首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anthropogenic disturbance has generated a significant loss of biodiversity worldwide and grazing by domestic herbivores is a contributing disturbance. Although the effects of grazing on plants are commonly explored, here we address the potential multi‐trophic effects on animal biodiversity (e.g. herbivores, pollinators and predators). We conducted a meta‐analysis on 109 independent studies that tested the response of animals or plants to livestock grazing relative to livestock excluded. Across all animals, livestock exclusion increased abundance and diversity, but these effects were greatest for trophic levels directly dependent on plants, such as herbivores and pollinators. Detritivores were the only trophic level whose abundance decreased with livestock exclusion. We also found that the number of years since livestock was excluded influenced the community and that the effects of grazer exclusion on animal diversity were strongest in temperate climates. These findings synthesise the effects of livestock grazing beyond plants and demonstrate the indirect impacts of livestock grazing on multiple trophic levels in the animal community. We identified the potentially long‐term impacts that livestock grazing can have on lower trophic levels and consequences for biological conservation. We also highlight the potentially inevitable cost to global biodiversity from livestock grazing that must be balanced against socio‐economic benefits.  相似文献   

2.
Riparian habitat supports the highest density and diversity of songbirds in Western North America despite covering less than 1% of the land area. Widespread destruction and degradation of riparian habitat, especially by livestock grazing, has led to habitat restoration efforts. In 2000, restoration activities in the form of permanent and seasonal exclusion of livestock from riparian areas were initiated to improve habitat for the endangered Western Yellow‐breasted Chat (Icteria virens auricollis) population, which is dependent on early successional shrub habitat for nesting, in the Okanagan Valley of British Columbia, Canada. We assessed the effectiveness of livestock exclusion by examining temporal changes in the abundance, richness, and breeding performance of birds in restoration and reference sites. The abundance of W. Yellow‐breasted Chats significantly increased between 2002 and 2013 in areas where restoration activities occurred. However, restoration did not have significant effects on the abundance, richness, or breeding performance of other riparian birds at the restoration sites independent of temporal changes that occurred at reference sites. Our results provide evidence that limiting livestock grazing in temperate riparian areas can lead to recovery of endangered riparian songbirds that rely on early successional shrub habitat but may have limited effects on common species that are not strictly reliant on this habitat.  相似文献   

3.
放牧家畜是调控草原植物多样性的重要因素, 探究不同家畜类型及其放牧行为下植物多样性的响应, 有助于全面理解草原植物多样性维持机制。该研究以内蒙古大学野外实验基地放牧控制实验为平台, 研究了中等放牧强度下不同家畜类型(牛、山羊、绵羊)及其选择性采食和聚集性放牧行为对植物α、β和γ多样性以及群落结构的影响。结果表明: (1)中等强度放牧牛、山羊和绵羊均在一定程度上提高了植物α、β和γ多样性。其中, 牛对植物多样性的提升作用最大且具有显著性。(2) 3种家畜放牧均显著改变了植物群落结构。绵羊的选择性采食导致下层优势物种糙隐子草(Cleistogenes squarrosa)的相对多度显著降低, 使其与牛或山羊放牧导致的群落结构变化趋势相反。(3) 3种家畜具有不同的牧草选择和放牧聚集行为。牛和山羊放牧使上层优势种羊草(Leymus chinensis)和大针茅(Stipa grandis)以及下层优势种糙隐子草地上生物量均显著降低, 而绵羊放牧仅使糙隐子草地上生物量显著降低。此外, 牛的采食空间聚集性显著低于山羊和绵羊。(4)植物多样性随上层或下层优势种地上生物量增加而显著降低或呈下降趋势, 表明放牧家畜能够通过抑制优势种生物量来提高植物多样性。(5)植物多样性随家畜采食空间聚集程度增加而显著降低或表现出下降趋势, 说明较低的放牧聚集性有利于植物多样性的维持。该研究表明, 内蒙古典型草原植物多样性保护和持续管理体系需要同时考虑放牧强度和家畜类型的影响。  相似文献   

4.
Diptera that breed in undisturbed cattle droppings in pastures present great diversity and abundance, and several species are of veterinary importance and may cause economic losses. To survey the diversity, abundance and seasonality of Diptera associated to this microhabitat, 83 samples of 10 dung pats each were taken from April 1992 to April 1994 in the vicinity of S?o Carlos, State of S?o Paulo, Southeastern Brazil. A total of 46,135 Diptera belonging to 20 families and at least 51 species were found to breed in the pats. The most abundant and diverse families were Sepsidae, Muscidae, Sarcophagidae and Sphaeroceridae. In general, the abundance was higher from October to March, the warm and wet months. The importance of some Diptera, both as horn fly enemies and as cattle dung decaying agents, is discussed.  相似文献   

5.
Livestock grazing is often thought to enhance native plant species co-existence in remnant grasslands but may also favour exotic invaders. Recommendations for appropriate grazing strategies are needed, for which an understanding of the response of plant species is necessary. We explored the response of plant species and plant functional groups to grazing in temperate grassland of the Monaro Tablelands of south-east Australia by comparing species abundance in adjacent areas that differed in livestock grazing regime (minimal, infrequent and frequent). We also examined whether species with similar responses to grazing share certain traits and consider whether these traits might provide a useful method of assessing grazing impact. At the scale measured (0.25 m2), an infrequent grazing regime maximised plant species co-existence in these grasslands due to widespread invasion by exotic plant species at infrequent grazing intensity. Many native species declined in abundance when grazing frequency increased from minimal to infrequent. Annuals invaded under infrequent grazing while perennials declined most strongly under high frequency grazing. Low levels of grazing apparently reduce cover and create sites suitable for seed recruitment whereas more frequent grazing reduces the persistence of perennials. While there was a tendency for native species to be more susceptible to grazing impact than exotics, plant traits, in particular longevity (perennial, annual) provided a better prediction of the response of plants to grazing. Although a few native plant species persisted at high grazing frequency, even infrequent livestock grazing may not be appropriate for the conservation of many native perennial grassland species. Targeted reductions in grazing frequency may be necessary to enable the long-term coexistence of grazing susceptible species.  相似文献   

6.
The main aims of this study were to assess grazing impacts on bee communities in fragmented mediterranean shrubland (phrygana) and woodland habitats that also experience frequent wildfires, and to explain the mechanisms by which these impacts occur. Fieldwork was carried out in 1999 and 2000 on Mount Carmel, in northern Israel, a known hot-spot for bee diversity. Habitats with a range of post-burn ages and varying intensities of cattle grazing were surveyed by transect recording, grazing levels, and the diversity and abundance of both flowers and bees were measured. The species richness of both bees and flowers were highest at moderate to high grazing intensities, and path-analysis indicated that the effects of both grazing and fire on bee diversity were mediated mainly through changes in flower diversity, herb flowers being more important than shrubs. The abundance of bees increased with intensified grazing pressure even at the highest levels surveyed. Surprisingly though, changes in bee abundance at high grazing levels were not caused directly by changes in flower cover. The variation in bee abundance may have been due to higher numbers of solitary bees from the family Halictidae in grazed sites, where compacted ground (nesting resource) and composites (forage resource) were abundant. The effects of grazing on plants were clearest in the intermediate-aged sites, where cattle inhibited the growth of some of the dominant shrubs, creating or maintaining more open patches where light-demanding herbs could grow, thus allowing a diverse flora to develop. Overall, bee communities benefit from a relatively high level of grazing in phrygana. Although bee and flower diversity may decrease under very heavy grazing, the present levels of grazing on Mount Carmel appear to have only beneficial effects on the bee community.  相似文献   

7.
Livestock grazing is one of the main causes of rangeland degradation in Saudi Arabia. Fencing to exclude grazers is one of the main management practices used to restore vegetation and conserve biodiversity. The main objectives of this study were to investigate the changes in plant diversity and abundance, floristic composition and plant groups of the major life forms in response to thirty-five years of grazing exclosure in western Saudi Arabia. These vegetation attributes and palatability were compared in 30 sampling stands located in the excluded and grazed sites. Our results showed that livestock exclusion significantly increased covers, density and species richness of annuals, grasses, perennial forbs, shrubs and trees. Exclosure enhanced the abundance and richness of palatable species and depressed the development of weedy species. About 66.7% of the recorded species at the excluded site were highly palatable compared to 34.5% at the grazed site. In contrary, about 55.2% unpalatable species were found in the grazed site compared to 25.8% in the protected site. Jaccard’s similarity index between the excluded and grazed sites showed lower values of 0.39%, 0.40% and 0.31% at levels of families, genus and species, respectively. The results suggest that establishing livestock exclusion may be a useful sustainable management tool for vegetation restoration and conservation of plant diversity in degraded rangelands of arid regions.  相似文献   

8.
9.
Reindeer Rangifer tarandus L. grazing shapes forest vegetation, microclimate, and soil respiration in Lapland, especially due to grazing on lichens (Cladina). We studied how these changes and their magnitude affect ground‐dwelling species of beetle families Carabidae (predators) and Curculionidae (herbivores), by using pitfall traps to collect invertebrates from pairs of grazed and ungrazed study plots over a wide range of site types. Changes in abundance, composition, richness and diversity of beetle assemblage were tested in relation to magnitude of the impacts on vegetation. The species compositions of Carabidae and Curculionidae differed between grazed and ungrazed plots in all sites. The relative difference between grazed and ungrazed plots in the number of individuals increased linearly with the impact of reindeer on vegetation cover. Carabid beetles, as a family, were more common in grazed plots in all sites. Curculionid beetles were more common in ungrazed plots in the birch dominated sites. This difference was mainly due to the species that feeds on deciduous leaves. In the pine dominated sites with high Cladina cover and more changes in ground vegetation, the number of curculionids feeding on conifers was higher in grazed plots. Species richness and diversity (H’) of both families were higher in grazed plots. Of the total 27 species, 11 were found only in grazed plots, while not a single species was found only in ungrazed plots. The relative difference between plots in diversity and evennes (H’/H'max) had humped response to the difference in Cladina cover. The diversity values were greater in grazed plots at the intermediate levels of grazing impact, and only in sites with very low or extremely high Cladina cover difference was the diversity higher in ungrazed plots. The response of beetle diversity resembled the hypotheses suggested for the relationship between grazing and vegetation diversity: greatest positive effect at intermediate grazing intensity and negative effects at unproductive sites.  相似文献   

10.
Intensive livestock is known to significantly affect soil physical and chemical parameters in steppe ecosystems. However, the effects on soil biological parameters still remain unknown. We hypothesized that intensive grazing would significantly decrease the size and diversity of soil biota due to deterioration of the soil environment and reduction in vegetation cover, while the adapted grazing intensity would improve the biological parameters. Soil samples were collected from five sites with different grazing intensities and history in a semiarid steppe of Inner Mongolia in August 2005. Two sites were long-term ungrazed since 1979 (UG79) and 1999 (UG99), one had been moderately grazed in winter (WG), one continuously grazed moderately (CG) and one long-term site was heavily grazed (HG). Soil microbial biomass carbon (C), basal respiration (BR), catabolic diversity of soil microbial communities, protozoa and nematodes abundance were measured. Soil physicochemical variables were also measured to establish the relationships between soil biological parameters and key soil physical and chemical properties. Soil microbial biomass C, BR, biomass specific respiration (qCO2) and soil protozoa abundance were significantly lower at the HG site compared to the UG79 site, but no clear differences were found in the other sites. However, soil nematodes abundance increased with increasing grazing intensity, and the abundance of soil amoeba were greater in CG than in the other sites. Principal component analysis (PCA) of Biolog data revealed large differences in catabolic capacity of soil microbial communities between UG79, HG and UG99, WG, CG. However, Shannon??s diversity index did not indicate marked effects of grazing intensity on substrate catabolic community structure. In conclusion, heavy grazing negatively affected soil microbial biomass, activity and protozoan abundance, but positively influenced soil nematodes abundance and did not affect soil microbial catabolic diversity. Based on these results, CG may provide an appropriate grazing intensity to be used in the long term in the semiarid steppe of Inner Mongolia.  相似文献   

11.
Both arthropods and large grazing herbivores are important components and drivers of biodiversity in grassland ecosystems, but a synthesis of how arthropod diversity is affected by large herbivores has been largely missing. To fill this gap, we conducted a literature search, which yielded 141 studies on this topic of which 24 simultaneously investigated plant and arthropod diversity. Using the data from these 24 studies, we compared the responses of plant and arthropod diversity to an increase in grazing intensity. This quantitative assessment showed no overall significant effect of increasing grazing intensity on plant diversity, while arthropod diversity was generally negatively affected. To understand these negative effects, we explored the mechanisms by which large herbivores affect arthropod communities: direct effects, changes in vegetation structure, changes in plant community composition, changes in soil conditions, and cascading effects within the arthropod interaction web. We identify three main factors determining the effects of large herbivores on arthropod diversity: (i) unintentional predation and increased disturbance, (ii) decreases in total resource abundance for arthropods (biomass) and (iii) changes in plant diversity, vegetation structure and abiotic conditions. In general, heterogeneity in vegetation structure and abiotic conditions increases at intermediate grazing intensity, but declines at both low and high grazing intensity. We conclude that large herbivores can only increase arthropod diversity if they cause an increase in (a)biotic heterogeneity, and then only if this increase is large enough to compensate for the loss of total resource abundance and the increased mortality rate. This is expected to occur only at low herbivore densities or with spatio‐temporal variation in herbivore densities. As we demonstrate that arthropod diversity is often more negatively affected by grazing than plant diversity, we strongly recommend considering the specific requirements of arthropods when applying grazing management and to include arthropods in monitoring schemes. Conservation strategies aiming at maximizing heterogeneity, including regulation of herbivore densities (through human interventions or top‐down control), maintenance of different types of management in close proximity and rotational grazing regimes, are the most promising options to conserve arthropod diversity.  相似文献   

12.
The relative importance of monkey beetles (Hopliini, Scarabeidae) as pollinators of Asteraceae and Aizoaceae in the Succulent Karoo as well as the influence of livestock grazing on their abundance and diversity was investigated. Hopliine beetles proved to be the, or among the, most abundant flower visitors of 12 investigated plant species. However, during single flower observations at three Aizoaceae species, bees (Apoidea), bee flies (Bombyliidae) and pollen wasps (Masaridae) were the most frequent flower visitors. However, monkey beetles carried the highest Asteraceae and Aizoaceae pollen loads, and are therefore considered to play a vital role in the pollination of these two families. Abundance, species richness and diversity of Hopliini did not appear to be heavily affected by livestock grazing. Annual variation in the composition of monkey beetle populations was more dramatic. Still, some species showed higher abundances on heavily grazed rangeland while others only occurred under low grazing pressure. It is presumed that changes in the composition of the vegetation, especially the observed decrease of perennial plants in favour of annuals and geophytes (Todd and Hoffman 1999) could in turn affect the composition of monkey beetle assemblages.  相似文献   

13.
Human alteration of nutrient cycling and the densities of important consumers have intensified the importance of understanding how nutrients and consumers influence the structure of ecological systems. We examined the effects of both grazing and nutrient enrichment on algal abundance and diversity in a high-intertidal limpet-macroalgal community on the South Island of New Zealand, a relatively nutrient-poor environment. We used a fully factorial design with three levels each of grazing (manipulations of limpet and snail densities) and nutrients (nutrient-diffusers attached to the rock). Top-down control by grazers appears to be the driving organizing mechanism for algal communities in this system, with strong negative effects of grazing on algal diversity and abundance across all levels of nutrient enrichment. However, in contrast to the conclusions drawn from the analysis of the whole algal community, there was an interactive effect of grazing and enrichment on foliose algae, an important component of the algal system. When herbivory was reduced to very low levels, enrichment generated increases in the abundance and biomass of foliose algae. As expected, top-down control was the primary determinant of algal community structure in this system, controlling abundance and diversity of macrophytes on the upper shore. Contrary to expectations, however, increased nutrients had no community-wide effects, although foliose algal abundance increases were greatest with high nutrients and reduced grazing. It seems likely that most of the corticated algal species have limited capacity to respond to nutrient pulses in this nutrient-poor environment.  相似文献   

14.
Despite the widespread recognition that disturbance by livestock affects multiple indices of landscape health, few studies have examined their effects on both biotic and abiotic processes. We examined the effects of livestock disturbance on soil, vascular plants and reptiles across a disturbance gradient in a semi‐arid Australian woodland. Our gradient ranged from long‐ungrazed water remote sites, through intermediately grazed recovering sites, to currently grazed sites close to water. Our aim was to examine the nature of the effects of grazing‐induced disturbance on biotic and abiotic processes along the gradient. We detected small biotic effects, but no abiotic effects, at low levels of disturbance (intermediate sites). We could not detect a consistent biotic effect on plants or reptiles along the gradient, except between the extreme disturbances. In contrast, we recorded substantial reductions in abiotic structure and function at the most disturbed sites. Structural changes included reductions in the cover of shrub hummocks and increases in bare soil, and reductions in cryptogamic soil crusts. Structural changes were associated with declines in function (soil stability and nutrient indices). Our data are consistent with the notion that abiotic effects predominate at high levels of disturbance in rangelands. Given the extent of abiotic modification at currently grazed sites, the cover of abiotic elements such as hummocks and soil surfaces would seem a better indicator of the long‐term effect of grazing‐induced disturbance than biotic components. The extent of disturbance at currently grazed sites across large areas of rangeland suggests that autogenic recovery will be protracted.  相似文献   

15.
Balancing food production and biodiversity conservation is a global challenge today. Livestock grazing is one of the main activities triggering habitat degradation and land-use change around the world. Its effects on biodiversity have been widely explored, with birds being the most studied vertebrates. However, its impact seems to be contradictory given the disparity of the results. To understand the influence of livestock grazing on birds, we conducted a meta-analysis exploring the effects of several grazing characteristics on bird abundance and species richness. Our results showed that livestock grazing has a significant negative effect on bird abundance (mean effect size -0.422 ± 0.140), and species richness (mean effect size -0.391 ± 0.141). Livestock grazing affected negatively the bird abundance in riparian habitats in contrast to the other habitat types. Species richness was negatively affected by grazing in woody habitats and Afrotropical and Neotropical regions. Grazing by cattle was more detrimental for both bird richness and abundance than sheep grazing or a mixture of domestic livestock. Moreover, intermediate grazing intensity seems appropriate to maintain bird abundance and richness, as high grazing intensity dropped both bird abundance and species richness substantially, and low grazing intensity reduced bird species richness. This pattern supposes a non-linear effect of grazing intensity on birds. Therefore, the management of grazing intensity and type of livestock could help to reduce the negative effect on bird abundance and richness, as moderate grazing intensities and mix of livestock types appear to have a minor or null impact on bird abundance and richness. Future studies should explore in-depth the effect of moderate grazing intensities on bird diversity and composition to provide better management recommendations to enhance avian conservation in rangelands.  相似文献   

16.
Grazing, fire and selective tree cutting are major disturbances that shape species diversity in savanna ecosystems, yet their effects are highly variable. We carried out a factorial experiment with two levels to examine the effects of grazing, fire and selective tree cutting on herbaceous species richness, abundance and diversity on two sites in the Sudanian savanna-woodlands of Burkina Faso for 10 years (1994–2003). The results showed significant inter-annual variation in species richness, abundance and diversity at both sites (p<0.001), while main or combined effects of fire, grazing and selective cutting were very limited and varied between life forms and sites. Grazing tended to favour the diversity of perennial grasses; fire tended to influence the richness of annual grasses and abundance and diversity of perennial grasses while selective tree cutting had no effect on any of the vegetation attributes assessed. The combined effect of grazing, fire and selective cutting tended to increase the diversity of forbs. In many cases, the responses of herbaceous species to treatments were clearer on the site with deeper soils than the one with shallow soils. Depending on the site and treatments, the inter-annual variation in vegetation attributes was partly related to amount and/or frequency of rainfall and partly to inter-annual variation in grazing or fire intensity. It can be concluded that both disturbances and climatic condition influence the structure and diversity of herbaceous flora in the Sudanian savanna-woodland ecosystem. The responses were site-specific, which accentuates the importance of landscape-scale approaches to understand the impacts of disturbances on composition, structure and diversity of savanna ecosystems.  相似文献   

17.
The High Mountains of Córdoba, Argentina have a long evolutionary history of grazing by large herbivores. However, about 400?years ago, European livestock were introduced and gradually replaced native herbivores. Since the 1920s, domestic herbivores have been the only large herbivores present in the area, causing severe soil erosion and a threat to the system diversity. The endemic fauna of the region includes four amphibian species. We evaluated the effect of livestock rearing on amphibian diversity and water bodies in woodlands and grasslands of the High Mountains of Córdoba. The work was conducted on stream stretches and ponds in two contrasting grazing situations: an area with livestock presence and another area where livestock was excluded 14?years ago. The following variables were recorded at each sampling site: amphibian richness and abundance, percentage of emergent, submerged and peripheral vegetation in areas surrounding the water bodies, water pH, and water dissolved O2. No significant differences were detected in amphibian diversity between streams of both grazing situations, whereas a greater diversity (p?<?0.01) was observed in ponds in grazed grasslands. Our results suggest that livestock rearing, qualitatively measured as grazing and 14?years of livestock exclusion, in the study area would not have negative effects on amphibian diversity. This finding might be due to the long evolutionary grazing history of the area, large-scale livestock exclusion exhibiting a novel scenario. The ongoing reintroduction of native grazers may provide the benefits of grazing without the consequent soil erosion and habitat degradation associated with domestic livestock.  相似文献   

18.
Grazing by domestic livestock is one of the most widespread forms of anthropogenic disturbance globally, and can have a major impact on biodiversity and therefore conservation values. Here we use ants to assess the extent to which livestock grazing is compatible with biodiversity conservation in a tropical savanna of northern Australia, where there is growing pressure to intensify pastoral production. We focus on the extent to which ant responses conform with four general patterns identified in a recent global review: (1) soil and vegetation type have a far bigger impact on ant community composition than does grazing; (2) grazing modifies ant species composition but often not species richness or total abundance; (3) a species’ response often varies among habitats; and (4) between 25–50% of the species that can be statistically analysed are responsive to grazing. We sampled ants using pitfall traps at 38 sites in two land systems, based on cross-fence comparisons of areas of different grazing intensities. A total of 130 ant species from 24 genera were recorded, with the fauna dominated by species of Iridomyrmex and Monomorium. Land system was the primary driver of variation in ant species richness and composition, and grazing intensity was related to neither species richness nor total abundance. Only 10% of common species appeared to be impacted by grazing. Overall, ant responses to grazing in our study region were generally consistent with the four global patterns, except that the local fauna seems to be particularly resilient. Such resilience indicates that current grazing management practices are compatible with the conservation of ant biodiversity.  相似文献   

19.
In grasslands worldwide, grazing by ungulates and periodic fires are important forces affecting resource availability and plant community structure. It is not clear, however, whether changes in community structure are the direct effects of the disturbance (i.e. fire and grazing) or are mediated indirectly through changes in resource abundance and availability. In North American tallgrass prairies, fire and grazing often have disparate effects on plant resources and plant diversity, yet, little is known about the individual and interactive effects of fire and grazing on resource variability and how that variability relates to heterogeneity in plant community structure, particularly at small scales. We conducted a field study to determine the interactive effects of different long-term fire regimes (annual vs four-year fire frequency) and grazing by native ungulates ( Bos bison ) on small-scale plant community structure and resource variability (N and light) in native tallgrass prairie. Grazing enhanced light and nitrogen availability, but did not affect small-scale resource variability. In addition, grazing reduced the dominance of C4 grasses which enhanced species richness, diversity and community heterogeneity. In contrast, annual fire increased community dominance and reduced species richness and diversity, particularly in the absence of grazing, but had no effect on community heterogeneity, resource availability and resource variability. Variability in the abundance of resources showed no relationship with community heterogeneity at the scale measured in this study, however we found a relationship between community dominance and heterogeneity. Therefore, we conclude that grazing generated small-scale community heterogeneity in this mesic grassland by directly affecting plant community dominance, rather than indirectly through changes in resource variability.  相似文献   

20.
The ecological impact of the traditional land use by pastoral nomads on forest ecosystems is little studied. We analyzed the influence of livestock density on epiphytic lichen diversity in larch forests of the Mongolian forest-steppe, which we selected as a case example because pastoral nomadism is here most widespread within Central Asia. Canonical correspondence analysis showed that the epiphytic lichen vegetation was strongly influenced by the livestock density within a radius of 1 km around the sampled forests. Goats together with horses were most significant at shaping lichen vegetation in the forest edges as were horses alone in the forest interiors. This result matches with the results of interviews with 169 herder families and own field observations, which substantiate that goats preferably graze at the edges, whereas horses often browse the interiors. The livestock impact is thought to be primarily exerted through fertilization by the animals and mechanical abrasion. Based on an indicator species analyses, we propose to use epiphytic lichens as indicators of the grazing impact at different livestock densities in the Mongolian forest-steppe. The proposed indication system can be used as a tool for the rapid assessment of the livestock grazing impact. It has the advantage that it is thought to average the livestock impact of several years, which is important with regard to the nomadic style of livestock husbandry. The use of lichens as indicator species can at least partly substitute the time-consuming interviewing of the herder families to assess livestock densities and their impact on forest biodiversity. The proposed indicator system could thus be used as a planning tool for purposes of nature conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号