首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Arthropods are critical ecosystem components due to their high diversity and sensitivity to perturbation. Furthermore, due to their ease of capture they are often the focus of environmental health surveys. There is much debate regarding the best sampling method to use in these surveys. Sweep netting and pan trapping are two sampling methods commonly used in agricultural arthropod surveys, but have not been contrasted in natural grassland systems at the community level. The purpose of this study was to determine whether sweep netting was effective at estimating arthropod diversity at the community level in grasslands or if supplemental pan trapping was needed. Arthropods were collected from grassland sites in Montana, USA, in the summer of 2011. The following three standardized evaluation criteria (consistency, reliability, and precision) were developed to assess the efficacy of sweep netting and pan trapping, based on analyses of variations in arthropod abundances, species richness, evenness, capture frequency, and community composition. Neither sampling method was sufficient in any criteria to be used alone for community‐level arthropod surveys. On a taxa‐specific basis, however, sweep netting was consistent, reliable, and precise for Thysanoptera, infrequently collected (i.e., rare) insects, and Arachnida, whereas pan trapping was consistent, reliable, and precise for Collembola and bees, which is especially significant given current threats to the latter's populations worldwide. Species‐level identifications increase the detected dissimilarity between sweep netting and pan trapping. We recommend that community‐level arthropod surveys use both sampling methods concurrently, at least in grasslands, but likely in most nonagricultural systems. Target surveys, such as monitoring bee communities in fragmented grassland habitat or where detailed information on behavior of the target arthropod groups is available can in some instances employ singular methods. As a general ecological principle, consistency, reliability, and precision are appropriate criteria to evaluate the applicability of a given sampling method for both community‐level and taxa‐specific arthropod surveys in any ecosystem.  相似文献   

2.
The abundance, richness and trophic structure of beetle assemblages (Insecta: Coleoptera) from remnant eucalypt woodlands of the Northern Plains, Victoria, is documented. Three sampling methods (pitfall trapping, direct searching, sweep netting) were used to sample beetles in four seasons over a year. A total of 4487 beetles were sorted into 342 morphospecies from 46 families. Pitfall trapping alone caught the greatest number of families (72%), morphospecies (56%) and specimens (50%). However, direct searching and sweep netting yielded a large number of morphospecies not caught by pitfall trapping. Sampling in summer yielded the greatest number of families (78%) and morphospecies (55%) but the most specimens (31%) were caught during winter. The proportions of different trophic groups varied little across different seasons but greatly for sampling methods. Pitfall trapping caught a higher proportion of predators and a lower proportion of herbivores than other sampling methods. Direct searching caught mostly herbivores, whilst sweep netting captured a large number of fungivores. The results have implications for the design of sampling sets for inventory surveys of invertebrate groups.  相似文献   

3.
Ecologists have quantified Orthoptera (grasshoppers and crickets) density in a wide variety of conservation studies. Objective determination of Orthoptera population size is possible using mark-release recapture techniques but these are time-consuming and of little use for all but the smallest scale studies. Therefore, a wide range of sampling techniques have been devised to quantify population density and the most commonly used methods include sweep netting and quadrat counts. It is the aim of this paper to critically review studies that have used these techniques and to provide useful suggestions for non-specialists on which method may be most applicable to their study site. This paper reviews a selection of the extensive literature reporting studies estimating the abundance of grasshoppers (Acrididae) in a wide range of grassland ecosystems. Where possible, studies on bush-crickets (Tettigoniidae) and crickets (Gryllidae) are included reflecting their overall contribution to assemblage diversity in grassland ecosystems and to highlight the need for further investigations of sampling efficiency on these two under-researched families.The most rapid and inexpensive sampling methods, such as quadrat and transect counts, involve ‘flushing’ grasshoppers from the sward. These techniques are fairly accurate in short, open swards (<50 cm sward height) where grasshopper densities are low (<2 adults per m2). At higher population densities (>2 adults per m2), methods which require the capture of grasshoppers such as box quadrats and sweep netting may be more appropriate. Sampling grasshopper populations in taller vegetation (>50 cm sward height) is more problematic as the efficiency of many techniques may be reduced by vegetation structure. Methods such as timed counts can be used at low densities (<2 adults per m2) and night trapping might be most applicable where high numbers of grasshoppers are present (>2 adults per m2).There is an urgent need for development of a standardised sampling technique that can produce comparable data from studies with a wide variety of observers in grasslands with differing vegetation structures and grasshopper densities.  相似文献   

4.
We sampled butterflies in six different habitat types in and around Katavi National Park, a remote reserve consisting primarily of miombo woodland and seasonal lakes in western Tanzania. Blendon traps set for 531 trap days and 143 h of butterfly netting at 35 sites yielded 186 species from five families over a 4‐month period during the wet season. Eight of these species constituted possible range extensions. Butterfly abundance and species richness were low in cultivated habitats but high in open riverine habitats; many butterfly species were found only in seasonally flooded grassland. This study constitutes the first butterfly species inventory from this poorly‐known national park, shows that protection of dry season water sources provides an important conservation service for invertebrates as well as large mammals, and that increased cultivation outside miombo parks can reduce local butterfly diversity.  相似文献   

5.
The Wood White butterfly Leptidea sinapis, a UK BAP Priority species, is present in a number of Forestry Commission woodlands in the West Midlands and these constitute an important part of the national resource of this butterfly. A joint SITA Trust funded project between the Forestry Commission and Butterfly Conservation (linking with the National Wood White Conservation Project) is researching the use of habitat by Leptidea sinapis within these sites with regard to targeting conservation management. Two aspects of this research are presented: the results of a mark-recapture study and an analysis of egg-laying habitat. Mark-recapture results show considerable movement between areas of concentrations of adults and between egg-laying areas, with males moving further and faster than females. Movements do occur across potential habitat barriers. Egg locations were found by following females and by searching for eggs. The habitat used for egg-laying is extremely variable even within a site. A number of foodplants species are used and habitat ranges from low height foodplants within bare ground to a foodplant height of over 1 m within thick vegetation and scrub. These results are being integrated into an ongoing project to restore Leptidea sinapis habitat within managed Forestry Commission woodlands.  相似文献   

6.
Public participation in scientific research, now commonly referred to as citizen science, is increasingly promoted as a possibility to overcome the large-scale data limitations related to biodiversity and conservation research. Furthermore, public data-collection projects can stimulate public engagement and provide transformative learning situations. However, biodiversity monitoring depends on sound data collection and warranted data quality. Therefore, we investigated if and how trained and supervised pupils are able to systematically collect data about the occurrence of diurnal butterflies, and how this data could contribute to a permanent butterfly monitoring system. We developed a specific assessment scheme suitable for laypeople and applied it at 35 sampling sites in Tyrol, Austria. Data quality and its explanatory power to predict butterfly habitat quality was investigated comparing data collected by pupils with independent assessments of professional butterfly experts. Despite substantial identification uncertainties for some species or species groups, the data collected by pupils was successfully used to predict the general habitat quality for butterflies using a linear regression model (r²?=?0.73, p?<0.001). Applying the proposed method in a citizen science context with laypeople could support both the long term monitoring of butterfly habitat quality, as well as the efficient selection of sites for professional in-depth assessments.  相似文献   

7.
Growing interest in conservation and biodiversity increased the demand for accurate and consistent identification of biological objects, such as insects, at the level of individual or species. Among the identification issues, butterfly identification at the species level has been strongly addressed because it is directly connected to the crop plants for human food and animal feed products. However, so far, the widely-used reliable methods were not suggested due to the complicated butterfly shape. In the present study, we propose a novel approach based on a back-propagation neural network to identify butterfly species. The neural network system was designed as a multi-class pattern classifier to identify seven different species. We used branch length similarity (BLS) entropies calculated from the boundary pixels of a butterfly shape as the input feature to the neural network. We verified the accuracy and efficiency of our method by comparing its performance to that of another single neural network system in which the binary values (0 or 1) of all pixels on an image shape are used as a feature vector. Experimental results showed that our method outperforms the binary image network in both accuracy and efficiency.  相似文献   

8.
Presence or absence of threatened species in samples is information that is widely used in designing and implementing conservation actions. We explored the effectiveness of beetle (Coleoptera) inventories and contribution of different sampling methods in revealing occurrences of threatened and near threatened species in boreal forests. The number of species caught using traps in a particular area proved to be a useful indicator of the representativeness of data, the relationship between total number of species and the number of threatened and near threatened species being almost exponential. Samples containing less than 200 trapped species (or 2000 individuals) are almost useless in surveying threatened and near threatened species. The probability of finding such species increases considerably when the number of trapped species exceeds 400. Window traps attached directly on the trunks of dead trees proved to be the most efficient sampling method in trapping threatened beetles, whereas many other standard methods gave relatively poor results. We suggest that the best alternative in surveying threatened species in boreal forests is a combination of intensive direct searching and trunk window traps. Finding threatened beetles with rigorous probability requires very large sample sizes, even if the most effective sampling methods are used. For example, ranking 10 boreal forest areas to be protected according to the occurrence of threatened species with some reliability may require trapping of over 100000 beetle individuals. Collecting and identifying these large samples routinely in conservation actions is not feasible, which means that shortcuts (indicators etc.) are necessary. However, a lot of good-quality inventories with appropriate sampling efforts are needed before these shortcuts can be identified and elaborated. Such inventories are also crucial for the improvement of the classification of threatened species and full assessment on how past forest management has eventually affected the biota.  相似文献   

9.
为了探讨红外相机技术、网捕法、固定距离样线法和固定半径样点法对森林鸟类多样性调查的有效性和实用性, 我们于2011-2016年, 用这几种方法调查了广东南岭国家级自然保护区和车八岭国家级自然保护区的鸟类多样性。在南岭, 固定距离样线法和固定半径样点法记录鸟类222种, 网捕鸟类43种, 红外相机拍到鸟类47种; 其中1种鸟仅网捕到, 6种鸟仅被红外相机拍到, 164种鸟仅被固定距离样线法和固定半径样点法记录到。在车八岭, 固定距离样线法和固定半径样点法记录鸟类109种, 网捕鸟类42种, 红外相机拍到鸟类27种, 其中9种鸟仅网捕到, 3种鸟仅被红外相机拍到, 97种鸟仅被固定距离样线法和固定半径样点法记录到。随着鸟类的体重、体长、翅长和跗蹠增加, 网捕到的鸟类个体数量减少, 鸟类身体大小与网捕到的鸟类数量呈显著负相关; 而红外相机拍到的鸟类数量随鸟类的身体大小增大而增加, 并且呈显著的正相关。本文的结果显示, 网捕法和红外相机技术针对不同类群的鸟类调查效力不同, 但都是固定距离样线法和固定半径样点法的有效补充。建议今后开展森林鸟类多样性调查与监测时, 尽量采用多种研究方法相结合, 以求达到最优的效果。  相似文献   

10.
In ecological and conservation studies, responsible researchers strive to obtain rich data while minimizing disturbance to wildlife and ecosystems. We assessed if samples collected noninvasively can be used for faecal microbiome research, comparing microbiota of noninvasively collected faecal samples to those collected from trapped common cranes at the same sites over the same periods. We found significant differences in faecal microbial composition (alpha and beta diversity), which likely did not result from noninvasive sample exposure to soil contaminants, as assessed by comparing bacterial oxygen use profiles. Differences might result from trapped birds' exposure to sedatives or stress. We conclude that if all samples are collected in the same manner, comparative analyses are valid, and noninvasive sampling may better represent host faecal microbiota because there are no trapping effects. Experiments with fresh and delayed sample collection can elucidate effects of environmental exposures on microbiota. Further, controlled tests of stressing or sedation may unravel how trapping affects wildlife microbiota.  相似文献   

11.
Dispersal knowledge is essential for conservation management, and demand is growing. But are we accumulating dispersal knowledge at a pace that can meet the demand? To answer this question we tested for changes in dispersal data collection and use over time. Our systematic review of 655 conservation-related publications compared five topics: climate change, habitat restoration, population viability analysis, land planning (systematic conservation planning) and invasive species. We analysed temporal changes in the: (i) questions asked by dispersal-related research; (ii) methods used to study dispersal; (iii) the quality of dispersal data; (iv) extent that dispersal knowledge is lacking, and; (v) likely consequences of limited dispersal knowledge. Research questions have changed little over time; the same problems examined in the 1990s are still being addressed. The most common methods used to study dispersal were occupancy data, expert opinion and modelling, which often provided indirect, low quality information about dispersal. Although use of genetics for estimating dispersal has increased, new ecological and genetic methods for measuring dispersal are not yet widely adopted. Almost half of the papers identified knowledge gaps related to dispersal. Limited dispersal knowledge often made it impossible to discover ecological processes or compromised conservation outcomes. The quality of dispersal data used in climate change research has increased since the 1990s. In comparison, restoration ecology inadequately addresses large-scale process, whilst the gap between knowledge accumulation and growth in applications may be increasing in land planning. To overcome apparent stagnation in collection and use of dispersal knowledge, researchers need to: (i) improve the quality of available data using new approaches; (ii) understand the complementarities of different methods and; (iii) define the value of different kinds of dispersal information for supporting management decisions. Ambitious, multi-disciplinary research programs studying many species are critical for advancing dispersal research.  相似文献   

12.
The prediction of adult emergence times in insect populations can be greatly complicated by microclimatic gradients, especially in circumstances where distributions of juveniles along those gradients vary from year to year. To investigate adult emergence patterns in topographically heterogeneous habitats, we built a model of postdiapause development of the Bay checkerspot butterfly, Euphydryas editha bayensis. The model uses slope-specific insolation as the rate-controlling variable, and accounts for both solar exposure of the habitat and cloud cover. Instar-specific larval mass gains per unit of insolation were determined from mark-recapture experiments. A small correction for daily low temperatures was used to calibrate the model to five years of field data on larval mass. The model predicted mean mass of 90% of larval samples within 4 clear days over a 70–120 day growing season. The magnitude of spatial variation in emergence times across habitat slopes is greater than annual variation in emergence times due to yearly weather conditions. Historical variation (yearly shifts in larval distributions across slopes) is an important determinant of mean population emergence dates. All of these factors need to be considered in understanding adult emergence phenology in this butterfly and in other insects inhabiting heterogeneous thermal environments. Such an understanding can be useful in managing insect populations for both pest control and conservation.  相似文献   

13.
Ecologists often use mark-recapture to estimate demographic variables such as abundance, growth rate, or survival for samples of wild animal populations. A common assumption underlying mark-recapture is that all animals have an equal probability of detection, and failure to meet or correct for this assumption–as when certain members of the population are either easier or more difficult to capture than other animals–can lead to biased and inaccurate demographic estimates. We built within-year and among-years Cormack-Jolly-Seber recaptures-only models to identify causes of capture heterogeneity for a population of colonially nesting cliff swallows (Petrochelidon pyrrhonota) caught using mist-netting as a part of a 20-year mark-recapture study in southwestern Nebraska, U.S.A. Daily detection of cliff swallows caught in stationary mist nets at their colony sites declined as the birds got older and as the frequency of netting at a site within a season increased. Experienced birds’ avoidance of the net could be countered by sudden disturbances that startled them into a net, such as when we dropped a net over the side of a bridge or flushed nesting cliff swallows into a stationary net positioned at a colony entrance. Our results support the widely held, but seldom tested, belief that birds learn to avoid stationary mist nets over time, but also show that modifications of traditional field methods can reduce this source of recapture heterogeneity.  相似文献   

14.
Tick‐borne disease surveillance and research rely on resource‐effective methods for tick collection. This study compared the respective performances of several trapping methods in a mixed grassland–forest habitat in western Tennessee. To test for temporal differences in effectiveness, sites were sampled monthly (April–August 2013) using dry ice, dragging, flagging, sweep netting, carbon dioxide (CO2) dragging and CO2 flagging methods. To evaluate the effect of habitat on method effectiveness, four methods (dragging, CO2 dragging, CO2 flagging and dry ice) were compared in four habitat types (bottomland deciduous, upland deciduous, coniferous and grassland) in June 2014. In the temporal comparison, ticks were found to be most abundant in April and May, and there was a significant sampling period and method interaction, such that method effectiveness varied across sampling period. Sweep netting was significantly less effective than the other methods. In the habitat comparison, dry ice trap collections represented the most effective method in upland deciduous and coniferous habitats. Flagging using CO2 was significantly less effective than CO2 dragging and dragging in bottomland deciduous habitats. The success of the various collection methods did not differ significantly within grassland habitats. Overall, dry ice trapping and dragging were the most effective methods for tick collection across time and habitat.  相似文献   

15.
Accurate assessments of population parameters, such as survival and abundance, are critical for effective wildlife conservation. In order for wildlife managers to undertake long-term monitoring of populations, the data collection must be as cost-effective as possible. Two demographic modelling techniques commonly used are mark-recapture and mark-resight. Mark-resight can be used in conjunction with biotelemetry methods and offers a more cost effective alternative to the traditional mark-recapture models. However, there has been no empirical comparison of the demographic parameters obtained from the two modelling techniques. This study used photographs of natural markings to individually identify wobbegong sharks (Orectolobus maculatus) sighted during underwater surveys over a 2 year period, during eight distinct sampling periods, and analysed with Pollock’s robust design mark-recapture models. These estimates were then compared, using z tests, with Poisson-lognormal mark-resight models that used resightings of sharks previously tagged with telemetry transmitters, and the telemetry data to calculate the number of marked animals present in each sampling period. Sharks were categorised into four groups according to their sex and age-class (adult/juvenile). The results indicated that there was a high degree of transience in the population, with 62 % of sharks only being sighted in one sampling period. Based on normalized Akaike weights, there was no single ‘best’ model for either type of modelling technique and model averaging was used to determine the demographic estimates. Both models showed higher abundance of wobbegongs in the austral spring and summer seasons, however, the models produced statistically different results for five of the eight sampling periods. The mark-recapture model estimated apparent survival between 78 and 95 %, whereas the mark-resight models estimated it between 48 and 97 %. Crucially, there was no statistical difference between the survival estimates from corresponding sex/age-class. The temporary emigration parameters differed substantially between the model types. The mark-recapture model showed support for Markovian movement, whereas the mark-resight supported random emigration. The timing of the tagging events likely biased the abundance and temporary emigration parameters estimated by mark-resight models and must be taken into consideration when designing a mark-resight study. Despite this, this study shows that robust demographic estimates, that are comparable to labour intensive mark-recapture estimates, can still be obtained using mark-resight methods. Given the substantial increase in biotelemetry studies of medium and large sized vertebrates, mark-resight models may play an important future role in estimating demographic parameters.  相似文献   

16.
The Sage Grouse Centrocercus urophasianus is a species of conservation concern throughout its range in western North America. Since the 1950s, the high count of males at leks has been used as an index for monitoring populations. However, the relationship between this lek-count index and population size is unclear, and its reliability for assessing population trends has been questioned. We used non-invasive genetic mark-recapture analysis of faecal and feather samples to estimate pre-breeding population size for the Parachute-Piceance-Roan, a small, geographically isolated population of Sage Grouse in western Colorado, during two consecutive winters from 2012 to 2014. We estimated total pre-breeding population size as 335 (95% confidence interval (CI): 287–382) in the first winter and 745 (95% CI: 627–864) in the second, an approximate doubling in abundance between years. Although we also observed a large increase in the spring lek-count index between those years, high male count data poorly represented mark-recapture estimates of male abundance in each year. Our data suggest that lek counts are useful for detecting the direction and magnitude of large changes in Sage Grouse abundance over time but they may not reliably reflect small changes in abundance that may be relevant to small populations of conservation concern.  相似文献   

17.
The Homerus swallowtail, Papilio (Pterourus) homerus (Lepidoptera: Papilionidae), is an endangered species of butterfly endemic to Jamaica. As the largest species of the genus Papilio in the world and the largest butterfly in the Western Hemisphere, this rare butterfly once inhabited most of Jamaica but has now dwindled into two tiny populations: an eastern population, found where the Blue Mountains and John Crow Mountains merge, and a western population in the Cockpit Country. The present research focused on the previously unstudied Cockpit Country population of P. homerus; most previous information about this species is derived from studies of the eastern population. The purpose was to estimate the size of the remaining population in the Cockpit Country using MRR protocols, while making observations to better understand its ecology. Sampling consisted of carefully netting the butterfly, marking a permanent ink number on the wing (metallic Sharpie® marker), and recording winglength, wing condition, time, and sex. The population was found to be very small, estimated at fewer than 50 flying individuals. Many observations were made about the ecology of the species. These new data suggest a conservation plan is strongly needed, coupled with a breeding program to increase numbers of this extraordinary butterfly.  相似文献   

18.
Occupancy has several important advantages over abundance methods and may be the best choice for monitoring sparse populations. Here we use simulations to evaluate competing designs (number of sites vs. number of surveys) for occupancy monitoring, with emphasis on sparse populations of the endangered Karner blue butterfly (Lycaeides melissa samuelis Nabokov). Because conservation planning is usually abundance-based, we also ask whether detection/non-detection data may reliably convert to abundance, hypothesizing that occupancy provides a more dependable shortcut when populations are sparse. Count-index and distance sampling were conducted across 50 habitat patches containing variably sparse Karner blue populations. We used occupancy-detection model estimates as simulation inputs to evaluate primary replication tradeoffs, and used peak counts and population densities to evaluate the occupancy-abundance relationship. Detection probability and therefore optimal design of occupancy monitoring was strongly temperature dependent. Assuming a quality threshold of 0.075 root-mean square error for the occupancy estimator, the minimum allowable effort was 360 (40 sites?×?9 surveys) for spring generation and 200 (20 sites?×?10 surveys) for summer generation. A mixture model abundance estimator for repeated detection/non-detection data was biased low for high-density and low-density populations, suggesting that occupancy may not provide a reliable shortcut in abundance-based conservation planning for sparse butterfly populations.  相似文献   

19.
Model selection is a common and established research method. Statistically rigorous model selection methods are used in a variety of research fields. In contrast, studies that characterize functional response models commonly use a model selection method that is specific to functional response studies. The specific method aims to distinguish between Holling’s type II and type III functional response models. This paper discusses problems associated with the specific method and suggests that it would be better to use general model selection methods that allow to consider a variety of models.  相似文献   

20.
Accurate knowledge of species’ habitat associations is important for conservation planning and policy. Assessing habitat associations is a vital precursor to selecting appropriate indicator species for prioritising sites for conservation or assessing trends in habitat quality. However, much existing knowledge is based on qualitative expert opinion or local scale studies, and may not remain accurate across different spatial scales or geographic locations. Data from biological recording schemes have the potential to provide objective measures of habitat association, with the ability to account for spatial variation. We used data on 50 British butterfly species as a test case to investigate the correspondence of data-derived measures of habitat association with expert opinion, from two different butterfly recording schemes. One scheme collected large quantities of occurrence data (c. 3 million records) and the other, lower quantities of standardised monitoring data (c. 1400 sites). We used general linear mixed effects models to derive scores of association with broad-leaf woodland for both datasets and compared them with scores canvassed from experts.Scores derived from occurrence and abundance data both showed strongly positive correlations with expert opinion. However, only for occurrence data did these fell within the range of correlations between experts. Data-derived scores showed regional spatial variation in the strength of butterfly associations with broad-leaf woodland, with a significant latitudinal trend in 26% of species. Sub-sampling of the data suggested a mean sample size of 5000 occurrence records per species to gain an accurate estimation of habitat association, although habitat specialists are likely to be readily detected using several hundred records. Occurrence data from recording schemes can thus provide easily obtained, objective, quantitative measures of habitat association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号