首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
目的研究D-半乳糖诱导ICR中年雌性小鼠多囊卵巢综合征(PCOS)动物模型的卵巢形态学、性激素以及胰岛素水平变化,并探讨D-半乳糖引致小鼠PCOS的意义。方法以D-半乳糖腹腔注射20周龄ICR雌性小鼠8周,观察卵巢形态的变化,检测血糖值及动情周期排卵情况,并采用ELISA法测定血清胰岛素、雌二醇(E2)、促卵泡生长激素(FSH)、睾酮(T)水平。结果 D-半乳糖处理组小鼠的卵巢重量显著高于对照组(P<0.05),有80%(10/12)的单侧或双侧卵巢呈现多囊性扩张,卵巢闭锁增多及颗粒细胞层数减少,并表现为紊乱的动情周期,提示无排卵;与对照组比较,D-半乳糖组小鼠血清T、E2和空腹血糖水平明显升高(P<0.001),FSH水平下降(P<0.0001),空腹血胰岛素水平显著高于对照组(P<0.01),胰岛素敏感指数显著低于对照组(P<0.05)。结论使用D-半乳糖诱导小鼠PCOS模型,无论在影响血清性激素还是卵巢局部形态学改变方面都与临床表现相似,并存在胰岛素抵抗现象,符合PCOS的典型特征,可作为动物模型用于科学研究。  相似文献   

3.

Background

Rheumatoid arthritis (RA) most often begins in females in the fourth-fifth decade of their life, suggesting that the aging of the immune system (immunosenescence) has a major role in this disease. Therefore, in the present study, we sought to investigate the effect of age on arthritis susceptibility in BALB/c mice using the proteoglycan (PG)-induced arthritis (PGIA) model of RA.

Results

We have found that young, 1-month-old female BALB/c mice are resistant to the induction of PGIA, but with aging they become susceptible. PG-induced T cell responses decline with age, whereas there is a shift toward Th1 cytokines. An age-dependent decrease in T cell number is associated with an increased ratio of the memory phenotype, and lower CD28 expression. Antigen-presenting cells shifted from macrophages and myeloid dendritic cells in young mice toward B cells in older mice. The regulatory/activated T cell ratio decreases in older mice after PG injections indicating impaired regulation of the immune response.

Conclusion

We conclude that immunosenescence could alter arthritis susceptibility in a very complex manner including both adaptive and innate immunities, and it cannot be determined by a single trait. Cumulative alterations in immunoregulatory functions closely resemble human disease, which makes this systemic autoimmune arthritis model of RA even more valuable.  相似文献   

4.
In this paper we summarize the long-term effects of A-bomb radiation on the T-cell system and discuss the possible involvement of attenuated T-cell immunity in the disease development observed in A-bomb survivors. Our previous observations on such effects include impaired mitogen-dependent proliferation and IL-2 production, decreases in naive T-cell populations, and increased proportions of anergic and functionally weak memory CD4 T-cell subsets. In addition, we recently found a radiation dose-dependent increase in the percentages of CD25(+)/CD127(-) regulatory T cells in the CD4 T-cell population of the survivors. All these effects of radiation on T-cell immunity resemble effects of aging on the immune system, suggesting that ionizing radiation might direct the T-cell system toward a compromised phenotype and thereby might contribute to an enhanced immunosenescence. Furthermore, there are inverse, significant associations between plasma levels of inflammatory cytokines and the relative number of na?ve CD4 T cells, also suggesting that the elevated levels of inflammatory markers found in A-bomb survivors can be ascribed in part to T-cell immunosenescence. We suggest that radiation-induced T-cell immunosenescence may result in activation of inflammatory responses and may be partly involved in the development of aging-associated and inflammation-related diseases frequently observed in A-bomb survivors.  相似文献   

5.
The aging process is accompanied by altered immune system functioning and an increased risk of infection. Dendritic cells (DCs) are antigen-presenting cells that play a key role in both adaptive and innate immunity, but how aging affects DCs and their influence on immunity has not been thoroughly established. Here we examined the function of conventional DCs (cDCs) in old mice after TLR7 stimulation, focusing on their ability to cross-prime CD8+ T cells. Using polyU, a synthetic ssRNA analog, as TLR7 ligand and OVA as an antigen (Ag) model, we found that cDCs from old mice have a poor ability to stimulate a CD8+ T cell-mediated cytotoxic response. cDCs from old mice exhibit alterations in Ag-processing machinery and TLR7 activation. Remarkably, CD8α+ cDCs from old mice have an impaired ability to activate naïve CD8+ T cells and, moreover, a lower capacity to mature and to process exogenous Ag. Taken together, our results suggest that immunosenescence impacts cDC function, affecting the activation of naïve CD8+ T cells and the generation of effector cytotoxic T cells.  相似文献   

6.
With advancing age, many organs exhibit functional deterioration. The age‐associated accumulation of senescent cells is believed to represent one factor contributing to this phenomenon. While senescent cells are found in several different organ systems, it is not known whether they arise independently in each organ system or whether their prevalence within an individual reflects that individual's intrinsic aging process. To address this question, we studied senescence in two different organ systems in humans, namely skin and T cells in 80 middle‐aged and older individuals from the Leiden Longevity Study. Epidermal p16INK4a positivity was associated with neither CD4+ nor CD8+ T‐cell immunosenescence phenotype composites (i.e., end‐stage differentiated/senescent T cells, including CD45RA+CCR7CD28CD27CD57+KLRG1+ T cells). Dermal p16INK4a positivity was significantly associated with the CD4+, but not with the CD8+ immunosenescence composite. We therefore conclude that there is limited evidence for a link between skin senescence and immunosenescence within individuals.  相似文献   

7.
Th17 cells, which produce IL-17 and IL-22, promote autoimmunity in mice and have been implicated in the pathogenesis of autoimmune/inflammatory diseases in humans. However, the Th17 immune response in the aging process is still not clear. In the present study, we found that the induction of IL-17-produing CD4+ T cells was significantly increased in aged individuals compared with young healthy ones. The mRNA expression of IL-17, IL-17F, IL-22, and RORC2 was also significantly increased in aged people. Similar to humans, Th17 cells as well as mRNAs encoding IL-17, IL-22 and RORγt were dramatically elevated in naïve T cells from aged mouse compared to young ones. In addition, CD44 positive IL-17-producing CD4+ T cells were significantly higher in aged mice, suggesting that memory T cells are an important source of IL-17 production. Furthermore, the percentage of IL-17-produing CD4+ T cells generated in co-culture with dendritic cells from either aged or young mice did not show significant differences, suggesting that dendritic cells do not play a primary role in the elevation of Th17 cytokines in aged mouse cells. Importantly, transfer of CD4+CD45Rbhi cells from aged mice induced more severe colitis in RAG−/− mice compared to cells from young mice, Taken together, these results suggest that Th17 immune responses are elevated in aging humans and mice and may contribute to the increased development of inflammatory disorders in the elderly.  相似文献   

8.
Memory-like CD8+ T cells expressing eomesodermin are a subset of innate T cells initially identified in a number of genetically modified mice, and also exist in wild mice and human. The acquisition of memory phenotype and function by these T cells is dependent on IL–4 produced by PLZF+ innate T cells; however, their physiologic function is still not known. Here we found that these IL-4-induced innate CD8+ T cells are critical for accelerating the control of chronic virus infection. In CIITA-transgenic mice, which have a substantial population of IL-4-induced innate CD8+ T cells, this population facilitated rapid control of viremia and induction of functional anti-viral T-cell responses during infection with chronic form of lymphocytic choriomeningitis virus. Characteristically, anti-viral innate CD8+ T cells accumulated sufficiently during early phase of infection. They produced a robust amount of IFN-γ and TNF-α with enhanced expression of a degranulation marker. Furthermore, this finding was confirmed in wild-type mice. Taken together, the results from our study show that innate CD8+ T cells works as an early defense mechanism against chronic viral infection.  相似文献   

9.
Immunosenescence is a hallmark of aging and manifests as increased susceptibility to infection, autoimmunity, and cancer in the elderly. One component of immunosenescence is thymic involution, age‐associated shrinkage of the thymus, observed in all vertebrates studied to date. The naked mole rat (Heterocephalus glaber) has become an attractive animal model in aging research due to its extreme longevity and resistance to disease. Here, we show that naked mole rats display no thymic involution up to 11 years of age. Furthermore, we found large ectopic cervical thymi in addition to the canonical thoracic thymus, both being identical in their cell composition. The developmental landscape in naked mole rat thymi revealed overt differences from the murine T‐cell compartment, most notably a decrease of CD4+/CD8+ double‐positive cells and lower abundance of cytotoxic effector T cells. Our observations suggest that naked mole rats display a delayed immunosenescence. Therapeutic interventions aimed at reversing thymic aging remain limited, underscoring the importance of understanding the cellular and molecular mechanisms behind a sustained immune function in the naked mole rat.  相似文献   

10.
A proportional balance between αβ and γδ T-cell subsets in the periphery is exceedingly well maintained by a homeostatic mechanism. However, a cellular mechanism underlying the regulation remains undefined. We recently reported that a subset of developing γδ T cells spontaneously acquires interleukin (IL)-17-producing capacity even within naive animals through a transforming growth factor (TGF)β1-dependent mechanism, thus considered 'innate' IL-17-producing cells. Here, we report that γδ T cells generated within αβ T cell (or CD4 T cell)-deficient environments displayed altered cytokine profiles; particularly, 'innate' IL-17 expression was significantly impaired compared with those in wild-type mice. Impaired IL-17 production in γδ T cells was directly related to CD4 T-cell deficiency, because depletion of CD4 T cells in wild-type mice diminished and adoptive CD4 T-cell transfer into T-cell receptor β-/- mice restored IL-17 expression in γδ T cells. CD4 T cell-mediated IL-17 expression required TGFβ1. Moreover, Th17 but not Th1 or Th2 effector CD4 T cells were highly efficient in enhancing γδ T-cell IL-17 expression. Taken together, our results highlight a novel CD4 T cell-dependent mechanism that shapes the generation of IL-17+ γδ T cells in naive settings.  相似文献   

11.
Th22 cells are a novel subset of CD4+ T cells that primarily mediate biological effects through IL-22, with both Th22 cells and IL-22 being closely associated with multiple autoimmune and chronic inflammatory diseases. In this study, we investigated whether and how Th22 cells affect atherosclerosis. ApoE−/− mice and age-matched C57BL/6J mice were fed a Western diet for 0, 4, 8 or 12 weeks. The results of dynamic analyses showed that Th22 cells, which secrete the majority of IL-22 among the known CD4+ cells, play a major role in atherosclerosis. ApoE−/− mice fed a Western diet for 12 weeks and administered recombinant mouse IL-22 (rIL-22) developed substantially larger plaques in both the aorta and aortic root and higher levels of CD3+ T cells, CD68+ macrophages, collagen, IL-6, Th17 cells, dendritic cells (DCs) and pSTAT3 but lower smooth muscle cell (SMC) α-actin expression than the control mice. Treatment with a neutralizing anti–IL-22 monoclonal antibody (IL-22 mAb) reversed the above effects. Bone marrow-derived DCs exhibited increased differentiation into mature DCs following rIL-22 and ox-LDL stimulation. IL-17 and pSTAT3 were up-regulated after stimulation with IL-22 and ox-LDL in cells cocultured with CD4+ T cells and mature DC supernatant, but this up-regulation was significantly inhibited by IL-6mAb or the cell-permeable STAT3 inhibitor S31-201. Thus, Th22 cell-derived IL-22 aggravates atherosclerosis development through a mechanism that is associated with IL-6/STAT3 activation, DC-induced Th17 cell proliferation and IL-22–stimulated SMC dedifferentiation into a synthetic phenotype.  相似文献   

12.
Secondary exposure to respiratory syncytial virus (RSV) can lead to immunopathology and enhanced disease in vaccinated individuals. Vaccination with individual RSV proteins influences the type of secondary RSV-specific immune response that develops upon challenge RSV infection, as well as the extent of immunopathology. RSV-specific memory CD4 T cells can directly contribute to immunopathology through their cytokine production. Immunization of BALB/c mice with a recombinant vaccinia virus (vv) expressing the attachment (G) protein of RSV results in pulmonary eosinophilia upon RSV challenge, whereas immunization of mice with a vv expressing the fusion (F) protein does not. We analyzed the CD4 T-cell response to an I-Ed-restricted CD4 T-cell epitope within the F protein of RSV corresponding to amino acids 51 to 66 in an effort to better understand the similarities and differences in the immune response elicited by the G versus the F protein. Vaccination with the G protein induces a mixture of RSV G-specific Th1 and Th2 cells with a restricted T-cell receptor repertoire. In contrast, we demonstrate here that immunization with the F protein elicits a broad repertoire of RSV F-specific CD4 T cells that predominantly exhibit a Th1 phenotype. However, in the absence of gamma interferon (IFN-γ), RSV F51-66-specific CD4 T cells secreted interleukin-5, and mice developed pulmonary eosinophilia after RSV challenge. IFN-γ-deficient mice exhibited decreased weight loss compared to wild-type controls, suggesting that IFN-γ exacerbates systemic disease. These data demonstrate that IFN-γ can have both beneficial and detrimental effects during a secondary RSV infection.  相似文献   

13.
This study was conducted to examine the frequency, phenotype, and functional profile of T lymphocytes that proliferate in response to type I collagen (CI) in patients with scleroderma (SSc). Peripheral blood mononuclear cells (PBMCs) from SSc patients, healthy controls, and rheumatoid arthritis disease controls were labeled with carboxy-fluorescein diacetate, succinimidyl ester (CFSE), cultured with or without antigen (bovine CI) for 14 days, and analysed by flow cytometry. Surface markers of proliferating cells were identified by multi-color flow cytometry. T-cell lines were derived after sorting for proliferating T cells (CFSElow). Cytokine expression in CI-responsive T cells was detected by intracellular staining/flow cytometry and by multiplex cytokine bead assay (Bio-Plex). A T-cell proliferative response to CI was detected in 8 of 25 (32%) SSc patients, but was infrequent in healthy or disease controls (3.6%; p = 0.009). The proliferating T cells expressed a CD4+, activated (CD25+), memory (CD45RO+) phenotype. Proliferation to CI did not correlate with disease duration or extent of skin involvement. T-cell lines were generated using in vitro CI stimulation to study the functional profile of these cells. Following activation of CI-reactive T cells, we detected intracellular interferon (IFN)-γ but not interleukin (IL)-4 by flow cytometry. Supernatants from the T-cell lines generated in vitro contained IL-2, IFN-γ, GM-CSF (granulocyte macrophage-colony-stimulating factor), and tumour necrosis factor-α, but little or no IL-4 and IL-10, suggesting that CI-responsive T cells express a predominantly Th1 cytokine pattern. In conclusion, circulating memory CD4 T cells that proliferate to CI are present in a subset of patients with SSc, but are infrequent in healthy or disease controls.  相似文献   

14.
Large cytomegalovirus (CMV)-specific CD8 T-cell responses are observed in both young and, somewhat more often, old people. Frequent CMV reactivation is thought to exhaust these cells and render them dysfunctional so that larger numbers of them are needed to control CMV. Expansions of CMV-specific CD4 T cells are also seen but are less well studied. In this study, we examined the T-cell response to the dominant CMV pp65 and IE-1 antigens in healthy CMV-infected people across a wide age range (20 to 84 years) by using multicolor flow cytometry. CMV-specific T cells were characterized by the activation markers CD40 ligand (CD40L), interleukin-2 (IL-2), tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ) and the memory markers CD27 and CD45RA. The proportions of effector memory T cells increased in large responses, as did the proportions of polyfunctional CD8 (IFN-γ+ IL-2+/− TNF-α+) and CD4 (CD40L+/− IFN-γ+ IL-2+ TNF-α+) T-cell subsets, while the proportion of naïve T cells decreased. The bigger the CD4 or CD8 T-cell response to pp65, the larger was the proportion of T cells with an advanced memory phenotype in the entire (including non-CMV-specific) T-cell compartment. In addition, the number of activation markers per cell correlated with the degree of T-cell receptor downregulation, suggesting increased antigen sensitivity in polyfunctional cells. In summary, our findings show that polyfunctional CMV-specific T cells were not superseded by dysfunctional cells, even in very large responses. At the same time, however, the memory subset composition of the entire T-cell compartment correlated with the size of the T-cell response to CMV pp65, confirming a strong effect of CMV infection on the immune systems of some, but not all, infected people.  相似文献   

15.
CD4 T cells, and especially T follicular helper cells, are critical for the generation of a robust humoral response to an infection or vaccination. Importantly, immunosenescence affects CD4 T‐cell function, and the accumulation of intrinsic defects decreases the cognate helper functions of these cells. However, much less is known about the contribution of the aged microenvironment to this impaired CD4 T‐cell response. In this study, we have employed a preclinical model to determine whether the aged environment contributes to the defects in CD4 T‐cell functions with aging. Using an adoptive transfer model in mice, we demonstrate for the first time that the aged microenvironment negatively impacts at least three steps of the CD4 T‐cell response to antigenic stimulation. First, the recruitment of CD4 T cells to the spleen is reduced in aged compared to young hosts, which correlates with dysregulated chemokine expression in the aged organ. Second, the priming of CD4 T cells by DCs is reduced in aged compared to young mice. Finally, naïve CD4 T cells show a reduced transition to a T follicular helper cell phenotype in the aged environment, which impairs the subsequent generation of germinal centers. These studies have provided new insights into how aging impacts the immune system and how these changes influence the development of immunity to infections or vaccinations.  相似文献   

16.
Elderly individuals are at high risk for morbidity and mortality when infected with influenza virus. Vaccinations with inactivated virus are less effective in the elderly due to the declining competency of the aging immune system. We have explored whether immunological parameters predict poor anti-influenza virus vaccine responses and can be used as biological markers of immunosenescence. One hundred fifty-three residents of community-based retirement facilities aged 65 to 98 years received a trivalent influenza vaccine. Vaccine-induced antibody responses were determined by comparing hemagglutination inhibition titers before and 28 days after immunization. The composition of the T-cell compartment was analyzed by flow cytometry and the sizes of three T-cell subsets, CD4(+) CD45RO(+) cells, CD4(+) CD28(null) cells, and CD8(+) CD28(null) cells, were determined. Only 17% of the vaccine recipients were able to generate an increase in titers of antibody to all three vaccine components, and 46% of the immunized individuals failed to respond to any of the three hemagglutinins. The likelihood of successful vaccination declined with age and was independently correlated with the expansion of a particular T-cell subset, CD8(+) CD28(null) T cells. The sizes of the CD4(+) CD45RO(+) memory T-cell and CD4(+) CD28(null) T-cell subsets had no effect on the ability to mount anti-influenza virus antibody responses. Frequencies of CD8(+) CD28(null) T cells are useful biological markers of compromised immunocompetence, identifying individuals at risk for insufficient antibody responses.  相似文献   

17.
Regulatory T cells play a crucial role in the homeostasis of the immune response. In addition to CD4+Foxp3+ regulatory T cells, several subsets of Foxp3- regulatory T cells, such as T helper 3 (Th3) cells and type 1 regulatory T (Tr1) cells, have been described in mice and human. Accumulating evidence shows that naïve B cells contribute to tolerance and are able to promote regulatory T cell differentiation. Naïve B cells can convert CD4+CD25- T cells into CD25+Foxp3- regulatory T cells, named Treg-of-B cells by our group. Treg-of-B cells express LAG3, ICOS, GITR, OX40, PD1, and CTLA4 and secrete IL-10. Intriguingly, B-T cell-cell contact but not IL-10 is essential for Treg-of-B cells induction. Moreover, Treg-of-B cells possess both IL-10-dependent and IL-10-independent inhibitory functions. Treg-of-B cells exert suppressive activities in antigen-specific and non-antigen-specific manners in vitro and in vivo. Here, we review the phenotype and function of Foxp3+ regulatory T cells, Th3 cells, Tr1 cells, and Treg-of-B cells.  相似文献   

18.
Altered numbers and functions of T cells have previously been demonstrated in chronic lymphocytic leukemia (CLL) patients. However, dynamics and specific T-cell subset alterations have not been studied in great detail. Therefore, we studied CLL blood lymphocyte subsets of individual patients in a longitudinal manner. Dynamic expansions of blood CD4 + and CD8 + T-cell numbers were consistently associated with a progressively increasing CLL leukemic compartment. Interestingly, the T-cell subset expansion over time was more pronounced in CD38 + CLL. Additionally, we performed gene expression profiling of CD3 + T cells of CLL patients and normal donors. Using gene set enrichment analysis, we found significant enrichment of genes with higher expression in CLL T cells within CD8+ effector memory and terminal effector T-cell gene signatures. In agreement with these data, we observed a marked expansion of phenotypic CD8 + effector memory T cells in CLL by flow cytometry. Moreover, we observed that increments of CD8 + effector memory T cells in human CLL and also mouse CLL (Eμ-TCL1 model) were due to an expansion of the inhibitory killer cell lectin-like receptor G1 (KLRG1) expressing cellular subset. Furthermore, higher plasma levels of the natural KLRG1 ligand E-cadherin were detected in CLL patients compared to normal donor controls. The predominance of KLRG1+ expression within CD8+ T cells in conjunction with increased systemic soluble E-cadherin might significantly contribute to CLL immune dysfunction and might additionally represent an important component of the CLL microenvironment.  相似文献   

19.

Background

CD40–CD154 interactions have proven critical in autoimmunity, with the identification of CD4loCD40+ T cells (Th40 cells) as harboring an autoaggressive T cell population shedding new insights into those disease processes. Th40 cells are present at contained levels in non-autoimmune individuals but are significantly expanded in autoimmunity. Th40 cells are necessary and sufficient in transferring type 1 diabetes in mouse models. However, little is known about CD40 signaling in T cells and whether there are differences in that signaling and subsequent outcome depending on disease conditions. When CD40 is engaged, CD40 and TNF-receptor associated factors, TRAFs, become associated with lipid raft microdomains. Dysregulation of T cell homeostasis is emerging as a major contributor to autoimmune disease and thwarted apoptosis is key in breaking homeostasis.

Methodology/Principal Findings

Cells were sorted into CD4hi and CD4lo (Th40 cells) then treated and assayed either as whole or fractionated cell lysates. Protein expression was assayed by western blot and Nf-κB DNA-binding activity by electrophoretic mobility shifts. We demonstrate here that autoimmune NOD Th40 cells have drastically exaggerated expression of CD40 on a per-cell-basis compared to non-autoimmune BALB/c. Immediately ex-vivo, untreated Th40 cells from NOD mice have high levels of CD40 and TRAF2 associated with the raft microdomain while Th40 cells from NOR and BALB/c mice do not. CD40 engagement of Th40 cells induces Nf-κB DNA-binding activity and anti-apoptotic Bcl-XL expression in all three mouse strains. However, only in NOD Th40 cells is anti-apoptotic cFLIPp43 induced which leads to preferential survival and proliferation. Importantly, CD40 engagement rescues NOD Th40 cells from Fas-induced death.

Conclusions/Significance

CD40 may act as a switch between life and death promoting signals and NOD Th40 cells are poised for survival via this switch. This may explain how they expand in autoimmunity to thwart T cell homeostasis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号