首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Homogenization of mouse kidneys or livers in 0.25m-sucrose buffered with tris-acetate, pH7.3, resulted in a decreased rate of proteolysis within isolated heterolysosomes containing injected (125)I-labelled albumin when these particles were incubated at 35 degrees C. Proteolysis in mouse kidney or liver heterolysosomes isolated from homogenates made in 0.25m-sucrose buffered at pH7.3 was stimulated by pH5 buffer or by additions of ATP. 2. A greater inhibition of proteolysis was produced by including bicarbonate or pH8 borate buffers in the incubation media, and this inhibition was also reversed by ATP. 3. Other nucleoside triphosphates were not as effective as ATP, but GTP and ITP were more effective than CTP or UTP. ADP, AMP, or adenosine 3':5'-cyclic monophosphate were completely without effect. 4. Although ATP prevented some heterolysosome breakage in media containing bicarbonate, the primary effect appeared to be to promote proteolytic activity. 5. These observations are consistent with the presence of a proton pump in the heterolysosome membrane, which functions to maintain intralysosomal pH in alkaline media.  相似文献   

2.
1. A fraction enriched in lysosomes was prepared by centrifugation from the livers of rats that had been injected 0.5h before death with (125)I-labelled albumin. When suspended in sucrose-protected buffer, pH7.4, and incubated at 22 degrees C for 2h, the particles progressively released iodotyrosine into the medium. Albumin digestion did not occur if the particles were subjected to treatments known to break lysosomes or if particles from uninjected rats were incubated in medium containing (125)I-labelled albumin. It is concluded that the observed production of iodotyrosine results from protein hydrolysis within intact heterolysosomes. 2. Particles from rats pre-treated with Trypan Blue, suramin or aurothiomalate released iodotyrosine more slowly than controls. Since these compounds are enzyme inhibitors that concentrate in liver lysosomes after administration in vivo, their effect is ascribed to intralysosomal inhibition of proteolysis. The doses used did not decrease endocytosis of albumin into liver or cause increased lysosome breakage during incubation, thus allowing some alternative explanations of the decreased proteolysis to be eliminated. Particulate carbon, a non-inhibitor that also concentrates in lysosomes, did not affect albumin hydrolysis.  相似文献   

3.
Several buffer compositions with a wide range of pH values have been reported for radiometric assay of tyrosine hydroxylase (TH) in biological samples. Assay sensitivity becomes a prime concern while analyzing TH in minute samples like tissue biopsies or discrete regions of rodent brain wherein lower enzyme levels are anticipated due to smaller sample sizes. It was therefore rationalized to evaluate relative affinities of three commonly used assay buffers (sodium phosphate, sodium acetate, and Tris-acetate) with TH enzyme activity. The impact of buffer pH and cofactor concentration on the sensitivity of TH assay was also investigated. Striata from rats or mice were homogenized, respectively, with 1.0 or 0.5 ml of the assay buffer containing 0.5% Triton X-100. The supernatants (200 microl) were incubated (20 min, 37 degrees C) with 0.8 microCi [3H] L-tyrosine, 1.5 mM DL-6-methyl-5,6,7,8-tetrahydropterine (6-MPH4), 100 U catalase, and 1.0 microM dithiothreitol in a total volume of 300 microl. The reaction was terminated by 1-ml suspension of activated charcoal in 0.1 M HCl. After centrifugation, 200-microl aliquots were mixed with 5 ml of cocktail for quantitation of [3H] H2O in supernatant. The results showed significant impact of pH rather than the buffer composition on the sensitivity of TH assay. An optimal pH range was found to be 5.5-6.0, whereas TH activity was significantly inhibited at pH 5.0 and pH 6.8 (F = 55.09, P = 0.000). A significantly high TH activity was observed with 1.5 mM 6-MPH4, whereas higher concentrations (3.0-4.5 mM) inhibited TH activity (F = 7.47, P = 0.005). Analysis of serially diluted striatal homogenates showed a significant correlation between TH activity and sample amount. The assay reaction was linear for 20- and 30-min incubation for rat and mice striata, respectively.  相似文献   

4.
Anions inhibit firefly luciferase. We have compared the extent of inhibition of luciferase by the anions from various acids used to adjust Tris buffer solutions to pH 7.75, the optimum pH for enzyme activity. Acetate and succinate were the least inhibitory of the anions tested. Tris-acetate buffers are recommended for maximum sensitivity of ATP assays with firefly luciferase.  相似文献   

5.
Inhibition of rat liver acetyl CoA carboxylase by chloride   总被引:2,自引:0,他引:2  
The activity of acetyl CoA carboxylase in both crude and purified rat liver preparations was reduced in the presence of sodium or potassium chloride and increased in the presence of potassium acetate. The chloride inhibition was not competitive with bicarbonate. The use of Trischloride buffer did not alter the apparent pH optimum of the enzyme when compared with Tris-acetate buffer.  相似文献   

6.
M Ito  S Periyasamy  T H Chiu 《Life sciences》1986,38(12):1089-1096
[3H]L-glutamic acid binding to microfuge tubes and glass was investigated in four buffers. Background binding to these materials was negligible, but was increased by centrifugation or suction in Tris-HCl and Tris-citrate buffer. This binding was much less or eliminated when HEPES-KOH, or Tris-acetate buffer was used instead. [3H]L-glutamate binding to microfuge tubes was inhibited by L- but not D-isomers of glutamate and aspartate. DL-2-amino-7-phosphonoheptanoic acid also did not inhibit the binding. Other compounds which showed low to moderate inhibition were: N-methyl-D-aspartate, quisqualate, L-glutamic acid diethyl ester, N-methyl-L-aspartate, kainate, and 2-amino-4-phosphonobutyrate. Binding was inhibited by denatured rat brain membranes. A protein-dependent [3H]glutamate binding was obtained with a repeatedly frozen-thawed membrane preparation when binding was done in Tris-acetate buffer. It is recommended that Tris-acetate or HEPES-KOH buffer should be used in the glutamate binding assay. If Tris-HCl or Tris-citrate buffer is used, appropriate control experiment should be done to correct for binding to microfuge tubes or glass fiber filters.  相似文献   

7.
Activation of ribosomal protein S6 kinase by epidermal growth factor (EGF), insulin, and insulin-like growth factor 1 (IGF1) was studied in the human mammary tumor cell line ZR-75-1 in isotonic buffers. In contrast to growth factor-dependent S6 phosphorylation which is strongly dependent on extracellular pH (Chambard, J. C., and J. Pouyssegur. 1986. Exp. Cell Res. 164:282-294.) preincubation of cells in buffers with different pH values ranging from 7.5 to 6.5 had no effect on basal or EGF-stimulated S6 kinase activity. Replacement of extracellular Na+ with choline or replacement of extracellular Ca++ with EGTA also did not inhibit stimulation of S6 kinase by EGF. When intracellular Ca++ was buffered with the permeable Ca++ chelator quin2, EGF stimulation was reduced 50%. A similar inhibition of the EGF response was observed when cells were incubated in buffers with high K+ concentrations or in the presence of the K+ ionophore valinomycin. Insulin and IGF1 stimulation of S6 kinase were also inhibited by high K+ concentrations and by buffering intracellular Ca++. In contrast to the responses to EGF, insulin- and IGF1-activation of S6 kinase was enhanced when glucose was present and depended on the presence of bicarbonate in the medium. The results indicate that ionic signals generated by growth factors and insulin, such as increases in intracellular pH or Na+, do not seem to be involved in the activation of S6 kinase. However, effects of growth factors or insulin on membrane potential and/or K+ fluxes and redistribution of intracellular Ca++ may play a role in the activation process. Furthermore, the mechanism of insulin activation of S6 kinase is distinct from the growth factors by its dependency on extracellular bicarbonate.  相似文献   

8.
The effect of insulin on rat adipocytes was studied in isotonic buffers (pH 7.4) containing NaCl, CaCl2, MgSO4, KCl, and bovine serum albumin but no phosphate or bicarbonate anions. In phosphate- and bicarbonate-free buffers the dose-response curve to insulin is shifted to the right, the effects of the hormone on hexose uptake, glucose metabolism, and inhibition of lipolysis being observed at much higher (nearly 2 orders of magnitude) concentrations of insulin. The insulin binding capacity of the cells is only slightly changed. The dose-response curve for isoproterenol which stimulates lipolysis in the same cell type is almost the same in both Krebs-Ringer bicarbonate buffer and phosphate- and bicarbonate-free buffers. The dose-response curves for agents that mimic the action of insulin such as wheat germ agglutinin or vanadate ions are also shifted to the right. The dose-response curve to insulin can be returned to "normal" by readdition of either bicarbonate or phosphate. Almost complete recovery is obtained at either 10 mM bicarbonate or 24 mM phosphate, respectively. External Ca2+ ions which are not required for the proper action of insulin in fat cells maintained in Krebs-Ringer bicarbonate buffer, become essential for insulin action in bicarbonate-free buffer. The study indicates that depletion of bicarbonate and, to a lesser extent, phosphate anions, interferes with an essential insulin-dependent post-binding event. Also, in bicarbonate-free medium, external Ca2+ ions are essential for insulin-mediated processes. The implications of this study to the mode of action of insulin, and to physiological and clinical states of insulin desensitization are discussed.  相似文献   

9.
Urease from seeds of water melon was purified to apparent homogeniety upto a sp act of 3750 units/mg protein with 31% recovery. Enzyme showed single protein band on native PAGE by urease specific staining. The mol wt of the enzyme was 4,70,000 and the preparation was free from bound nucleotides (A280/A260=1.14). The enzyme exhibited maximum activity in 50 mM Tris-acetate buffer (pH 8.5). The Km for urease was 8 mM. The enzyme was not inhibited by 25 mM of EDTA in 50 mM Tris-acetate buffer (pH 8.0 and 8.5).  相似文献   

10.
Tonin was purified from rat submaxillary glands by differential centrifugation, ammonium sulphate precipitation, gel filtration on Sephadex G150, and by ion-exchange chromatography on DEAE-cellulose, phospho-cellulose, SP-Sephadex C25, and SP-Sephadex C50. Purified tonin was shown to be homogeneous by analytical electrophoresis and by analytical ultracentrifugation analysis. Purified tonin was very stable when stored in buffers of low pH values or when incubated at high temperatures in neutral solution. The molecular weight estimated by sedimentation equilibrium was 28 700. The pH optimum was near 6.8 in a 0.1 M potassium phosphate buffer. The Michaelis-Menten constant for tonin using angiotensin I as substrate was about 4 X 10(-5) M. Tonin activity was strongly inhibited by plasma. Kinetic studies using angiotensin I as substrate showed that the inhibition of tonin by plasma was of the non-competitive type.  相似文献   

11.
Rat liver parenchymal cell binding, uptake, and proteolytic degradation of rat 125I-labeled high density lipoprotein (HDL) subfraction, HDL3 (1.10 less than d less than 1.210 g/ml), in which apo-A-I is the major polypeptide, were investigated. Structural and metabolic integrity of the isolated cells was verified by trypan blue exclusion, low lactic dehydrogenase leakage, expected morphology, and gluconeogenesis from lactate and pyruvate. 125I-labeled HDL3 was incubated with 10 X 10(6) cells at 37 degrees and 4 degrees in albumin and Krebs-Henseleit bicarbonate buffer, pH 7.4. Binding and uptake were determined by radioactivity in washed cells. Proteolytic degradation was determined by trichloroacetic acid-soluble radioactivity in the incubation medium. At 37 degrees, maximum HDL3 binding (Bmax) and uptake occurred at 30 min with a Bmax of 31 ng/mg dry weight of cells. The apparent dissociation constant of the HDL3 receptor system (Kd) was 60 X 10(-8) M, based on Mr = 28,000 of apo-A-I, the predominant rat HDL3 protein. Proteolytic degradation showed a 15-min lag and then constant proteolysis. After 2 hours 5.8% of incubated 125I-labeled HDL3 was degraded. Sixty per cent of cell radioactivity at 37 degrees was trypsin-releasable. At 37 degrees, 125I-labeled HDL3 was incubated with cells in the presence of varying concentrations of native (cold) HDL3, very low density lipoproteins, and low density lipoproteins. Incubation with native HDL3 resulted in greatest inhibition of 125I-labeled HDL3 binding, uptake, and proteolytic degradation. When 125I-labeled HDL3 was preincubated with increasing amounts of HDL3 antiserum, binding and uptake by cells were decreased to complete inhibition. Cell binding, uptake, and proteolytic degradation of 125I-labeled HDL3 were markedly diminished at 4 degrees. Less than 1 mM chloroquine enhanced 125I-labeled HDL3 proteolysis but at 5 mM or greater, chloroquine inhibited proteolysis with 125I-labeled HDL3 accumulation in cells. L-[U-14C]Lysine-labeled HDL3 was bound, taken up, and degraded by cells as effectively as 125I-labeled HDL3. These data suggest that liver cell binding, uptake, and proteolytic degradation of rat HDL3 are actively performed and linked in the sequence:binding, then uptake, and finally proteolytic degradation. Furthermore, there may be a specific HDL3 (lipoprotein A) receptor of recognition site(s) on the plasma membrane. Finally, our data further support our previous reports of the important role of liver lysosomes in proteolytic degradation of HDL3.  相似文献   

12.
1. We have shown that the characteristic lag in cresolase activity of human skin tyrosinase at inhibitory concentration of tyrosine was absent at all pH values studied, i.e. pH 5.2, 5.7, 6.2 and 6.8, if the enzyme solubilized at low pH was used as the source of enzyme, but the same enzyme when dialysed against buffers of various pH values showed linear activity only at pH 5.2 and was not inhibited by excess tyrosine, whereas at higher pH values it exhibited a lag and inhibition by excess tyrosine. 2. However, the enzyme solubilized in buffer/detergent, pH 6.8, when dialysed against buffer of the same pH showed linear activity at pH 5.2 and non-linear activity at pH 6.8. 3. The water/detergent-solubilized enzyme from human skin melanosomes showed linear activity even at inhibitory concentrations of tyrosine at pH 5.2 and 6.8 up to 2 h, but acceleration of rate was observed after 2 h for the enzyme measured at pH 6.8. 4. After dialysis of the water/detergent-solubilized enzyme against double-glass-distilled water, it still exhibits linear activity at inhibitory concentration of tyrosines at pH 6.8 for the first 2 h, but the same enzyme when dialysed against 0.02 M-sodium phosphate buffer, pH 6.8, exhibits negligible activity up to 1/2 h, in contrast with considerable activity before dialysis during the same interval of time, but without any loss of activity at later intervals of incubation time. 5. On the basis of these results, it is concluded that the enzyme exists in at least two interconvertible forms, one without lag and inhibition by excess tyrosine and the other with lag and inhibition by excess tyrosine. These two forms are interconvertible only by gradual change in pH over a period of hours.  相似文献   

13.
The low activity state of hexokinase P-II, originally produced by Kosow and Rose by lowering the pH from 8 to 7 in certain sulfonated buffers, is not observed in Tris or imidazole buffers at pH 7 unless low concentrations of ADP or GDP are added. At pH values below 7 in imidazole buffer, partial inhibition occurs by protonation alone, and ADP or GDP causes further inhibition. As in the Kosow-Rose experiments, the enzyme in the low activity state can be activated either by excess ATP or by low concentrations of citrate, 3-phosphoglycerate and other metabolites. The inhibition by nucleoside diphosphates is greater at high glucose concentration. Hexokinase P-I is much less susceptible to regulation by nucleoside diphosphates or citrate, suggesting different physiological roles for the two isoenzymes.  相似文献   

14.
The kinetics of coupled peroxidation of 3,3',5,5'-tetramethylbenzidine and 1-amino-2-naphtol-4-sulfonic acid (ANSA) or its polydisulfide (poly(ADSNSA)) was studied in 0.01 M phosphate buffer (pH 6.4) at 20 degrees C. Both ANSA and poly(ADSNSA) strongly inhibited the TMB oxidation resulting in a marked delay in the product formation. Stoichiometric inhibition coefficients f, i.e., the average numbers of free-radical particles terminated by one inhibitor molecule, were estimated. The free-radical trapping effect of poly(ADSNSA) was 7.5 times greater than that of ANSA. Kinetics of coupled o-phenylenediamine (PhDA) and ANSA or poly(ADSNSA) oxidation was studied in phosphate-citrate buffers at pH 3 to 7. No lag periods in oxidation product accumulation were observed under any of the reaction conditions. A weak activation of PhDA conversion depending on pH and PhDA/ANSA ratios was observed at low ANSA concentrations, whereas increased ANSA or poly(ADSNSA) concentrations were inhibitory. The degree of PhDA inhibition was maximal in acid media, reached minimum at pH 5 to 6, and than again increased at pH above 6. Tentative mechanism of coupled aromatic amine phenol bi-substrate system peroxidation is discussed.  相似文献   

15.
Inhibition of CA V decreases glucose synthesis from pyruvate   总被引:1,自引:0,他引:1  
The carbonic anhydrase inhibitor acetazolamide reduces citrulline synthesis by intact guinea pig liver mitochondria and also inhibits mitochondrial carbonic anhydrase (CA V) and the more lipophilic carbonic anhydrase inhibitor ethoxzolamide reduces urea synthesis by intact guinea pig hepatocytes in parallel with its inhibition of total hepatocytic carbonic anhydrase activity. Intact hepatocytes from 48-h starved male guinea pig livers were incubated at 37 degrees C in Krebs-Henseleit with 95% O2/5% CO2 at pH 7.1 with 5 mM pyruvate, 5 mM lactate, 3 mM ornithine, 10 mM NH4Cl, 1 mM oleate; with these inclusions both urea and glucose synthesis start with HCO3- -requiring enzymes, carbamyl phosphate synthetase I and pyruvate carboxylase, respectively. Urea and glucose synthesis were inhibited in parallel by increasing concentrations of ethoxzolamide, estimated Ki for each approximately 0.1 mM. In other experiments hepatocytes were incubated at 37 degrees C in Krebs-Henseleit with 95% O2/5% CO2 at pH 7.1 with 10 mM glutamine, 1 mM oleate; with these inclusions glucose synthesis no longer starts with a HCO3- -requiring enzyme. Urea synthesis was inhibited by ethoxzolamide with an estimated Ki of 0.1 mM, but glucose synthesis was unaffected. Intact mitochondria were prepared from 48-h starved male guinea pig livers. Pyruvate carboxylase activity of intact mitochondria was determined in isotonic KCl-Hepes buffer, pH 7.4, 25 degrees C, with 7.5 mM pyruvate, 3 mM ATP, and 10 mM NaHCO3. Inclusion of ethoxzolamide resulted in reduction in the rate of pyruvate carboxylation in intact mitochondria, but not in disrupted mitochondria. It is concluded that carbonic anhydrase is functionally important for gluconeogenesis in the male guinea pig liver when there is a requirement for bicarbonate as substrate.  相似文献   

16.
G E Fagg  B Riederer  A Matus 《Life sciences》1984,34(18):1739-1745
The regulatory effects of Na+ on C1-/Ca2+-dependent and C1-/Ca2+-independent L-glutamate binding sites were examined. In Tris-C1-/Ca2+ buffer, the binding of L-[3H]-glutamate to rat brain synaptic membranes was 5-fold higher than in Tris-acetate buffer. Low concentrations of Na+ (less than 5 mM) markedly depressed L-glutamate binding when assayed in Tris-C1/Ca2+ buffer, and this effect was attenuated by the selective blocker of C1-/Ca2+-dependent binding sites, DL-2-amino-4-phosphonobutyrate (APB). Scatchard analyses indicated that the effect of Na+ was due to a decrease in the number of C1-/Ca2+-dependent binding sites with no change in affinity. In Tris-acetate buffer, low concentrations of Na+ had little effect on L-glutamate binding. Dose-response curves for the inhibition of L-glutamate binding by DL-APB indicated a predominant high-affinity (Ki 5-10 microM) inhibitory component in Tris-C1-/Ca2+ buffer, but mainly a low-affinity component (Ki 1-2 mM) in Tris-acetate buffer and in Tris-C1-/Ca2+ buffer containing Na+. These data indicate that low concentrations of Na+ regulate specifically the C1-/Ca2+-dependent, APB-sensitive class of L-glutamate binding sites.  相似文献   

17.
The free solution mobility of a 20-bp double-stranded DNA oligomer has been measured in diethylmalonate (DM) and Tris-acetate buffers, with and without added NaCl or TrisCl. DM buffers have the advantage that the buffering ion is anionic, so the cation composition in the solution can be varied at will. The results indicate that the free solution mobility of DNA decreases linearly with the logarithm of ionic strength when the ionic strength is increased by increasing the buffer concentration. The mobility also decreases linearly with the logarithm of ionic strength when NaCl is added to NaDM buffer or TrisCl is added to TrisDM buffer. Nonlinear effects are observed if the counterion in the added salt differs from the counterion in the buffer. The dependence of the mobility on ionic strength cannot be predicted using the Henry, Debye-Hückel-Onsager, or Pitts equations for electrophoresis. However, the mobilities observed in all buffer and buffer/salt solutions can be predicted within approximately 20% by the Manning equation for electrophoresis, using no adjustable parameters. The results suggest that the electrostatic shielding of DNA is determined not only by the relative concentrations of the various ions in the solution, but also by their equivalent conductivities.  相似文献   

18.
A Wong  C H Huang  S T Crooke 《Biochemistry》1984,23(13):2939-2945
We have demonstrated that 4'-(9-acridinyl-amino)methanesulfon-m-anisidide (mAMSA), in the presence of Cu(II) ion, causes the breakage of plasmid pDPT275 and pBR322 superhelical form I DNA. In neutral pH, the degradative product was nicked, relaxed form II DNA, resulting from single-stranded DNA breakage. The extent of DNA breakage was both mAMSA concentration and Cu(II) concentration dependent. DNA breakage increased with increasing time of drug treatment. The mAMSA-Cu(II)-induced DNA breakage varied with pH values and also with the nature of the buffer systems. In both Tris-HCl and borate buffers the extent of DNA breakage increased with increasing pH. In Tris-HCl buffer (pH 7-9), only single-strand breaks were obtained, whereas in borate buffer (pH 9-10.5), linear form III DNA was obtained. At equivalent pH, the optimum buffer was borate. No breakage was observed at pH values below 6. The interaction of Cu(II) with mAMSA was examined by using absorption and fluorescence spectroscopies. Interaction of Cu(II) with mAMSA was characterized by a decrease in the absorption at 435 and 420 nm with a simultaneous increase at 330 nm. A highly fluorescent product was obtained upon reacting mAMSA with Cu(II), with an emission spectrum (excitation at 400 nm) showing a doublet at 430 and 450 nm and a shoulder around 480 nm. The spectral changes are also dependent similarly on the pH and the nature of buffer. Other divalent metal ions such as Co(II), Cd(II), Ni(II), and Zn(II) do not induce DNA breakage or spectral changes. The oAMSA isomer, which has no antitumor activity, is less effective in inducing DNA breakage than the mAMSA.  相似文献   

19.
20.
Approximately 80 per cent of tyrosine hydroxylase activity in bovine mandibular nerve and rabbit sciatic nerve was soluble, and the rest of the activity was particle-bound. The soluble enzyme in bovine mandibular nerve was isolated by ammonium sulphate fractionation (25–35 per cent saturation). The enzyme had a pH optimum at 5·9 in Tris-acetate buffer, and at 6·5 in Tris-HCl or phosphate buffer. The enzyme required a tetrahydropteridine cofactor. Km values toward various tetrahydropteridines such as l -erythro-tetrahydrobiopterin (a probable natural cofactor), 2-amino-4-hydroxy-6-methyltetrahydropteridine, and 2-amino-4-hydroxy-6,7-dimethyltetrahydropteridine were 2 × 10−5m , 5 × 10−5m and 4 × 10−4m , respectively. The Km value for tyrosine at 1 × 10−3m -2-amino-4-hydroxy-6-methyltetrahydropteridine as a cofactor was 5 × 10−5m . The enzyme activity was markedly stimulated with Fe2+ or catalase, but Fe2+ gave higher activity. The activity was inhibited with α, α′-dipyridyl, l -α-methyl-p-tyrosine, and various catecholamines. Among catecholamines, dopamine was the most potent inhibitor. l -5-Hydroxytryptophan was an inhibitor as potent as dopamine. Neither d -5-hydroxytryptophan nor 5-hydroxytryptamine inhibited the enzyme. The inhibition by l -5-hydroxytryptophan was partially competitive with tetrahydrobiopterin at concentrations higher than 9 × 10−5m , and partially uncompetitive at concentrations lower than 9 × 10−5m . The addition of heparin or lysolecithin did not affect enzyme activity with tetrahydrobiopterin as cofactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号