首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A novel family of growth factors, with sequence similarity to adenosine deaminase, has been identified in various organisms including flesh fly, tsetse fly, sand fly, mollusk and human. The human homologue, CECR1, is a candidate gene for the genetic disorder cat eye syndrome. Here, we describe six members of this growth factor family in Drosophila and two in vertebrates. The six Drosophila genes, named adenosine deaminase-related growth factors (ADGF), are found at three different chromosomal locations, with one singleton, two in an inverted orientation, and three in a tandem arrangement. These genes show distinct patterns of expression as measured by RT-PCR and Northern blots, indicating gene-specific function. The presence of six ADGF genes in the Drosophila genome suggests that gene duplication and divergence has been important for these growth factors in insect development. Phylogenetic analysis of the 14 extant ADGF-like gene products shows there are at least three major groups, two of which are found in Drosophila. The third appears specific to the vertebrate line. Seven gene duplications are inferred among the ADGF-like genes, most of which occurred long before the origin of Drosophila. Our analysis predicts the existence of several other unsampled ADGF-like genes, both within the species examined here, and in other related invertebrates.  相似文献   

3.
When mitosis is bypassed, as in some cancer cells or in natural endocycles, sister chromosomes remain paired and produce four-stranded diplochromosomes or polytene chromosomes. Cyclin/Cdk1 inactivation blocks entry into mitosis and can reset G2 cells to G1, allowing another round of replication. Reciprocally, persistent expression of Cyclin A/Cdk1 or Cyclin E/Cdk2 blocks Drosophila endocycles. Inactivation of Cyclin A/Cdk1 by mutation or overexpression of the Cyclin/Cdk1 inhibitor, Roughex (Rux), converts the 16(th) embryonic mitotic cycle to an endocycle; however, we show that Rux expression fails to convert earlier cell cycles unless Cyclin E is also downregulated. Following induction of a Rux transgene in Cyclin E mutant embryos during G2 of cell cycle 14 (G2(14)), Cyclins A, B, and B3 disappeared and cells reentered S phase. This rereplication produced diplochromosomes that segregated abnormally at a subsequent mitosis. Thus, like the yeast CKIs Rum1 and Sic1, Drosophila Rux can reset G2 cells to G1. The observed cyclin destruction suggests that cell cycle resetting by Rux was associated with activation of the anaphase-promoting complex (APC), while the presence of diplochromosomes implies that this activation of APC outside of mitosis was not sufficient to trigger sister disjunction.  相似文献   

4.
Using degenerate-primers PCR we isolated and sequenced fragments from the sand fly Lutzomyia longipalpis homologous to two behavioural genes in Drosophila, cacophony and period. In addition we identified a number of other gene fragments that show homology to genes previously cloned in Drosophila. A codon usage table for L. longipalpis based on these and other genes was calculated. These new molecular markers will be useful in population genetics and evolutionary studies in phlebotomine sand flies and in establishing a preliminary genetic map in these important leishmaniasis vectors.  相似文献   

5.
Recent RNA interference screens that were performed at a genome-wide level have identified host factors that are important for the growth of Listeria monocytogenes in cultured cells from the fruit fly Drosophila melanogaster. The screens identified genes that are involved in phagocytosis but did not detect genes known to be involved in immune signaling pathways. These studies provide a foundation for the identification of host factors and virulence mechanisms.  相似文献   

6.
Bier E  Bodmer R 《Gene》2004,342(1):1-11
A variety of studies that are currently underway may validate the fruit fly as an in vivo model for analyzing genes involved in cardiac function. Many mutations in conserved genetic pathways have been found, including those controlling development and physiology. Because homologous genes control early developmental events as well as functional components of the Drosophila and vertebrate hearts, the fly is the simplest existing model system that can be used to assay genes involved in human congenital heart disease (CHD). The wide variety of genetic tools available to Drosophila researchers offers many technical advantages for rapidly screening through large numbers of candidate genes. Thus, an important future and long-term direction is likely to be the use of Drosophila as a vehicle for analyzing polygenic traits as an aid in human genetics. One can anticipate a time in the not too distant future when mutant lines exist for every gene in vertebrate systems, such as mice and zebrafish. However, one of the enduring problems that will not easily be addressed by such resources will be the tracking of complex traits defined by polygenic variants. For this level of genetic analysis, simple genetic model systems including yeast, Caenorhabditis elegans, and Drosophila melanogaster will undoubtedly play a crucial ongoing role. Of them, Drosophila will be critical for examining gene networks involved in organogenesis and is clearly the system of choice for studying cardiac development, function and aging, since among the simple genetic models it is the only one with a fluid pumping heart.  相似文献   

7.
Llopart A  Comeron JM 《Genetics》2008,179(2):1009-1020
Our understanding of the role of positive selection in the evolution of genes with male-biased expression can be hindered by two observations. First, male-biased genes tend to be overrepresented among lineage-specific genes. Second, novel genes are prone to experience bursts of adaptive evolution shortly after their formation. A thorough study of the forces acting on male-biased genes therefore would benefit from phylogenywide analyses that could distinguish evolutionary trends associated with gene formation and later events, while at the same time tackling the interesting question of whether adaptive evolution is indeed idiosyncratic. Here we investigate the roughex (rux) gene, a dose-dependent regulator of Drosophila spermatogenesis with a C-terminal domain responsible for nuclear localization that shows a distinct amino acid sequence in the melanogaster subgroup. We collected polymorphism and divergence data in eight populations of six Drosophila species, for a total of 99 rux sequences, to study rates and patterns of evolution at this male-biased gene. Our results from two phylogeny-based methods (PAML and HyPhy) as well as from population genetics analyses (McDonald-Kreitman-based tests) indicate that amino acid replacements have contributed disproportionately to divergence, consistent with adaptive evolution at the Rux protein. Analyses based on extant variation show also the signature of recent selective sweeps in several of the populations surveyed. Most important, we detect the significant and consistent signature of positive selection in several independent Drosophila lineages, which evidences recurrent and concurrent events of adaptive evolution after rux formation.  相似文献   

8.
Homeobox genes encode important developmental control proteins. The Drosophila fruit fly HOM complex genes are clustered in region 84-89 of chromosome 3. Probably due to large-scale genome duplication events, their human HOX orthologs belong to four paralogous regions. A series of 13 other homeobox genes are also clustered in region 88-94, on the same chromosome of Drosophila. We suggest that they also duplicated during vertebrate evolution and belong to paralogous regions in humans. These regions are on chromosome arms 4p, 5q, 10q, and 2p or 8p. We coined the term "paralogon" to designate paralogous regions in general. We propose to call these genes "meta Hox" genes. Like Hox genes, metaHox genes are present in one cluster in Drosophila and four clusters (metaHox A-D) in humans on the 4p/5q/10q paralogon.  相似文献   

9.
Background: Exit from mitosis is a tightly regulated event. This process has been studied in greatest detail in budding yeast, where several activities have been identified that cooperate to downregulate activity of the cyclin-dependent kinase (CDK) Cdc28 and force an exit from mitosis. Cdc28 is inactivated through proteolysis of B-type cyclins by the multisubunit ubiquitin ligase termed the anaphase promoting complex/cyclosome (APC/C) and inhibition by the cyclin-dependent kinase inhibitor (CKI) Sic1. In contrast, the only mechanism known to be essential for CDK inactivation during mitosis in higher eukaryotes is cyclin destruction.Results: We now present evidence that the Drosophila CKI Roughex (Rux) contributes to exit from mitosis. Observations of fixed and living embryos show that metaphase is significantly longer in rux mutants than in wild-type embryos. In addition, Rux overexpression is sufficient to drive cells experimentally arrested in metaphase into interphase. Furthermore, rux mutant embryos are impaired in their ability to overcome a transient metaphase arrest induced by expression of a stable cyclin A. Rux has numerous functional similarities with Sic1. While these proteins share no sequence similarity, we show that Sic1 inhibits mitotic Cdk1-cyclin complexes from Drosophila in vitro and in vivo.Conclusions: Rux inhibits Cdk1-cyclin A kinase activity during metaphase, thereby contributing to exit from mitosis. To our knowledge, this is the first mitotic function ascribed to a CKI in a multicellular organism and indicates the existence of a novel regulatory mechanism for the metaphase to anaphase transition during development.  相似文献   

10.
cDNAs for alcohol dehydrogenase (ADH) isozymes were cloned and sequenced from two tephritid fruit flies, the medfly Ceratitis capitata and the olive fly Bactrocera oleae. Because of the high sequence divergence compared with the Drosophila sequences, the medfly cDNAs were cloned using sequence information from the purified proteins, and the olive fly cDNAs were cloned by functional complementation in yeast. The medfly peptide sequences are about 83% identical to each other, and the corresponding mRNAs have the tissue distribution shown by the corresponding isozymes, ADH-1 and ADH-2. The olive fly peptide sequence is more closely related to medfly ADH-2. The tephritid ADHs share less than 40% sequence identity with Drosophila ADH and ADH-related genes but are >57% identical to the ADH of the flesh fly Sarcophaga peregrina, a more distantly related species. To explain this unexpected finding, it is proposed that the ADH: genes of the family Drosophilidae may not be orthologous to the ADH: genes of the other two families, Tephritidae and Sarcophagidae.  相似文献   

11.
The recent completion of the Drosophila genome sequence opens new avenues for neurobiology research. We screened the fly genome sequence for homologs of mammalian genes implicated directly or indirectly in exocytosis and endocytosis of synaptic vesicles. We identified fly homologs for 93% of the vertebrate genes that were screened. These are on average 60% identical and 74% similar to their vertebrate counterparts. This high degree of conservation suggests that little protein diversification has been tolerated in the evolution of synaptic transmission. Finally, and perhaps most exciting for Drosophila neurobiologists, the genomic sequence allows us to identify P element transposon insertions in or near genes, thereby allowing rapid isolation of mutations in genes of interest. Analysis of the phenotypes of these mutants should accelerate our understanding of the role of numerous proteins implicated in synaptic transmission.  相似文献   

12.
Dronc is a caspase recruitment domain-containing Drosophila caspase that is expressed in a temporally and spatially restricted fashion during development. Dronc is the only fly caspase known to be regulated by the hormone ecdysone. Here we show that ectopic expression of dronc in the developing fly eye leads to increased cell death and an ablated eye phenotype that can be suppressed by halving the dosage of the genes in the H99 complex (reaper, hid, and grim) and enhanced by mutations in diap1. In contrast to previous reports, we show that the dronc eye ablation phenotype can be suppressed by coexpression of the baculoviral caspase inhibitor p35. Dronc also interacts, both genetically and biochemically, with the CED-4/Apaf-1 fly homolog, Dark. Furthermore, extracts made from Dark homozygous mutant flies have reduced ability to process Dronc, showing that Dark is required for Dronc processing. Finally, using the RNA interference technique, we show that loss of Dronc function in early Drosophila embryos results in a dramatic decrease in cell death, indicating that Dronc is important for programmed cell death during embryogenesis. These results suggest that Dronc is a key caspase mediating programmed cell death in Drosophila.  相似文献   

13.
14.
Drosophila melanogaster U1 snRNA genes   总被引:6,自引:0,他引:6  
We have isolated and characterized a recombinant which contains a Drosophila melanogaster U1 small nuclear RNA (snRNA) gene colinear with the published snRNA sequence. Southern hybridizations of the fly genomic DNA, using as probe a plasmid containing only the coding region of the gene, shows that the fly contains at most three or four genes and very few related sequences for the small nuclear U1 RNA. These genes were localized by in situ hybridization at different chromosomal loci and show no spatial relationship to the U2 snRNA genes.  相似文献   

15.
SUMMARY Dorsoventral axis formation in the legs of the fly Drosophila melanogaster requires the T-box genes optomotor-blind ( omb ) and H15 . Evolutionary conservation of the patterning functions of these genes is unclear, because data on H15 expression in the spider Cupiennius salei did not support a general role of H15 in ventral fate specification. However, H15 has a paralogous gene, midline ( mid ) in Drosophila and H15 duplicates are also present in Cupiennius and the millipede Glomeris marginata . H15 therefore seems to have been subject to gene duplication opening the possibility that the previous account on Cupiennius has overlooked one or several paralogs. We have studied omb - and H15 -related genes in two additional spider species, Tegenaria atrica and Achearanea tepidariorum and show that in both species one of the H15 genes belongs to a third group of spider H15 genes that has an expression pattern very similar to the H15 pattern in Drosophila . The expression patterns of all omb -related genes are also very similar to the omb expression pattern in Drosophila . These data suggest that the dorsoventral patterning functions of omb and H15 are conserved in the arthropods and that the previous conclusions were based on an incomplete data set in Cupiennius . Our results emphasize the importance of a broad taxon sampling in comparative studies.  相似文献   

16.
17.
The completion of the Drosophila genome sequencing project [Science 287 (2000) 2185] has reconfirmed the fruit fly as a model organism to study human disease. Comparison studies have shown that two thirds of genes implicated in human cancers have counterparts in the fly [Curr. Opin. Genet. Dev. 11 (2001) 274; J. Cell Biol. 150 (2000) F23], including the tumour suppressor, p53. The suitability of the fruit fly to study the function of the tumour suppressor p53 is further exemplified by the lack of p53 family members within the fly genome, i.e., no homologues to p63 and p73 have been identified. Hence, there is no redundancy between family members greatly facilitating the analysis of p53 function. In addition, studying p53 in Drosophila provides an opportunity to learn about the evolution of tumour suppressors. Here, we will discuss what is known about Drosophila p53 in relation to human p53.  相似文献   

18.
Rab proteins are small GTPases that play important roles in transport of vesicle cargo and recruitment, association of motor and other proteins with vesicles, and docking and fusion of vesicles at defined locations. In vertebrates, >75 Rab genes have been identified, some of which have been intensively studied for their roles in endosome and synaptic vesicle trafficking. Recent studies of the functions of certain Rab proteins have revealed specific roles in mediating developmental signal transduction. We have begun a systematic genetic study of the 33 Rab genes in Drosophila. Most of the fly proteins are clearly related to specific vertebrate proteins. We report here the creation of a set of transgenic fly lines that allow spatially and temporally regulated expression of Drosophila Rab proteins. We generated fluorescent protein-tagged wild-type, dominant-negative, and constitutively active forms of 31 Drosophila Rab proteins. We describe Drosophila Rab expression patterns during embryogenesis, the subcellular localization of some Rab proteins, and comparisons of the localization of wild-type, dominant-negative, and constitutively active forms of selected Rab proteins. The high evolutionary conservation and low redundancy of Drosophila Rab proteins make these transgenic lines a useful tool kit for investigating Rab functions in vivo.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号