首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bax and Bak promote apoptosis by perturbing the permeability of the mitochondrial outer membrane and facilitating the release of cytochrome c by a mechanism that is still poorly defined. During apoptosis, Bax and Bak also promote fragmentation of the mitochondrial network, possibly by activating the mitochondrial fission machinery. It has been proposed that Bax/Bak-induced mitochondrial fission may be required for release of cytochrome c from the mitochondrial intermembrane space, although this has been a subject of debate. Here we show that Bcl-xL, as well as other members of the apoptosis-inhibitory subset of the Bcl-2 family, antagonized Bax and/or Bak-induced cytochrome c release but failed to block mitochondrial fragmentation associated with Bax/Bak activation. These data suggest that Bax/Bak-initiated remodeling of mitochondrial networks and cytochrome c release are separable events and that Bcl-2 family proteins can influence mitochondrial fission-fusion dynamics independent of apoptosis.  相似文献   

2.
The Bcl‐2 family proteins Bax and Bak are essential for the execution of many apoptotic programs. During apoptosis, Bax translocates to the mitochondria and mediates the permeabilization of the outer membrane, thereby facilitating the release of pro‐apoptotic proteins. Yet the mechanistic details of the Bax‐induced membrane permeabilization have so far remained elusive. Here, we demonstrate that activated Bax molecules, besides forming large and compact clusters, also assemble, potentially with other proteins including Bak, into ring‐like structures in the mitochondrial outer membrane. STED nanoscopy indicates that the area enclosed by a Bax ring is devoid of mitochondrial outer membrane proteins such as Tom20, Tom22, and Sam50. This strongly supports the view that the Bax rings surround an opening required for mitochondrial outer membrane permeabilization (MOMP). Even though these Bax assemblies may be necessary for MOMP, we demonstrate that at least in Drp1 knockdown cells, these assemblies are not sufficient for full cytochrome c release. Together, our super‐resolution data provide direct evidence in support of large Bax‐delineated pores in the mitochondrial outer membrane as being crucial for Bax‐mediated MOMP in cells.  相似文献   

3.
The induction of apoptosis by p53 in response to cellular stress is its most conserved function and crucial for p53 tumor suppression. We recently reported that p53 directly induces oligomerization of the BH1,2,3 effector protein Bak, leading to outer mitochondrial membrane permeabilization (OMMP) with release of apoptotic activator proteins. One important mechanism by which p53 achieves OMMP is by forming an inhibitory complex with the anti-apoptotic BclXL protein. In contrast, the p53 complex with the Bcl2 homolog has not been interrogated. Here we have undertaken a detailed characterization of the p53-Bcl2 interaction using structural, biophysical, and mutational analyses. We have identified the p53 DNA binding domain as the binding interface for Bcl2 using solution NMR. The affinity of the p53-Bcl2 complex was determined by surface plasmon resonance analysis (BIAcore) to have a dominant component KD 535 +/- 24 nm. Moreover, in contrast to wild type p53, endogenous missense mutants of p53 are unable to form complexes with endogenous Bcl2 in human cancer cells. Functionally, these mutants are all completely or strongly compromised in mediating OMMP, as measured by cytochrome c release from isolated mitochondria. These data implicate p53-Bcl2 complexes in contributing to the direct mitochondrial p53 pathway of apoptosis and further support the notion that the DNA binding domain of p53 is a dual function domain, mediating both its transactivation function and its direct mitochondrial apoptotic function.  相似文献   

4.
Apoptosis-associated mitochondrial outer membrane permeabilization assays   总被引:1,自引:0,他引:1  
Following most cell death signals, pro-apoptotic Bcl-2 members as Bax and Bak are activated and oligomerize into the mitochondria outer membrane, triggering its permeabilization and release into the cytosol of soluble apoptogenic factors such as cytochrome c involved in caspase activation. Thus, in many studies focused on apoptosis, cytochrome c release within cells is frequently examined to assess Bax/Bak activation and mitochondrial outer membrane permeabilization. In addition, cytochrome c release can also be investigated in vitro in functional mitochondria that have been isolated from cultured cells, offering a number of advantages. Here, protocols for measuring cytochrome c release from intact cells as well as from isolated mitochondria is detailed. Finally, assays to investigate Bax/Bak activation and olimerization are also presented.  相似文献   

5.
The goal of cancer chemotherapy to induce multi-directional apoptosis as targeting a single pathway is unable to decrease all the downstream effect arises from crosstalk. Present study reports that Withanolide D (WithaD), a steroidal lactone isolated from Withania somnifera, induced cellular apoptosis in which mitochondria and p53 were intricately involved. In MOLT-3 and HCT116p53+/+ cells, WithaD induced crosstalk between intrinsic and extrinsic signaling through Bid, whereas in K562 and HCT116p53-/- cells, only intrinsic pathway was activated where Bid remain unaltered. WithaD showed pronounced activation of p53 in cancer cells. Moreover, lowered apoptogenic effect of HCT116p53-/- over HCT116p53+/+ established a strong correlation between WithaD-mediated apoptosis and p53. WithaD induced Bax and Bak upregulation in HCT116p53+/+, whereas increase only Bak expression in HCT116p53-/- cells, which was coordinated with augmented p53 expression. p53 inhibition substantially reduced Bax level and failed to inhibit Bak upregulation in HCT116p53+/+ cells confirming p53-dependent Bax and p53-independent Bak activation. Additionally, in HCT116p53+/+ cells, combined loss of Bax and Bak (HCT116Bax-Bak-) reduced WithaD-induced apoptosis and completely blocked cytochrome c release whereas single loss of Bax or Bak (HCT116Bax-Bak+/HCT116Bax+Bak-) was only marginally effective after WithaD treatment. In HCT116p53-/- cells, though Bax translocation to mitochondria was abrogated, Bak oligomerization helped the cells to release cytochrome c even before the disruption of mitochondrial membrane potential. WithaD also showed in vitro growth-inhibitory activity against an array of p53 wild type and null cancer cells and K562 xenograft in vivo. Taken together, WithaD elicited apoptosis in malignant cells through Bax/Bak dependent pathway in p53-wild type cells, whereas Bak compensated against loss of Bax in p53-null cells.  相似文献   

6.
Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex   总被引:16,自引:0,他引:16  
The tumour suppressor activity of the p53 protein has been explained by its ability to induce apoptosis in response to a variety of cellular stresses. Thus, understanding the mechanism by which p53 functions in the execution of cell death pathways is of considerable importance in cancer biology. Recent studies have indicated that p53 has a direct signalling role at mitochondria in the induction of apoptosis, although the mechanisms involved are not completely understood. Here we show that, after cell stress, p53 interacts with the pro-apoptotic mitochondrial membrane protein Bak. Interaction of p53 with Bak causes oligomerization of Bak and release of cytochrome c from mitochondria. Notably, we show that formation of the p53-Bak complex coincides with loss of an interaction between Bak and the anti-apoptotic Bcl2-family member Mcl1. These results are consistent with a model in which p53 and Mcl1 have opposing effects on mitochondrial apoptosis by interacting with, and modulating the activity of, the death effector Bak.  相似文献   

7.
c-Myc functionally cooperates with Bax to induce apoptosis   总被引:10,自引:0,他引:10       下载免费PDF全文
c-Myc promotes apoptosis by destabilizing mitochondrial integrity, leading to the release of proapoptotic effectors including holocytochrome c. Candidate mediators of c-Myc in this process are the proapoptotic members of the Bcl-2 family. We show here that fibroblasts lacking Bak remain susceptible to c-Myc-induced apoptosis whereas bax-deficient fibroblasts are resistant. However, despite this requirement for Bax, c-Myc activation exerts no detectable effects on Bax expression, localization, or conformation. Moreover, susceptibility to c-Myc-induced apoptosis can be restored in bax-deficient cells by ectopic expression of Bax or by microinjection of a peptide comprising a minimal BH3 domain. Microinjection of BH3 peptide also restores sensitivity to c-Myc-induced apoptosis in p53-deficient primary fibroblasts that are otherwise resistant. By contrast, there is no synergy between BH3 peptide and c-Myc in fibroblasts deficient in both Bax and Bak. We conclude that c-Myc triggers a proapoptotic mitochondrial destabilizing activity that cooperates with proapoptotic members of the Bcl-2 family.  相似文献   

8.
9.
Glycogen synthase kinase-3 (GSK3) and p53 play crucial roles in the mitochondrial apoptotic pathway and are known to interact in the nucleus. However, it is not known if GSK3 has a regulatory role in the mitochondrial translocation of p53 that participates in apoptotic signaling following DNA damage. In this study, we demonstrated that lithium and SB216763, which are pharmacological inhibitors of GSK3, attenuated p53 accumulation and caspase-3 activation, as shown by PARP cleavage induced by the DNA-damaging agents doxorubicin, etoposide and camptothecin. Furthermore, each of these agents induced translocation of p53 to the mitochondria and activated the mitochondrial pathway of apoptosis, as evidenced by the release of cytochrome C from the mitochondria. Both mitochondrial translocation of p53 and mitochondrial release of cytochrome C were attenuated by inhibition of GSK3, indicating that GSK3 promotes the DNA damage-induced mitochondrial translocation of p53 and the mitochondrial apoptosis pathway. Interestingly, the regulation of p53 mitochondrial translocation by GSK3 was only evident with wild-type p53, not with mutated p53. GSK3 inhibition also reduced the phosphorylation of wild-type p53 at serine 33, which is induced by doxorubicin, etoposide and camptothecin in the mitochondria. Moreover, inhibition of GSK3 reduced etoposide-induced association of p53 with Bcl2 and Bax oligomerization. These findings show that GSK3 promotes the mitochondrial translocation of p53, enabling its interaction with Bcl2 to allow Bax oligomerization and the subsequent release of cytochrome C. This leads to caspase activation in the mitochondrial pathway of intrinsic apoptotic signaling.  相似文献   

10.
11.
The BH3-only protein PUMA plays an important role in the activation of apoptosis in response to p53. In different studies, PUMA has been described to function by either directly activating the pro-apoptotic proteins Bax and Bak, or by neutralizing anti-apoptotic members of the Bcl2 family. We have examined the contribution of regions of PUMA other than the BH3 domain to its localization and function. Although the hydrophobic domain in the C-terminus of PUMA is necessary for efficient mitochondrial localization of PUMA itself, PUMA proteins lacking this region can still induce apoptosis and localize to the mitochondria through binding to Bcl2. Even a nuclear localization signal (NLS)-tagged PUMA protein retains apoptotic activity and can be efficiently relocalized from the nucleus after interaction with ectopically expressed Bcl2, underscoring the efficiency of this interaction. Interestingly, unlike the Bcl2 interaction, the binding of PUMA to Bax is severely compromised by the loss of the C-terminal domain of PUMA. However, since the loss of the C-terminus does not compromise the ability of PUMA to induce cell death, our results indicate that the key apoptotic function of PUMA is through interaction with anti-apoptotic proteins such as Bcl2.  相似文献   

12.
Upon apoptosis induction, the proapoptotic protein Bax is translocated from the cytosol to mitochondria, where it promotes release of cytochrome c, a caspase‐activating protein. However, the molecular mechanisms by which Bax triggers cytochrome c release are unknown. Here we report that before the initiation of apoptotic execution by etoposide or staurosporin, an active calpain activity cleaves Bax at its N‐terminus, generating a potent proapoptotic 18‐kDa fragment (Bax/p18). Both the calpain‐mediated Bax cleavage activity and the Bax/p18 fragment were found in the mitochondrial membrane‐enriched fraction. Cleavage of Bax was followed by release of mitochondrial cytochrome c, activation of caspase‐3, cleavage of poly(ADP‐ribose) polymerase, and fragmentation of DNA. Unlike the full‐length Bax, Bax/p18 did not interact with the antiapoptotic Bcl‐2 protein in the mitochondrial fraction of drug‐treated cells. Pretreatment with a specific calpain inhibitor calpeptin inhibited etoposide‐induced calpain activation, Bax cleavage, cytochrome c release, and caspase‐3 activation. In contrast, transfection of a cloned Bax/p18 cDNA into multiple human cancer cell lines targeted Bax/p18 to mitochondria, which was accompanied by release of cytochrome c and induction of caspase‐3‐mediated apoptosis that was not blocked by overexpression of Bcl‐2 protein. Therefore, Bax/p18 has a cytochrome c–releasing activity that promotes cell death independent of Bcl‐2. Finally, Bcl‐2 overexpression inhibited etoposide‐induced calpain activation, Bax cleavage, cytochrome c release, and apoptosis. Our results suggest that the mitochondrial calpain plays an essential role in apoptotic commitment by cleaving Bax and generating the Bax/p18 fragment, which in turn mediates cytochrome c release and initiates the apoptotic execution. J. Cell. Biochem. 80:53–72, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

13.
Bax is a member of the Bcl-2 family of proteins known to regulate mitochondria-dependent programmed cell death. Early in apoptosis, Bax translocates from the cytosol to the mitochondrial membrane. We have identified by confocal and electron microscopy a novel step in the Bax proapoptotic mechanism immediately subsequent to mitochondrial translocation. Bax leaves the mitochondrial membranes and coalesces into large clusters containing thousands of Bax molecules that remain adjacent to mitochondria. Bak, a close homologue of Bax, colocalizes in these apoptotic clusters in contrast to other family members, Bid and Bad, which circumscribe the outer mitochondrial membrane throughout cell death progression. We found the formation of Bax and Bak apoptotic clusters to be caspase independent and inhibited completely and specifically by Bcl-X(L), correlating cluster formation with cytotoxic activity. Our results reveal the importance of a novel structure formed by certain Bcl-2 family members during the process of cell death.  相似文献   

14.
Although murine embryonic fibroblasts (MEFs) with Bax or Bak deleted displayed no defect in apoptosis signaling, MEFs with Bax and Bak double knock-out (DKO) showed dramatic resistance to diverse apoptotic stimuli, suggesting that Bax and Bak are redundant but essential regulators for apoptosis signaling. Chelerythrine has recently been identified as a Bcl-xL inhibitor that is capable of triggering apoptosis via direct action on mitochondria. Here we report that in contrast to classic apoptotic stimuli, chelerythrine is fully competent in inducing apoptosis in the DKO MEFs. Wild-type and DKO MEFs are equally sensitive to chelerythrine-induced morphological and biochemical changes associated with apoptosis phenotype. Interestingly, chelerythrine-mediated release of cytochrome c is rapid and precedes Bax translocation and integration. Although the BH3 peptide of Bim is totally inactive in releasing cytochrome c from isolated mitochondria of DKO MEFs, chelerythrine maintains its potency and efficacy in inducing direct release of cytochrome c from these mitochondria. Furthermore, chelerythrine-mediated mitochondrial swelling and loss in mitochondrial membrane potential (DeltaPsi(m)) are inhibited by cyclosporine A, suggesting that mitochondrial permeability transition pore is involved in chelerythrine-induced apoptosis. Although certain apoptotic stimuli have been shown to elicit cytotoxic effect in the DKO MEFs through alternate death mechanisms, chelerythrine does not appear to engage necrotic or autophagic death mechanism to trigger cell death in the DKO MEFs. These results, thus, argue for the existence of an alternative Bax/Bak-independent apoptotic mechanism that involves cyclosporine A-sensitive mitochondrial membrane permeability.  相似文献   

15.
p53转录非依赖活性介导细胞凋亡   总被引:2,自引:0,他引:2  
钱呈睿  葛海良  王颖 《生命科学》2007,19(3):326-329
p53主要通过两条途径诱导细胞凋亡:p53作为转录因子,促进细胞凋亡的靶基因的表达上调,如PUMA、NOXA、PIDD、p53AIP1、COP1等,并通过这些蛋白参与内源和外源凋亡途径;另一方面,胞浆中的p53能转位到线粒体,激活内源性的线粒体途径,促进凋亡。后者已成为研究p53促凋亡机制的热点。本文就p53对转录非依赖活性诱导细胞凋亡途径的研究进展作一概述。  相似文献   

16.
Alterations in intracellular Ca(2+) homeostasis and cytochrome c release from mitochondria have been implicated in the regulation of apoptosis, but the relationship between these events remains unclear. Here we report that enforced expression of either Bax or Bak via adenoviral gene delivery results in the accumulation of the proteins in the endoplasmic reticulum (ER) and mitochondria, resulting in early caspase-independent BCL-2-sensitive release of the ER Ca(2+) pool and subsequent Ca(2+) accumulation in mitochondria. The inhibition of ER-to-mitochondrial Ca(2+) transport with a specific inhibitor of mitochondrial Ca(2+) uptake attenuates cytochrome c release and downstream biochemical events associated with apoptosis. Bax and Bak also directly sensitize mitochondria to cytochrome c release induced by immediate emptying of ER Ca(2+) pool. Our results demonstrate that the effects of the "multidomain" proapoptotic BCL-2 family members Bak and Bax involve direct effects on the endoplasmic reticular Ca(2+) pool with subsequent sensitization of mitochondria to calcium-mediated fluxes and cytochrome c release. These effects modulate the kinetics of cytochrome c release and apoptosis.  相似文献   

17.
The Bcl-2 proteins Bax and Bak can permeabilize the outer mitochondrial membrane and commit cells to apoptosis. Pro-survival Bcl-2 proteins control Bax by constant retrotranslocation into the cytosol of healthy cells. The stabilization of cytosolic Bax raises the question whether the functionally redundant but largely mitochondrial Bak shares this level of regulation. Here we report that Bak is retrotranslocated from the mitochondria by pro-survival Bcl-2 proteins. Bak is present in the cytosol of human cells and tissues, but low shuttling rates cause predominant mitochondrial Bak localization. Interchanging the membrane anchors of Bax and Bak reverses their subcellular localization compared to the wild-type proteins. Strikingly, the reduction of Bax shuttling to the level of Bak retrotranslocation results in full Bax toxicity even in absence of apoptosis induction. Thus, fast Bax retrotranslocation is required to protect cells from commitment to programmed death.  相似文献   

18.
19.
The mechanism whereby mitochondrial DNA (mtDNA) is released into the cytosol and activates the cGAS/STING inflammatory pathway during Bax/Bax‐mediated apoptosis is unknown. In this issue, Riley et al ( 2018 ) report that widening of Bax and Bak pores on the mitochondrial outer membrane (MOM) during apoptosis allows the extrusion of the mitochondrial inner membrane (MIM) into the cytosol and its permeabilization to release mtDNA independently of caspases. In this scenario, Bax and Bak emerge as key modulators of the apoptotic immunogenic response.  相似文献   

20.
Bap31 is an integral ER membrane protein which functions as an escort factor in the sorting of newly synthesized membrane proteins within the endoplasmic reticulum (ER). During apoptosis signaling, Bap31 is subject to early cleavage by initiator caspase-8. The resulting p20Bap31 (p20) fragment has been shown to initiate proapoptotic ER-mitochondria Ca2+ transmission, and to exert dominant negative (DN) effects on ER protein trafficking. We now report that ectopic expression of p20 in E1A/DNp53-transformed baby mouse kidney epithelial cells initiates a non-apoptotic form of cell death with paraptosis-like morphology. This pathway was characterized by an early rise in ER Ca2+ stores and massive dilation of the ER/nuclear envelope, dependent on intact ER Ca2+ stores. Ablation of the Bax/Bak genes had no effect on these ER/nuclear envelope transformations, and delayed but did not prevent cell death. ER-restricted expression of Bcl2 in the absence of Bax/Bak, however, delayed both ER/nuclear envelope dilation and cell death. This prosurvival role of Bcl2 at the ER thus extended beyond inhibition of Bax/Bak, and correlated with its ability to lower ER Ca2+ stores. Furthermore, these results indicate that ER restricted Bcl2 is capable of antagonizing not only apoptosis, but also a non-apoptotic, Bax/Bak independent, paraptosis-like form of cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号