首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A restricted number of studies have shown that human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic CD4+ T cells are present in HIV-1-infected individuals. However, the roles of this type of CD4+ T cell in the immune responses against an HIV-1 infection remain unclear. In this study, we identified novel Nef epitope-specific HLA-DRB1*0803-restricted cytotoxic CD4+ T cells. The CD4+ T-cell clones specific for Nef187-203 showed strong gamma interferon production after having been stimulated with autologous B-lymphoblastoid cells infected with recombinant vaccinia virus expressing Nef or pulsed with heat-inactivated virus particles, indicating the presentation of the epitope antigen through both exogenous and endogenous major histocompatibility complex class II processing pathways. Nef187-203-specific CD4+ T-cell clones exhibited strong cytotoxic activity against both HIV-1-infected macrophages and CD4+ T cells from an HLA-DRB1*0803+ donor. In addition, these Nef-specific cytotoxic CD4+ T-cell clones exhibited strong ability to suppress HIV-1 replication in both macrophages and CD4+ T cells in vitro. Nef187-203-specific cytotoxic CD4+ T cells were detected in cultures of peptide-stimulated peripheral blood mononuclear cells (PBMCs) and in ex vivo PBMCs from 40% and 20% of DRB1*0803+ donors, respectively. These results suggest that HIV-1-specific CD4+ T cells may directly control HIV-1 infection in vivo by suppressing virus replication in HIV-1 natural host cells.Human immunodeficiency virus (HIV)-specific CD8+ cytotoxic T cells (CTLs) play a central role in the control of HIV type 1 (HIV-1) during acute and chronic phases of an HIV-1 infection (5, 29, 34). However, HIV-1 escapes from the immune surveillance of CD8+ CTLs by mechanisms such as mutations of immunodominant CTL epitopes and downregulation of major histocompatibility complex class I (MHC-I) molecules on the infected cells (9, 11, 12, 49). Therefore, most HIV-1-infected patients without highly active antiretroviral therapy (HAART) develop AIDS eventually.HIV-1-specific CD4+ T cells also play an important role in host immune responses against HIV-1 infections. An inverse association of CD4+ T-cell responses with viral load in chronically HIV-1-infected patients was documented in a series of earlier studies (8, 36, 39, 41, 48), although the causal relationship between them still remains unclear (23). Classically, CD4+ T cells help the expansion of CD8+ CTLs by producing growth factors such as interleukin-2 (IL-2) or by their CD40 ligand interaction with antigen-processing cells and CD8+ CTLs. In addition, CD4+ T cells provide activation of macrophages, which can professionally maintain CD8+ T-cell memory (17). On the other hand, the direct ability of virus-specific cytotoxic CD4+ T cells (CD4+ CTLs) to kill target cells has been widely observed in human virus infections such as those by human cytomegalovirus, Epstein-Barr virus (EBV), hepatitis B virus, Dengue virus, and HIV-1 (2, 4, 10, 19, 30, 31, 38, 50). Furthermore, one study showed that mouse CD4+ T cells specific for lymphocytic choriomeningitis virus have cytotoxic activity in vivo (25). These results, taken together, indicate that a subset of effector CD4+ T cells develops cytolytic activity in response to virus infections.HIV-1-specific CD4+ CTLs were found to be prevalent in HIV-1 infections, as Gag-specific cytotoxic CD4+ T cells were detected directly ex vivo among peripheral blood mononuclear cells (PBMCs) from an HIV-1-infected long-term nonprogressor (31). Other studies showed that up to 50% of the CD4+ T cells in some HIV-1-infected donors can exhibit a clear cytolytic potential, in contrast to the fact that healthy individuals display few of these cells (3, 4). These studies indicate the real existence of CD4+ CTLs in HIV-1 infections.The roles of CD4+ CTLs in the control of an HIV-1 infection have not been widely explored. It is known that Gag-specific CD4+ CTLs can suppress HIV-1 replication in a human T-cell leukemia virus type 1-immortalized CD4+ T-cell line (31). However, the functions of CD4+ T cells specific for other HIV-1 antigens remain unclear. On the other hand, the abilities of CD4+ CTLs to suppress HIV-1 replication in infected macrophages and CD4+ T cells may be different, as in the case of CD8+ CTLs for HIV-1-infected macrophages (17). In this study, we identified Nef-specific CD4+ T cells and investigated their ability to kill HIV-1 R5 virus-infected macrophages and HIV-1 X4 virus-infected CD4+ T cells and to suppress HIV-1 replication in the infected macrophages and CD4+ T cells. The results obtained in the present study show for the first time the ability of HIV-1-specific CD4+ CTLs to suppress HIV-1 replication in natural host cells, i.e., macrophages and CD4+ T cells.  相似文献   

2.
3.
Intravascular delivery of broadly neutralizing antibodies (bnAbs) has shown promise for prevention and treatment of HIV infection. However, multiple IV administrations in geographic locations with poor accessibility to medical care have practical limitations. We have assessed the efficacy of plant-derived PGT121 delivered subcutaneously (SC) against pre-and post-intravaginal challenge using a rigorous SHIV-SF162P3 macaque protection model. SC administered PGT121 exhibited a longer serum half-life than IV administration and was more consistent than intramuscular delivery. A dose of 3.5mg/kg PGT121 prevented infection at a minimum ID50 neutralization titer of 1:295 while 5mg/kg protected five of six macaques when delivered immediately post-challenge. These results suggest the utility of plant-derived bnAbs delivered SC for HIV prevention.  相似文献   

4.
5.
6.
7.
8.
9.
We investigated whether HIV-1 can regulate tumor necrosis factor receptor (TNFR) expression in SupT-1, a CD4 + T-cell line. The cells were infected with HIV-1 containing 1,000 cpm RT activity, as early as day 3 after infection and all along the culture the supernatant level of core protein p24 was >250 pg/ml, and on days 6 and 9 after infection, p24 was found in 10 % of the cells as determined by indirect immunofluorescence assay. The cells were growing without loss of viability. The study of TNFR expression was based on a microassay for measurement of binding of 125I-TNFα to cells, in which free and cell-bound ligand separation was performed by centrifugation through oil. Scatchard analysis of TNFα binding on days 6 and 9 after infection revealed a 90 % increase in the expression of high-affinity membrane receptors in HIV + SupT-1 culture compared with uninfected cells (mean +/-S.D. = 501 +/-148.5 vs. 263 +/-77.8 receptors/cell, n = 9, P< 0.001) with no change in dissociation constants (mean +/? S.D. = 4.36 +/?1.06 vs. 4.00 +/?1.12 × 10?10 m ).  相似文献   

10.
Recently, it was shown that peripheral blood FOXP3+CD4+ T cells are composed of three phenotypic and functionally distinct subpopulations. Two of them having in vitro suppressive effects were characterized as resting Treg cells (rTregs) and activated Treg cells (aTregs). A third subset, identified as FOXP3+ non-Tregs, does not display any suppressor activity and produce high levels of Th1 and Th17 cytokines upon stimulation. In the present study we focus on the characteristics of these three subsets of FOXP3+CD4+ T cells in untreated HIV-1-infected patients. We found that the absolute counts of rTregs, aTregs and FOXP3+ non-Tregs were reduced in HIV-1 patients compared with healthy donors. The relative frequency of rTregs and aTregs was similar in HIV-1 patients and healthy donors, while the frequency of FOXP3+ non-Tregs was significantly higher in HIV-1 patients, reaching a maximum in those patients with the lower values of CD4 counts. Contrasting with the observations made in FOXP3- CD4+ T cells, we did not find a negative correlation between the number of rTregs, aTregs or FOXP3+ non-Tregs and virus load. Studies performed with either whole PBMCs or sorted aTregs and FOXP3+ non-Tregs cells showed that these two populations of FOXP3+ T cells were highly permissive to HIV-1 infection. Upon infection, FOXP3+ non-Tregs markedly down-regulates its capacity to produce Th1 and Th17 cytokines, however, they retain the ability to produce substantial amounts of Th2 cytokines. This suggests that FOXP3+ non-Tregs might contribute to the polarization of CD4+ T cells into a Th2 profile, predictive of a poor outcome of HIV-1-infected patients.  相似文献   

11.
12.
13.
Patients with treated HIV-1-infection experience earlier occurrence of aging-associated diseases, raising speculation that HIV-1-infection, or antiretroviral treatment, may accelerate aging. We recently described an age-related co-methylation module comprised of hundreds of CpGs; however, it is unknown whether aging and HIV-1-infection exert negative health effects through similar, or disparate, mechanisms. We investigated whether HIV-1-infection would induce age-associated methylation changes. We evaluated DNA methylation levels at >450,000 CpG sites in peripheral blood mononuclear cells (PBMC) of young (20-35) and older (36-56) adults in two separate groups of participants. Each age group for each data set consisted of 12 HIV-1-infected and 12 age-matched HIV-1-uninfected samples for a total of 96 samples. The effects of age and HIV-1 infection on methylation at each CpG revealed a strong correlation of 0.49, p<1 x10-200 and 0.47, p<1x10-200. Weighted gene correlation network analysis (WGCNA) identified 17 co-methylation modules; module 3 (ME3) was significantly correlated with age (cor=0.70) and HIV-1 status (cor=0.31). Older HIV-1+ individuals had a greater number of hypermethylated CpGs across ME3 (p=0.015). In a multivariate model, ME3 was significantly associated with age and HIV status (Data set 1: βage= 0.007088, p=2.08 x 10-9; βHIV= 0.099574, p=0.0011; Data set 2: βage= 0.008762, p=1.27x 10-5; βHIV= 0.128649, p= 0.0001). Using this model, we estimate that HIV-1 infection accelerates age-related methylation by approximately 13.7 years in data set 1 and 14.7 years in data set 2. The genes related to CpGs in ME3 are enriched for polycomb group target genes known to be involved in cell renewal and aging. The overlap between ME3 and an aging methylation module found in solid tissues is also highly significant (Fisher-exact p=5.6 x 10-6, odds ratio=1.91). These data demonstrate that HIV-1 infection is associated with methylation patterns that are similar to age-associated patterns and suggest that general aging and HIV-1 related aging work through some common cellular and molecular mechanisms. These results are an important first step for finding potential therapeutic targets and novel clinical approaches to mitigate the detrimental effects of both HIV-1-infection and aging.  相似文献   

14.
Microbes have been able to persist in water distribution systems through the development of multicellular communities known as biofilms. This study evaluated the usefulness of the bioelectric effect for the elimination of water distribution system biofilms from annular reactors. The bioelectric effect did not have any bactericidal action either alone or when coupled with free chlorine.  相似文献   

15.
16.
17.

Background

The effect of maraviroc on the maintenance and the function of HIV-1-specific T cell responses remains unknown.

Methods

Subjects recently infected with HIV-1 were randomized to receive anti-retroviral treatment with or without maraviroc intensification for 48 weeks, and were monitored up to week 60. PBMC and in vitro-expanded T cells were tested for responses to the entire HIV proteome by ELISpot analyses. Intracellular cytokine staining assays were conducted to monitor the (poly)-functionality of HIV-1-specific T cells. Analyses were performed at baseline and week 24 after treatment start, and at week 60 (3 months after maraviroc discontinuation).

Results

Maraviroc intensification was associated with a slower decay of virus-specific T cell responses over time compared to the non-intensified regimen in both direct ex-vivo as well as in in-vitro expanded cells. The effector function profiles of virus-specific CD8+ T cells were indistinguishable between the two arms and did not change over time between the groups.

Conclusions

Maraviroc did not negatively impact any of the measured parameters, but was rather associated with a prolonged maintenance of HIV-1-specific T cell responses. Maraviroc, in addition to its original effect as viral entry inhibitor, may provide an additional benefit on the maintenance of virus-specific T cells which may be especially important for future viral eradication strategies.  相似文献   

18.
Secretory immunoglobulin A (IgA) is known to play an important role in the mucosal defense against a variety of pathogens. Although the role of IgA antibodies during sexual transmission of HIV is not clear, HIV-specific IgA antibodies have been detected in various mucosal secretions of HIV-infected individuals. Using a monoclonal antibody against human IgA, we established an ELISA system to detect anti-HIV p24 IgA antibodies in sera and saliva. We have analyzed the levels of anti-HIV p24 IgG and IgA antibodies in sera and saliva of 107 and 119 adults, respectively, with HIV infection at different clinical stages, and in the sera of 13 infants born to HIV-infected mothers. The level of anti-HIV p24 IgA antibodies was lower in sera and higher in saliva as compared to that of anti-HIV p24 IgG antibodies. Where the percentage of HIV-specific serum antibody-positive cases decreased with disease progression, that of saliva antibody-positive cases increased in AIDS patients. Among the 13 infants born to HIV-infected mothers, 7 infants were HIV-p24-specific serum IgA positive. These sera were negative for anti-HIV p24 secretory IgA, suggesting that some infants develop their own immune responses against HIV infection. Thus, the detection of HIV-specific IgA antibodies, especially in saliva, could be a simple and reliable test for the diagnosis of HIV infection.  相似文献   

19.
Cytomegalovirus (CMV) coinfection is associated with infant HIV-1 disease progression and mortality. In a cohort of Kenyan HIV-infected infants, the frequencies of activated (CD38+ HLA-DR+) and apoptosis-vulnerable (CD95+ Bcl-2) CD4+ and CD8+ T cells increased substantially during acute CMV infection. The frequency of activated CD4+ T cells was strongly associated with both concurrent CMV coinfection (P = 0.001) and HIV-1 viral load (P = 0.05). The frequency of apoptosis-vulnerable cells was also associated with CMV coinfection in the CD4 (P = 0.02) and CD8 (P < 0.001) T cell subsets. Similar observations were made in HIV-exposed uninfected infants. CMV-induced increases in T cell activation and apoptosis may contribute to the rapid disease progression in coinfected infants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号