/inhibiting protein (TXNIP), NLRP3 inflammasome, and mature IL-1β in high glucose treated H9c2 cells. Inhibition of NF-kB reduced the activation of NLRP3 inflammasome. TXNIP-siRNA decreased the activation of caspase-1 and IL-1β.

Conclusion

NLRP3 inflammasome contributed to the development of DCM. NF-κB and TXNIP mediated the ROS-induced caspase-1 and IL-1β activation, which are the effectors of NLRP3 inflammasome. NLRP3 gene silencing may exert a protective effect on DCM.  相似文献   

2.
Uric acid (UA) has been associated with renal fibrosis and progression of chronic kidney disease. However, the underlying mechanisms of this process have still not been identified. Here, we studied the role of the innate imunity receptor NLRP3/ASC in UA induced epithelial-mesenchymal transition (EMT) in kidney. Wistar rats were fed with oxonic acid 2% and UA 2% (OXA?+?U), OXA?+?U plus allopurinol (ALL) or regular chow (C) for 7 weeks. We analyzed the presence of EMT markers, the expression of NLRP3, ASC, Caspase-1 and Smad 2/3 molecules and the mitochondrial morphological and functional characteristics. High UA induced renal fibrosis, mild chronic inflammation, as well as morphological and biochemical evidence of EMT. High UA also increased the expression of NLRP3/ASC with activation of both inflammasome related caspase-1 and inflammasome unrelated Smad 2/3 pathways. Ultrastructural co-localization of NLRP3 and Smad 2/3 indicated physical interaction between the two molecules. No morphological or functional changes were found between mitochondria exposed to high UA. In conclusion, kidney epithelial NLRP3/ASC expression was increased in high UA state in rats and both inflammasome related caspase-1 and non-inflammasome related P-Smad 2/3 pathways were associated with the observed EMT, inflammation and fibrosis induced by UA in the kidney.  相似文献   

3.
Inflammasomes are protein complexes formed in response to tissue injury and inflammation to regulate the formation of proinflammatory cytokines. Nod-like receptor pyrin domain containing 3 (NLRP3) is one such inflammasome involved in pancreatic inflammation. Caspase activation recruitment domain (CARD) is an interaction motif found in all the major components of NLRP3 inflammasome such as apoptosis associated speck-like CARD containing protein (ASC) and procaspase-1. NLRP3 activates procaspase-1 with the concerted action of CARD domain of ASC. In the present study, the effect of rutin, a natural flavonoid on the expression of ASC of NLRP3, was investigated in rats treated with ethanol (EtOH) and cerulein (Cer). Male albino Wistar rats were divided into four groups. Groups 1 and 2 rats were fed normal diet, whereas groups 3 and 4 rats were fed EtOH (36 % of total calories) containing diet for a total period of 5 weeks and also administered Cer (20 µg/kg body weight i.p.) thrice weekly for the last 3 weeks. In addition, groups 2 and 4 rats received daily 100 mg/kg body weight of rutin from third week. Rutin co-administration significantly decreased the level of pancreatic marker enzymes, oxidative stress markers, inflammatory markers, mRNA expression of caspase-1, cytokines, ASC–NLRP3, and protein expression of caspase-1 and ASC in rats received EtOH–Cer. The results of the study revealed that rutin can reduce inflammation in pancreas probably by influencing the down regulation of ASC–NLRP3 which might result in the reduced activation of caspase-1 and controlled cytokine production.  相似文献   

4.
Shikonin is a highly lipophilic naphtoquinone found in the roots of Lithospermum erythrorhizon used for its pleiotropic effects in traditional Chinese medicine. Based on its reported antipyretic and anti-inflammatory properties, we investigated whether shikonin suppresses the activation of NLRP3 inflammasome. Inflammasomes are cytosolic protein complexes that serve as scaffolds for recruitment and activation of caspase-1, which, in turn, results in cleavage and secretion of proinflammatory cytokines IL-1β and IL-18. NLRP3 inflammasome activation involves two steps: priming, i.e. the activation of NF-κB pathway, and inflammasome assembly. While shikonin has previously been reported to suppress the priming step, we demonstrated that shikonin also inhibits the second step of inflammasome activation induced by soluble and particulate NLRP3 instigators in primed immortalized murine bone marrow-derived macrophages. Shikonin decreased NLRP3 inflammasome activation in response to nigericin more potently than acetylshikonin. Our results showed that shikonin also inhibits AIM2 inflammasome activation by double stranded DNA. Shikonin inhibited ASC speck formation and caspase-1 activation in murine macrophages and suppressed the activity of isolated caspase-1, demonstrating that it directly targets caspase-1. Complexing shikonin with β-lactoglobulin reduced its toxicity while preserving the inhibitory effect on NLRP3 inflammasome activation, suggesting that shikonin with improved bioavailability might be interesting for therapeutic applications in inflammasome-mediated conditions.  相似文献   

5.
Neutrophils represent the major fraction of circulating immune cells and are rapidly recruited to sites of infection and inflammation. The inflammasome is a multiprotein complex that regulates the generation of IL-1 family proteins. The precise subcellular localization and functionality of the inflammasome in human neutrophils are poorly defined. Here we demonstrate that highly purified human neutrophils express key components of the NOD-like receptor family, pyrin domain containing 3 (NLRP3), and absent in melanoma 2 (AIM2) inflammasomes, particularly apoptosis-associated speck-like protein containing a CARD (ASC), AIM2, and caspase-1. Subcellular fractionation and microscopic analyses further showed that inflammasome components were localized in the cytoplasm and also noncanonically in secretory vesicle and tertiary granule compartments. Whereas IL-1β and IL-18 were expressed at the mRNA level and released as protein, highly purified neutrophils neither expressed nor released IL-1α at baseline or upon stimulation. Upon inflammasome activation, highly purified neutrophils released substantially lower levels of IL-1β protein compared with partially purified neutrophils. Serine proteases and caspases were differentially involved in IL-1β release, depending on the stimulus. Spontaneous activation of the NLRP3 inflammasome in neutrophils in vivo affected IL-1β, but not IL-18 release. In summary, these studies show that human neutrophils express key components of the inflammasome machinery in distinct intracellular compartments and release IL-1β and IL-18, but not IL-1α or IL-33 protein. Targeting the neutrophil inflammasome may represent a future therapeutic strategy to modulate neutrophilic inflammatory diseases, such as cystic fibrosis, rheumatoid arthritis, or sepsis.  相似文献   

6.
BackgroundCelastrol, a pentacyclic triterpenoid quinonemethide isolated from several spp. of Celastraceae family, exhibits anti-inflammatory activities in a variety of diseases including arthritis.PurposeThis study aims to investigate whether the inhibition of NLRP3 inflammasome is engaged in the anti-inflammatory activities of celastrol and delineate the underlying mechanism.MethodsThe influence of celastrol on NLRP3 inflammasome activation was firstly studied in lipopolysaccharide (LPS)-primed mouse bone marrow-derived macrophages (BMDMs) and phorbol 12-myristate 13-acetate (PMA)-primed THP-1 cells treated with nigericin. Reconstituted inflammasome was also established by co-transfecting NLRP3, ASC, pro-caspase-1 and pro-IL-1β in HEK293T cells. The changes of inflammasome components including NLRP3, ASC, pro-caspase-1/caspase-1 and pro-IL-1β/IL-1β were examined by enzyme-linked immunosorbent assay (ELISA), western blotting and immunofluorescence. Furthermore, Propionibacterium acnes (P. acnes)/LPS-induced liver injury and monosodium urate (MSU)-induced gouty arthritis in mice were employed in vivo to validate the inhibitory effect of celastrol on NLRP3 inflammasome.ResultsCelastrol significantly suppressed the cleavage of pro-caspase-1 and pro-IL-1β, while not affecting the protein expressions of NLRP3, ASC, pro-caspase-1 and pro-IL-1β in THP-1 cells, BMDMs and HEK293T cells. Celastrol suppressed NLRP3 inflammasome activation and alleviated P. acnes/LPS-induced liver damage and MSU-induced gouty arthritis. Mechanism study revealed that celastrol could interdict K63 deubiquitination of NLRP3, which may concern interaction of celastrol and BRCA1/BRCA2-containing complex subunit 3 (BRCC3), and thereby prohibited the formation of NLRP3, ASC and pro-caspase-1 complex to block the generation of mature IL-1β.ConclusionCelastrol suppresses NLRP3 inflammasome activation in P. acnes/LPS-induced liver damage and MSU-induced gouty arthritis via inhibiting K63 deubiquitination of NLRP3, which presents a novel insight into inhibition of celastrol on NLRP3 inflammasome and provides more evidences for its application in the therapy of inflammation-related diseases.  相似文献   

7.
A key process underlying an innate immune response to pathogens or cellular stress is activation of members of the NOD-like receptor family, such as NLRP3, to assemble caspase-1-activating inflammasome complexes. Activated caspase-1 processes proinflammatory cytokines into active forms that mediate inflammation. Activation of the NLRP3 inflammasome is also associated with common diseases including cardiovascular disease, diabetes, chronic kidney disease, and Alzheimer disease. However, the molecular details of NLRP3 inflammasome assembly are not established. The adaptor protein ASC plays a key role in inflammasome assembly. It is composed of an N-terminal pyrin domain (PYD) and a C-terminal caspase recruitment domain, which are protein interaction domains of the death fold superfamily. ASC interacts with NLRP3 via a homotypic PYD interaction and recruits procaspase-1 via a homotypic caspase recruitment domain interaction. Here we demonstrate that ASC PYD contains two distinct binding sites important for self-association and interaction with NLRP3 and the modulatory protein POP1. Modeling of the homodimeric ASC PYD complex formed via an asymmetric interaction using both sites resembles a type I interaction found in other death fold domain complexes. This interaction mode also permits assembly of ASC PYDs into filaments. Furthermore, a type I binding mode is likely conserved in interactions with NLRP3 and POP1, because residues critical for interaction of ASC PYD are conserved in these PYDs. We also demonstrate that ASC PYD can simultaneously self-associate and interact with NLRP3, rationalizing the model whereby ASC self-association upon recruitment to NLRP3 promotes clustering and activation of procaspase-1.  相似文献   

8.
Inflammasomes are protein complexes assembled upon recognition of infection or cell damage signals, and serve as platforms for clustering and activation of procaspase-1. Oligomerisation of initiating proteins such as AIM2 (absent in melanoma-2) and NLRP3 (NOD-like receptor family, pyrin domain-containing-3) recruits procaspase-1 via the inflammasome adapter molecule ASC (apoptosis-associated speck-like protein containing a CARD). Active caspase-1 is responsible for rapid lytic cell death termed pyroptosis. Here we show that AIM2 and NLRP3 inflammasomes activate caspase-8 and -1, leading to both apoptotic and pyroptotic cell death. The AIM2 inflammasome is activated by cytosolic DNA. The balance between pyroptosis and apoptosis depended upon the amount of DNA, with apoptosis seen at lower transfected DNA concentrations. Pyroptosis had a higher threshold for activation, and dominated at high DNA concentrations because it happens more rapidly. Gene knockdown showed caspase-8 to be the apical caspase in the AIM2- and NLRP3-dependent apoptotic pathways, with little or no requirement for caspase-9. Procaspase-8 localised to ASC inflammasome ‘specks'' in cells, and bound directly to the pyrin domain of ASC. Thus caspase-8 is an integral part of the inflammasome, and this extends the relevance of the inflammasome to cell types that do not express caspase-1.  相似文献   

9.
The apoptosis-associated speck-like protein containing a caspase-activating recruitment domain (ASC) is an essential component of several inflammasomes, multiprotein complexes that regulate caspase-1 activation and inflammation. We report here an interaction between promyelocytic leukemia protein (PML) and ASC. We observed enhanced formation of ASC dimers in PML-deficient macrophages. These macrophages also display enhanced levels of ASC in the cytosol. Furthermore, IL-1β production was markedly enhanced in these macrophages in response to both NLRP3 and AIM2 inflammasome activation and following bone marrow-derived macrophage infection with herpes simplex virus-1 (HSV-1) and Salmonella typhimurium. Collectively, our data indicate that PML limits ASC function, retaining ASC in the nucleus.  相似文献   

10.
Innate cellular immunity is the immediate host response against pathogens, and activation of innate immunity also modulates the induction of adaptive immunity. The nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are a family of intracellular receptors that recognize conserved patterns associated with intracellular pathogens, but information about their role in the host defense against DNA viruses is limited. Here we report that varicella-zoster virus (VZV), an alphaherpesvirus that is the causative agent of varicella and herpes zoster, induces formation of the NLRP3 inflammasome and the associated processing of the proinflammatory cytokine IL-1β by activated caspase-1 in infected cells. NLRP3 inflammasome formation was induced in VZV-infected human THP-1 cells, which are a transformed monocyte cell line, primary lung fibroblasts, and melanoma cells. Absent in melanoma gene-2 (AIM2) is an interferon-inducible protein that can form an alternative inflammasome complex with caspase-1 in virus-infected cells. Experiments in VZV-infected melanoma cells showed that NLRP3 protein recruits the adaptor protein ASC and caspase-1 to form an NLRP3 inflammasome complex independent of AIM2 protein and in the absence of free radical reactive oxygen species release. NLRP3 was also expressed extensively in infected skin xenografts in the severe combined immunodeficiency mouse model of VZV pathogenesis in vivo. We conclude that NLRP3 inflammasome formation is an innate cellular response to infection with this common pathogenic human herpesvirus.  相似文献   

11.
Mycobacterium tuberculosis (Mtb) has evolved to evade host innate immunity by interfering with macrophage functions. Interleukin-1β (IL-1β) is secreted by macrophages after the activation of the inflammasome complex and is crucial for host defense against Mtb infections. We have previously shown that Mtb is able to inhibit activation of the AIM2 inflammasome and subsequent pyroptosis. Here we show that Mtb is also able to inhibit host cell NLRP3 inflammasome activation and pyroptosis. We identified the serine/threonine kinase PknF as one protein of Mtb involved in the NLRP3 inflammasome inhibition, since the pknF deletion mutant of Mtb induces increased production of IL-1β in bone marrow-derived macrophages (BMDMs). The increased production of IL-1β was dependent on NLRP3, the adaptor protein ASC and the protease caspase-1, as revealed by studies performed in gene-deficient BMDMs. Additionally, infection of BMDMs with the pknF deletion mutant resulted in increased pyroptosis, while the IL-6 production remained unchanged compared to Mtb-infected cells, suggesting that the mutant did not affect the priming step of inflammasome activation. In contrast, the activation step was affected since potassium efflux, chloride efflux and the generation of reactive oxygen species played a significant role in inflammasome activation and subsequent pyroptosis mediated by the Mtb pknF mutant strain. In conclusion, we reveal here that the serine/threonine kinase PknF of Mtb plays an important role in innate immune evasion through inhibition of the NLRP3 inflammasome.  相似文献   

12.
Cellular FLICE-inhibitory protein (c-FLIP) is an inhibitor of caspase-8 and is required for macrophage survival. Recent studies have revealed a selective role of caspase-8 in noncanonical IL-1β production that is independent of caspase-1 or inflammasome. Here we demonstrated that c-FLIPL is an unexpected contributor to canonical inflammasome activation for the generation of caspase-1 and active IL-1β. Hemizygotic deletion of c-FLIP impaired ATP- and monosodium uric acid (MSU)-induced IL-1β production in macrophages primed through Toll-like receptors (TLRs). Decreased IL-1β expression was attributed to a reduced activation of caspase-1 in c-FLIP hemizygotic cells. In contrast, the production of TNF-α was not affected by downregulation in c-FLIP. c-FLIPL interacted with NLRP3 or procaspase-1. c-FLIP is required for the full NLRP3 inflammasome assembly and NLRP3 mitochondrial localization, and c-FLIP is associated with NLRP3 inflammasome. c-FLIP downregulation also reduced AIM2 inflammasome activation. In contrast, c-FLIP inhibited SMAC mimetic-, FasL-, or Dectin-1-induced IL-1β generation that is caspase-8-mediated. Our results demonstrate a prominent role of c-FLIPL in the optimal activation of the NLRP3 and AIM2 inflammasomes, and suggest that c-FLIP could be a valid target for treatment of inflammatory diseases caused by over-activation of inflammasomes.  相似文献   

13.
摘要 目的:观察阿奇霉素序贯治疗联合麻杏石甘汤加味对痰热闭肺型肺炎支原体肺炎(MPP)患儿辅助性T细胞17(Th17)/调节性T细胞(Treg)细胞因子和NOD样受体蛋白3(NLRP3)炎症小体通路的影响。方法:选择山东省中医院2019年4月~2021年5月期间收治的痰热闭肺型MPP患儿106例,根据随机数字表法分为对照组和研究组,各为53例,对照组患儿接受阿奇霉素序贯治疗,研究组患儿接受阿奇霉素序贯治疗联合麻杏石甘汤加味治疗,对比两组疗效、中医证候积分、Th17/Treg细胞因子和NLRP3炎症小体通路相关指标,记录两组不良反应发生情况。结果:与对照组相比,研究组的临床总有效率明显更高(P<0.05)。两组治疗后次证积分、主证积分、总积分均较治疗前下降,且研究组低于对照组(P<0.05)。两组治疗后白介素-17A(IL-17A)、白介素-25(IL-25)水平均较治疗前下降,白介素-10(IL-10)、白介素-35(IL-35)水平均较治疗前升高,且研究组的变化程度大于对照组(P<0.05)。两组治疗后NLRP3 mRNA、接头蛋白凋亡相关斑点样蛋白(ASC)mRNA、半胱天冬酶1(caspase-1) mRNA均较治疗前下降,且研究组的下降程度大于对照组(P<0.05)。两组在治疗期间均未曾出现明显不良反应。结论:阿奇霉素序贯治疗联合麻杏石甘汤加味治疗痰热闭肺型MPP患儿疗效显著,可促进症状改善,作用机制可能与调节Th17/Treg细胞因子和NLRP3炎症小体通路有关。  相似文献   

14.
Numerous atypical mycobacteria, including Mycobacterium abscessus (Mabc), cause nontuberculous mycobacterial infections, which present a serious public health threat. Inflammasome activation is involved in host defense and the pathogenesis of autoimmune diseases. However, inflammasome activation has not been widely characterized in human macrophages infected with atypical mycobacteria. Here, we demonstrate that Mabc robustly activates the nucleotide binding and oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome via dectin-1/Syk-dependent signaling and the cytoplasmic scaffold protein p62/SQSTM1 (p62) in human macrophages. Both dectin-1 and Toll-like receptor 2 (TLR2) were required for Mabc-induced mRNA expression of pro-interleukin (IL)-1β, cathelicidin human cationic antimicrobial protein-18/LL-37 and β-defensin 4 (DEFB4). Dectin-1-dependent Syk signaling, but not that of MyD88, led to the activation of caspase-1 and secretion of IL-1β through the activation of an NLRP3/apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) inflammasome. Additionally, potassium efflux was required for Mabc-induced NLRP3/ASC inflammasome activation. Furthermore, Mabc-induced p62 expression was critically involved in NLRP3 inflammasome activation in human macrophages. Finally, NLRP3/ASC was critical for the inflammasome in antimicrobial responses to Mabc infection. Taken together, these data demonstrate the induction mechanism of the NLRP3/ASC inflammasome and its role in innate immunity to Mabc infection.  相似文献   

15.
摘要 目的:探讨慢性牙周炎(CP)合并2型糖尿病(T2DM)患者龈沟液沉默信息调节因子-1(Sirtuin-1)、Sirtuin-6的变化和临床价值。方法:选择2020年3月至2023年3月中国人民解放军联勤保障部队第九七〇医院收治的147例CP合并T2DM患者(T2DM组),128例单纯CP患者(CP组)和121例健康体检者(对照组)。根据牙周检查结果将T2DM组患者分为轻度组(n=49)、中度组(n=67)、重度组(n=31)。检测受试者龈沟液中Sirtuin-1、Sirtuin-6水平以及外周血单核细胞核苷酸结合寡聚化结构域样受体热蛋白结构域亚家族成员3(NLRP3)信使核糖核酸(mRNA)、程序性细胞死亡相关斑点样蛋白(ASC)mRNA、半胱氨酸蛋白酶1(Caspase-1)mRNA表达,并评估牙周临床指标。Pearson分析CP合并T2DM患者龈沟液Sirtuin-1、Sirtuin-6水平与牙周临床指标、外周血单核细胞NLRP3 mRNA、ASC mRNA、Caspase-1 mRNA表达的相关性。受试者工作特征(ROC)曲线分析龈沟液Sirtuin-1、Sirtuin-6诊断CP合并T2DM的价值。结果:T2DM组龈沟液Sirtuin-1、Sirtuin-6水平低于CP组和对照组(P<0.05),出血指数(SBI)、牙周袋探诊深度(PD)、牙龈指数(GI)、菌斑指数(PLI)、附着丧失(AL)、外周血单核细胞NLRP3 mRNA、ASC mRNA、Caspase-1 mRNA表达高于CP组和对照组(P<0.05)。CP组龈沟液Sirtuin-1、Sirtuin-6水平低于和对照组(P<0.05),GI、SBI、PLI、PD、AL、外周血单核细胞NLRP3 mRNA、ASC mRNA、Caspase-1 mRNA表达高于对照组(P<0.05)。重度组龈沟液Sirtuin-1、Sirtuin-6水平低于中度组和轻度组(P<0.05),GI、PLI、SBI、AL、PD、外周血单核细胞NLRP3 mRNA、ASC mRNA、Caspase-1 mRNA表达高于中度组和轻度组(P<0.05)。中度组龈沟液Sirtuin-1、Sirtuin-6水平低于轻度组(P<0.05),GI、PLI、SBI、AL、PD、外周血单核细胞NLRP3 mRNA、ASC mRNA、Caspase-1 mRNA表达高于轻度组(P<0.05)。CP合并T2DM患者龈沟液Sirtuin-1、 Sirtuin-6水平与GI、PLI、SBI、AL、PD、外周血单核细胞NLRP3 mRNA、ASC mRNA、Caspase-1 mRNA表达均呈负相关(P<0.05)。龈沟液Sirtuin-1、 Sirtuin-6诊断CP合并T2DM的曲线下面积(AUC)为0.787、0.806,联合诊断AUC为0.912,高于单独诊断。结论:CP合并T2DM患者龈沟液中Sirtuin-1、Sirtuin-6水平降低,且与牙周组织破坏程度加重、NLRP3炎症小体激活有关。龈沟液Sirtuin-1联合Sirtuin-6在CP合并T2DM诊断中具有较高价值。  相似文献   

16.
Endothelial dysfunction caused by endothelial cells senescence and chronic inflammation is tightly linked to the development of cardiovascular diseases. NLRP3 (NOD-like receptor family pyrin domain-containing3) inflammasome plays a central role in inflammatory response that is associated with diverse inflammatory diseases. This study explores the effects and possible mechanisms of NLRP3 inflammasome in endothelial cells senescence. Results show an increment of pro-inflammatory cytokine interleukin (IL) −1β secretion and caspase-1 activation during the senescence of endothelial cells induced by bleomycin. Moreover, secreted IL-1β promoted endothelial cells senescence through up-regulation of p53/p21 protein expression. NLRP3 inflammasome was found to mediate IL-1β secretion through the production of ROS (reactive oxygen species) during the senescence of endothelial cells. Furthermore, the association of TXNIP (thioredoxin-interacting protein) with NLRP3 induced by ROS promoted NLRP3 inflammasome activation in senescent endothelial cells. In addition, the expressions of NLRP3 inflammasome related genes, ASC (apoptosis associated speck-like protein containing a CARD), TXNIP, cleaved caspase-1 and IL-1β, were also increased in vitro and in vivo studies. These findings indicate that endothelial senescence could be mediated through ROS and NLRP3 inflammasome signaling pathways, suggesting a potential target for the prevention of endothelial senescence-related cardiovascular diseases.  相似文献   

17.
The NLRP3 inflammasome is a caspase-1 containing multi-protein complex that controls the release of IL-1β and plays important roles in the innate immune response. Since NLRP3 inflammasome is implicated in the pathogenesis of a variety of diseases, it has become an increasingly interested target in developing therapies for multiple diseases. We reported the current study to determine how luteolin, a natural phenolic compound found in many vegetables and medicinal herbs, would modulate NLRP3 inflammasome in both the in vivo and in vitro settings. First, we found that a high-fat diet upregulated mRNA expression of NLRP3 inflammasome components Asc and Casp1 in adipose tissue of ovariectomized mice, which were greatly reduced by dietary supplementation with luteolin. Of note, Asc and Casp1 expression in adipose tissue correlated with mRNA levels of Adgre1 encoding F4/80, an established marker for mature macrophages. We also demonstrated that luteolin inhibited NLRP3 inflammasome-derived caspase-1 activation and IL-1β secretion in J774A.1 macrophages upon diverse stimuli including ATP, nigericin, or silica crystals. Luteolin inhibited the activation step of NLRP3 inflammasome by interfering with ASC oligomerization. Taken together, these findings suggest that luteolin supplementation may suppress NLRP3 induction and activation process and thus potentially would be protective against NLRP3-mediated inflammatory diseases.  相似文献   

18.
PurposeTo evaluate the mRNA and protein expressions of NLRP3 inflammasome and its downstream inflammatory factors in human dry eye.MethodsWe recruited 54 patients with Sjögren’s syndrome dry eye (SSDE), 50 patients with non-Sjögren’s syndrome dry eye (NSSDE), and 46 healthy controls. Tear film breakup time (TBUT), Schirmer I test, and fluorescein staining (FL) were performed on all subjects. Tear samples were obtained to analyze the inflammatory cytokine levels of IL-1β and IL-18 via enzyme-linked immunosorbent (ELISA). Conjunctival impression cytology (CIC) specimens were collected to detect the mRNA expression of NLRP3, caspase-1, IL-1β, and IL-18 using quantitative RT-PCR, and the protein expression of NLRP3 and caspase-1 by Western blotting.ResultsNLRP3 mRNA expression showed higher levels in both dry eye groups compared with controls, with a comparably significant elevation in the SSDE group (relative 2.47-fold upregulation, p<0.05). NLRP3 protein expression was also increased in SSDE group (relative1.94-fold upregulation) compared with the controls. mRNA expression of caspase-1 was significantly upregulated in both SSDE (relative 1.44-fold upregulation, p<0.05) and NSSDE (relative 1.32-fold upregulation, p<0.05). Procaspase-1 protein level was increased in SSDE (relative 1.84-fold upregulation) and NSSDE (relative 1.12-fold upregulation) versus controls; and caspase-1 protein expression was also increased in SSDE (relative 1.49-fold upregulation) and NSSDE (relative 1.17-fold upregulation) compared with the controls. The patients with SSDE and NSSDE had higher IL-1β and IL-18 mRNA values and protein expressions than the controls did. The relative mRNA expression of IL-1β upregulated 3.59-fold (p<0.001) in SSDE and 2.13-fold (p<0.01) in NSSDE compared with the controls. IL-1β protein level also showed significant upregulation in SSDE (p=0.01; vs. controls groups). IL-18 mRNA expression levels were significantly upregulated in the SSDE (relative 2.97-fold upregulation, p=0.001) and NSSDE (relative 2.05-fold upregulation, p=0.001) groups compared with the controls; tear IL-18 concentrations were also significantly increased in the SSDE (p<0.001) and NSSDE (p<0.05) groups.ConclusionsIn the current study, we found that mRNA and protein expressions of NLRP3 inflammasome were upregulated in human dry eyes, especially in SSDE; the downstream inflammatory factors caspase-1, IL-1β, and IL-18 were also elevated in dry eye patients. These observations suggest the involvement of NLRP3 inflammasome in the onset and development of the inflammation in dry eye.  相似文献   

19.
目的:探讨原发性骨关节炎患者关节中核苷酸结合寡聚化结构域样受体3(NLRP3)含量与炎症及氧化应激的相关性。方法:选择2018年6月-2019年6月我院接诊的100例原发性骨关节炎患者进行研究,设为观察组,并选择我院同期体检健康者80例作为对照组。分析NLRP3、凋亡相关斑点样蛋白(ASC)、半胱氨酸天冬氨酸蛋白酶1(Caspase-1)与白介素1β(IL-1β)、白介素17(IL-17)、肿瘤坏死因子α(TNF-α)、丙二醛(MDA)、8-羟基脱氧鸟苷(8-OHdG)、3-硝基酪氨酸(3-NT)、超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)的相关性。结果:观察组NLRP3、ASC、Caspase-1水平显著高于对照组,差异显著(P0.05);观察组IL-1β、IL-17、TNF-α水平显著高于对照组,差异显著(P0.05);观察组MDA、8-OHdG、3-NT水平显著高于对照组,SOD、GSH-Px水平显著低于对照组,差异显著(P0.05);将炎症及氧化应激作为因变量,将NLRP3、ASC、Caspase-1分别作为自变量,在相关性分析结果中显示,NLRP3、ASC、Caspase-1和IL-1β、IL-17、TNF-α、MDA、8-OHdG、3-NT之间均呈正相关(P0.05),NLRP3、ASC、Caspase-1和SOD、GSH-Px之间均呈负相关(P0.05)。结论:在原发性骨关节炎患者中NLRP3的含量和炎症及氧化应激之间存在着密切关系,可促使疾病进展。  相似文献   

20.
The accumulation of the scrapie prion protein PrPSc, a misfolded conformer of the cellular prion protein PrPC, is a crucial feature of prion diseases. In the central nervous system, this process is accompanied by conspicuous microglia activation. The NLRP3 inflammasome is a multi-molecular complex which can sense heterogeneous pathogen-associated molecular patterns and culminates in the activation of caspase 1 and release of IL 1β. The NLRP3 inflammasome was reported to be essential for IL 1β release after in vitro exposure to the amyloidogenic peptide PrP106-126 and to recombinant PrP fibrils. We therefore studied the role of the NLRP3 inflammasome in a mouse model of prion infection. Upon intracerebral inoculation with scrapie prions (strain RML), mice lacking NLRP3 (Nlrp3-/-) or the inflammasome adaptor protein ASC (Pycard-/-) succumbed to scrapie with attack rates and incubation times similar to wild-type mice, and developed the classic histologic and biochemical features of prion diseases. Genetic ablation of NLRP3 or ASC did not significantly impact on brain levels of IL 1β at the terminal stage of disease. Our results exclude a significant role for NLRP3 and ASC in prion pathogenesis and invalidate their claimed potential as therapeutic target against prion diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号