首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is growing evidence that apoptotic neutrophils have an active role to play in the regulation and resolution of inflammation following phagocytosis by macrophages and dendritic cells. However, their influence on activated blood monocytes, freshly recruited to sites of inflammation, has not been defined. In this work, we examined the effect of apoptotic neutrophils on cytokine production by LPS-activated monocytes. Monocytes stimulated with LPS in the presence of apoptotic neutrophils for 18 h elicited an immunosuppressive cytokine response, with enhanced IL-10 and TGF-beta production and only minimal TNF-alpha and IL-1beta cytokine production. Time-kinetic studies demonstrated that IL-10 production was markedly accelerated in the presence of apoptotic neutrophils, whereas there was a sustained reduction in the production of TNF-alpha and IL-1beta. This suppression of proinflammatory production was not reversible by depletion of IL-10 or TGF-beta or by addition of exogenous IFN-gamma. It was demonstrated, using Transwell experiments, that monocyte-apoptotic cell contact was required for induction of the immunosuppressive monocyte response. The response of monocytes contrasted with that of human monocyte-derived macrophages in which there was a reduction in IL-10 production. We conclude from these data that interaction between activated monocytes and apoptotic neutrophils creates a unique response, which changes an activated monocyte from being a promoter of the inflammatory cascade into a cell primed to deactivate itself and other cells.  相似文献   

2.
3.
Increased plasma- and tissue levels of endothelin-1 (ET-1) during inflammatory diseases, have suggested a role of ET-1 in the pathophysiology of inflammatory reactions. The authors have studied the effect of ET-1 on cytokine release from monocytes and monocyte-derived macrophages. ET-1 increased secretion of TNF-alpha, IL-1beta and IL-6 in a dose- and time-dependent manner. Optimal ET-1 concentration ranged from 0.01 to 1 nM. The maximal response was a 200 to 400% increase in cytokine release. A time-course study revealed that the pattern of cytokines induced by ET-1 was different in monocytes and macrophages, although an early increase in TNF-alpha was observed in both monocyte and macrophage supernatants. In conclusion, ET-1 stimulates monocytes and macrophages to release cytokines thereby demonstrating a potential role for ET-1 in regulation of inflammatory responses.  相似文献   

4.
Fas-mediated caspase-dependent cell apoptosis has been well investigated. However, recent studies have shown that Fas can induce nonapoptotic caspase-independent cell death (CICD) when caspase activity is inhibited. Currently, the molecular mechanism of this alternative cell death mediated by Fas remains unclear. In this study, we investigated the signaling pathway of Fas-induced CICD in mouse embryonic fibroblasts (MEFs) whose caspase function was disrupted by the pan-caspase inhibitor Z-VAD-FMK and its coupling to inflammatory responses. Our results revealed that receptor-interacting protein 1 and tumor necrosis factor receptor-associated factor 2 play important roles in FasL-induced CICD. This death is associated with intracellular reactive oxygen species (ROS) production from mitochondria, as a ROS scavenger (BHA), antioxidants (trolox, NAC), and a mitochondrial respiratory chain uncoupler (rotenone) could prevent this event. Furthermore, delayed and sustained JNK activation, mitochondrial membrane potential breakdown, and loss of intracellular GSH were observed. In addition to CICD, FasL also induces cyclooxygenase-2 and MIP-2 gene upregulation, and both responses are attributed to ROS-dependent JNK activation. Taken together, these results demonstrate alternative signaling pathways of Fas upon caspase inhibition in MEFs that are unrelated to the classical apoptotic pathway, but steer cells toward necrosis and an inflammatory response through ROS production.  相似文献   

5.
The eotaxins are a family of CC chemokines that coordinate the recruitment of inflammatory cells, in particular eosinophils, to sites of allergic inflammation. The cDNA for eotaxin-2 (CC chemokine ligand 24) was originally isolated from an activated monocyte library. In this study, we show for the first time that peripheral blood monocytes generate bioactive eotaxin-2 protein constitutively. Eotaxin-2 production was significantly up-regulated when monocytes were stimulated with the proinflammatory cytokine IL-1beta and the microbial stimuli, LPS and zymosan. In contrast, the Th2 cytokines, IL-4 and IL-13, and the proinflammatory cytokine, TNF-alpha, acting alone or in combination, did not enhance the generation of eotaxin-2 by monocytes. Indeed, IL-4 suppressed the generation of eotaxin-2 by LPS-stimulated monocytes. Although other chemokines, including macrophage-inflammatory protein-1alpha, monocyte chemoattractant protein-1, macrophage-derived chemokine, and IL-8 were generated by monocytes, eotaxin-1 (CC chemokine ligand 11) could not be detected in the supernatants of monocytes cultured in the presence or absence of any of the stimuli used in the above experiments. Furthermore, human dermal fibroblasts that produce eotaxin-1 did not generate eotaxin-2 under basal conditions or when stimulated with specific factors, including IL-4, IL-13, TNF-alpha, and LPS. When monocytes were differentiated into macrophages, their constitutive generation of eotaxin-2 was suppressed. Moreover, IL-4, but not LPS, up-regulated the production of eotaxin-2 by macrophages. Taken as a whole, these results support a role for macrophage-derived eotaxin-2 in adaptive immunity, with a Th2 bias. In contrast, a role for monocyte-derived eotaxin-2 is implicated in innate immunity.  相似文献   

6.
Over 1 billion monocytes are produced daily, with a small percentage differentiating into macrophages, suggesting that excess monocytes are deleted through a tightly regulated process. Although the in vivo mechanism governing monocyte/macrophage homeostasis is unknown, deletion of monocytes in culture is mediated by the Fas death pathway and is blocked by M-CSF. To determine the in vivo significance of Fas in monocyte development, mice lacking Fas (lpr/lpr) and mice deficient in Fas and M-CSF were examined. Compared with congenic control C57BL/6 (B6) mice, lpr/lpr mice displayed increased numbers of circulating monocytes. The lack of Fas in M-CSF-deficient mice resulted in an enhanced percentage, but not total numbers, of monocytes. Fas deficiency led to an increase in myeloid bone marrow progenitor potential only in M-CSF-intact mice. Although lpr/lpr and B6 mice had similar numbers of tissue macrophages, the loss of Fas in M-CSF-deficient mice was sufficient to increase the number of macrophages in a subset of tissues. Additionally, after stimulation with thioglycolate, lpr/lpr and B6 mice showed equivalent numbers of peritoneal macrophages. However, Fas-deficient peritoneal macrophages displayed a marked increase in spontaneous and LPS-induced proinflammatory molecule production. Moreover, Fas-deficient mice showed enhanced systemic inflammatory arthritis associated with up-regulation of IL-1beta and CCL2 secretion, elevated numbers of inflammatory monocytes, and increased numbers of tissue macrophages. Collectively, these data suggest that Fas may be required for maintaining circulating monocytes and for suppressing macrophage activation and recruitment that are stimulus dependent.  相似文献   

7.
FADD is required for multiple signaling events downstream of the receptor Fas.   总被引:13,自引:0,他引:13  
To identify essential components of the Fas-induced apoptotic signaling pathway, Jurkat T lymphocytes were chemically mutagenized and selected for clones that were resistant to Fas-induced apoptosis. We obtained five cell lines that contain mutations in the adaptor FADD. All five cell lines did not express FADD by immunoblot analysis and were completely resistant to Fas-induced death. Complementation of the FADD mutant cell lines with wild-type FADD restored Fas-mediated apoptosis. Fas activation of caspase-2, caspase-3, caspase-7, and caspase-8 and the proteolytic cleavage of substrates such as BID, protein kinase Cdelta, and poly(ADP-ribose) polymerase were completely defective in the FADD mutant cell lines. In addition, Fas activation of the stress kinases p38 and c-Jun NH2 kinase and the generation of ceramide in response to Fas ligation were blocked in the FADD mutant cell lines. These data indicate that FADD is essential for multiple signaling events downstream of Fas.  相似文献   

8.
In vivo and in vitro roles of IL-21 in inflammation   总被引:3,自引:0,他引:3  
IL-21 is a cytokine known to mediate its biological action via the IL-21R, composed of a specific chain, IL-21Ralpha, and the common gamma-chain (CD132). Recent data suggest that IL-21 possesses proinflammatory properties. However, there is no clear evidence that IL-21 induces inflammation in vivo and, curiously, the interaction between IL-21 and neutrophils has never been investigated, despite the fact that these cells express CD132 and respond to other CD132-dependent cytokines involved in inflammatory disorders. Using the murine air pouch model, we found that IL-21 induced inflammation in vivo, based on recruitment of neutrophil and monocyte populations. In contrast to LPS, administration of IL-21 into the air pouch did not significantly increase the concentration of IL-6, CCL5, CCL3, and CXCL2. We demonstrated that HL-60 cells expressed IL-21Ralpha, which is down-regulated during their differentiation toward neutrophils, and that IL-21Ralpha is not detected in neutrophils. Concomitant with this, IL-21 induced Erk-1/2 phosphorylation in HL-60 cells, but not in neutrophils. To eliminate the possibility that IL-21 could activate neutrophils even in the absence of IL-21Ralpha, we demonstrated that IL-21 did not modulate several neutrophil functions. IL-21-induced Erk-1/2 phosphorylation was not associated with proliferation or differentiation of HL-60 toward neutrophils, monocytes, or macrophages. IL-21Ralpha was detected in human monocytes and monocyte-derived macrophages, but IL-21 increased CXCL8 production only in monocyte-derived macrophages. We conclude that IL-21 is a proinflammatory cytokine, but not a neutrophil agonist. We propose that IL-21 attracts neutrophils indirectly in vivo via a mechanism independent of IL-6, CCL3, CCL5, and CXCL2 production.  相似文献   

9.
Among the tumor necrosis factor (TNF) family of cytokines, FasL and TNF-related apoptosis-inducing ligand (TRAIL) are known to induce cell death via caspase activation. Recently, other biological functions of these death ligands have been postulated in vitro and in vivo. It was previously shown that Fas ligation induces chemokine expression in human glioma cells. In this study, we investigated whether the TRAIL-DR5 system transduces signals similar to those induced by other TNF family ligands and receptors. To address this issue, two human glioma cell lines, CRT-MG and U87-MG, were used, and an agonistic antibody against DR5 (TRA-8) and human recombinant TRAIL were used to ligate DR5. We demonstrate that DR5 ligation by either TRAIL or TRA-8 induces two functional outcomes, apoptosis and expression of the chemokine interleukin-8 (IL-8); the nonspecific caspase inhibitor Boc-D-Fmk blocks both TRAIL-mediated cell death and IL-8 production; the caspase 3-specific inhibitor z-DEVD-Fmk suppresses TRAIL-mediated apoptosis but not IL-8 induction; caspase 1- and 8-specific inhibitors block both TRAIL-mediated cell death and IL-8 production; and DR5 ligation by TRAIL mediates AP-1 and NF-kappaB activation, which can be inhibited by caspase 1- and 8-specific inhibitors. These findings collectively indicate that DR5 ligation on human glioma cells leads to apoptosis and that the activation of AP-1 and NF-kappaB leads to the induction of IL-8 expression; these responses are dependent on caspase activation. Therefore, the TRAIL-DR5 system has a role not only as an inducer of apoptotic cell death but also as a transducer for proinflammatory and angiogenic signals in human brain tumors.  相似文献   

10.
Fas (APO-1/CD95) is the prototypic death receptor, and the molecular mechanisms of Fas-induced apoptosis are comparably well understood. Here, we show that Fas activates NFkappaB via a pathway involving RIP, FADD, and caspase-8. Remarkably, the enzymatic activity of the latter was dispensable for Fas-induced NFkappaB signaling pointing to a scaffolding-related function of caspase-8 in nonapoptotic Fas signaling. NFkappaB was activated by overexpressed FLIPL and FLIPS in a cell type-specific manner. However, in the context of Fas signaling both isoforms blocked FasL-induced NFkappaB activation. Moreover, down-regulation of both endogenous FLIP isoforms or of endogenous FLIPL alone was sufficient to enhance FasL-induced expression of the NFkappaB target gene IL8. As NFkappaB signaling is inhibited during apoptosis, FasL-induced NFkappaB activation was most prominent in cells that were protected by Bcl2 expression or caspase inhibitors and expressed no or minute amounts of FLIP. Thus, protection against Fas-induced apoptosis in a FLIP-independent manner converted a proapoptotic Fas signal into an inflammatory NFkappaB-related response.  相似文献   

11.
We have previously shown that the absence of Fas/Fas ligand significantly reduced tissue damage and intestinal epithelial cell (IEC) apoptosis in an in vivo model of T cell-mediated enteropathy. This enteropathy was more severe in IL-10-deficient mice, and this was associated with increased serum levels of IFN-gamma and TNF-alpha and an increase in Fas expression on IECs. In this study, we investigated the potential of IL-10 to directly influence Fas expression and Fas-induced IEC apoptosis. Mouse intestinal epithelial cell lines MODE-K and IEC4.1 were cultured with IFN-gamma, TNF-alpha, or anti-Fas monoclonal antibody (mAb) in the presence or absence of IL-10. Fas expression and apoptosis were determined by FACScan analysis of phycoerythrin-anti-Fas mAb staining and annexin V staining, respectively. Treatment with a combination of IFN-gamma and TNF-alpha induced significant apoptosis. Anti-Fas mAb alone did not induce much apoptosis unless cells were pretreated with IFN-gamma and TNF-alpha. These IECs constitutively expressed low levels of Fas, which significantly increased by preincubation of the cells with IFN-gamma and TNF-alpha. Treatment with cytokine or cytokine plus anti-Fas mAb increased apoptosis, which correlated with a decreased Fas-associated death domain IL-1-converting enzyme-like inhibitory protein (FLIP) level, increased caspase-8 activity, and subsequently increased caspase-3 activity. IL-10 diminished both cytokine- and anti-Fas mAb-induced apoptosis, and this was correlated with decreased cytokine-induced Fas expression, increased FLIP, and decreased caspase-8 and caspase-3 activity. In conclusion, IL-10 modulated cytokine induction of Fas expression on IEC cell lines and regulated IEC susceptibility to TNF-alpha, IFN-gamma, and Fas-mediated apoptosis. These findings suggest that IL-10 directly modulates IEC responses to T cell-mediated apoptotic signals.  相似文献   

12.
The suppressor of cytokine signaling (SOCS) group of proteins has been implicated in regulation of various cytokine signaling and in a negative crosstalk between distinct signaling pathways. Interleukin-10 (IL-10) and LPS were known to induce expression of SOCS-3 in neutrophils and monocytes/macrophages. IL-10 was also reported to inhibit a proinflammatory signal-induced NF-kappaB activation in monocytes and peripheral T lymphocytes. The effects of increased SOCS-3 expression upon IL-10 regulation of NF-kappaB activation have not yet been demonstrated. Here we examined the effects of SOCS-3 on NF-kappaB activity. SOCS-3 did not induce any alterations in NF-kappaB activity induced by LPS or TNF-alpha. However, it enhanced RelA-dependent kappaB promoter activity when cotransfected with RelA. Similar results were observed with SOCS-1. In contrast, SOCS-2 did not show any regulatory effects on RelA activity. Analysis of C-terminal truncation mutants of SOCS-1 and SOCS-3 demonstrated that the SOCS box and its N-terminal region, a less well-conserved linker region were important for SOCS-3 activation of RelA. In contrast, the SOCS box itself was critical for SOCS-1 to activate RelA. These results suggest that SOCS proteins can enhance the effects of NF-kappaB/Rel proteins, and therefore, further modulate immune and inflammatory responses.  相似文献   

13.
FasL and gamma interferon (IFN-gamma) are produced by activated T cells and NK cells and synergistically induce apoptosis. Although both cytokines can also elicit proinflammatory responses, a possible cross talk of these ligands with respect to nonapoptotic signaling has been poorly addressed. Here, we show that IFN-gamma sensitizes KB cells for apoptosis induction by facilitating death-inducing signaling complex (DISC)-mediated caspase 8 processing. Moreover, after protection against death receptor-induced apoptosis by caspase inhibition or Bcl2 overexpression, IFN-gamma also sensitized for Fas- and TRAIL death receptor-mediated NF-kappaB activation leading to synergistic upregulation of a variety of proinflammatory genes. In contrast, Fas-mediated activation of JNK, p38, and p42/44 occurred essentially independent from IFN-gamma sensitization, indicating that the apoptosis- and NF-kappaB-related FasL-IFN-gamma cross talk was not due to a simple global enhancement of Fas signaling. Overexpression of FLIP(L) and FLIP(S) inhibited Fas- as well as TRAIL-mediated NF-kappaB activation and apoptosis induction in IFN-gamma-primed cells suggesting that both responses are coregulated at the level of the DISC.  相似文献   

14.
Our laboratory has previously demonstrated that the ligation of phagocytic receptors on macrophages can influence cytokine production. In this study, we examine the cytokine responses to multiple inflammatory stimuli following FcgammaR ligation. Macrophages were stimulated in vitro with LPS, lipoteichoic acid, CD40 ligand, or low molecular mass hyaluronic acid. All of these stimuli were proinflammatory in character, inducing the production of high levels of IL-12, but only modest amounts of IL-10. The coligation of FcgammaR along with these stimuli resulted in an anti-inflammatory profile, abrogating IL-12 production and inducing high levels of IL-10. The modulation of these two cytokines occurred by two independent mechanisms. Whereas the abrogation of IL-12 biosynthesis was a property shared by several macrophage receptors, the induction of IL-10 was specific to the FcgammaR. The biological relevance of these observations was examined in murine models of endotoxemia, in which FcgammaR ligation induced the rapid production of IL-10 and prevented IL-12 synthesis. Mice could be passively immunized with Abs to LPS to reverse inflammatory cytokine production, and the transfer of macrophages whose FcgammaR had been ligated could rescue mice from lethal endotoxemia. Thus, the ligation of the macrophage FcgammaR can be exploited to prevent inappropriate inflammatory cytokine responses.  相似文献   

15.
Activation of protein kinase C (PKC) can protect cells from apoptosis induced by various agents, including Fas ligation. To elucidate a possible interaction between Fas-mediated apoptotic signals and activation-related protective signals, we investigated the impact of Fas ligation on PKC activity. We demonstrate that engagement of Fas on human lymphoid Jurkat cells triggered apoptosis, and Fas ligation resulted in partial blockade of cellular PKC activity. The phorbol 12-myristate 13-acetate-mediated translocation of PKCtheta from the cytoplasm to the membrane was inhibited by treatment with anti-Fas antibody, whereas the translocation of PKCalpha or epsilon was not affected. In vitro kinase assay of PKCalpha or epsilon phosphotransferase activity demonstrated that Fas ligation inhibited the ability of PKCalpha to phosphorylate histone H1 as substrate but did not inhibit epsilon isozyme activity. This inhibition of PKCalpha activity mediated by Fas ligation was reversed by okadaic acid, a phosphatase inhibitor, suggesting the involvement of a member of the protein phosphatase 2A subfamily in this component of Fas signaling. Identical patterns of PKC isozyme inhibition were obtained using mouse thymoma cells overexpressing the fas gene (LF(+)). These results suggest that the selective inhibition of a potentially protective, PKC-mediated pathway by Fas activation may, to some extent, contribute to Fas-induced apoptotic signaling.  相似文献   

16.
In this study, we examined the role of Fas apoptotic inhibitory molecule 2 (Faim2), an inhibitor of the Fas signaling pathway, and its regulation by stress kinase signaling during Fas-mediated apoptosis of 661W cells, an immortalized photoreceptor-like cell line Treatment of 661W cells with a Fas-activating antibody led to increased levels of Faim2. Both ERK and JNK stress kinase pathways were activated in Fas-treated 661W cells, but only the inhibition of the ERK pathway reduced the levels of Faim2. Blocking the ERK pathway using a pharmacological inhibitor increased the susceptibility of 661W cells to Fas-induced caspase activation and apoptosis. When the levels of Faim2 were reduced in 661W cells by siRNA knockdown, Fas activating antibody treatment resulted in earlier and more robust caspase activation, and increased cell death. These results demonstrate that Faim2 acts as a neuroprotectant during Fas-mediated apoptosis of 661W cells. The expression of Faim2 is triggered, at least in part, by Fas-receptor activation and subsequent ERK signaling. Our findings identify a novel protective pathway that auto-regulates Fas-induced photoreceptor apoptosis in vitro. Modulation of this pathway to increase Faim2 expression may be a potential therapeutic option to prevent photoreceptor death.  相似文献   

17.
Blood monocytes are important cellular sources of a vast array of bioactive substances, including regulatory and chemotactic cytokines. The regulation of these cytokines is of critical importance to the expression of acute and chronic inflammatory responses. IL-7, a T and B cell-activating cytokine, has recently been shown to have stimulatory effects on the expression of several monocyte-derived proinflammatory cytokines. We now describe the induction of IL-8 mRNA and extracellular protein from human blood monocytes by IL-7. The up-regulation of IL-8 mRNA by IL-7 was not altered by concomitant treatment with cycloheximide, suggesting that the direct stimulatory effects of IL-7 were not dependent upon de novo protein synthesis. In addition, IL-7 significantly potentiated the production of IL-8 from LPS-, TNF-, and IL-1-treated peripheral blood monocytes. Our findings suggest that IL-7 may play a critical role in the modulation of macrophage-derived cytokine expression and may function in vivo as an important proinflammatory cytokine.  相似文献   

18.
Bosshart H  Heinzelmann M 《FEBS letters》2003,553(1-2):135-140
Inflammatory responses of human peripheral blood monocytes to the Gram-negative endotoxin lipopolysaccharide (LPS) are enhanced by structurally diverse substances, such as anionic polysaccharides or cationic polypeptides. Only a few substances are known to effectively blunt LPS-induced monocyte activation. We now show that synthetic poly-L-histidine (Hn) binds to LPS and abrogates the release of the proinflammatory cytokine interleukin-8 (IL-8) in LPS-stimulated human whole blood. LPS-induced stimulation of monocytes was strictly pH-dependent with only minor amounts of IL-8 secreted in acidic blood. Maximum levels of IL-8 secretion occurred at a strongly basic pH. Hn inhibition of the release of IL-8 from LPS-stimulated monocytes was observed under acidic, neutral and physiological conditions. With increasing alkalosis, the effectiveness of Hn was gradually lost, suggesting that protonated, but not deprotonated, Hn was effective in inhibiting LPS-induced monocyte responses. Histidine-rich protein 2 from the malaria parasite, Plasmodium falciparum, inhibited the ability of LPS to evoke an inflammatory response in CD14-transfected THP-1 cells. Further, a short synthetic peptide derived from human histidine- and proline-rich glycoprotein also exhibited LPS-inhibitory effects in CD14 transfectants. Taken together, these observations demonstrate the capacity of histidine-rich peptides, irrespective of their origin, to neutralize LPS-induced proinflammatory host responses.  相似文献   

19.
Inflammatory bowel disease (IBD) results from dysregulation of intestinal mucosal immune responses to microflora in genetically susceptible hosts. A major challenge for IBD research is to develop new strategies for treating this disease. Berberine, an alkaloid derived from plants, is an alternative medicine for treating bacterial diarrhea and intestinal parasite infections. Recent studies suggest that berberine exerts several other beneficial effects, including inducing anti-inflammatory responses. This study determined the effect of berberine on treating dextran sulfate sodium (DSS)-induced intestinal injury and colitis in mice. Berberine was administered through gavage to mice with established DSS-induced intestinal injury and colitis. Clinical parameters, intestinal integrity, proinflammatory cytokine production, and signaling pathways in colonic macrophages and epithelial cells were determined. Berberine ameliorated DSS-induced body weight loss, myeloperoxidase activity, shortening of the colon, injury, and inflammation scores. DSS-upregulated proinflammatory cytokine levels in the colon, including TNF, IFN-γ, KC, and IL-17 were reduced by berberine. Berberine decreased DSS-induced disruption of barrier function and apoptosis in the colon epithelium. Furthermore, berberine inhibited proinflammatory cytokine production in colonic macrophages and epithelial cells in DSS-treated mice and promoted apoptosis of colonic macrophages. Activation of signaling pathways involved in stimulation of proinflammatory cytokine production, including MAPK and NF-κB, in colonic macrophages and epithelial cells from DSS-treated mice was decreased by berberine. In summary, berberine promotes recovery of DSS-induced colitis and exerts inhibitory effects on proinflammatory responses in colonic macrophages and epithelial cells. Thus berberine may represent a new therapeutic approach for treating gastrointestinal inflammatory disorders.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号