首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regeneration of corneal tissue   总被引:2,自引:0,他引:2  
Penetrating wounds in rabbit corneas heal to form an opaque tissue that eventually becomes transparent. DNA content, dry weight, water content, and collagen content of the tissue gradually become more like that of normal cornea. The healing tissues also synthesize low-sulfated keratan sulfate, hyaluronic acid, and heparan sulfate. These glycosaminoglycans are not found in normal adult corneas but have been reported in fetal corneas. Previous studies have shown that collagen from healing corneal wounds and collagen from fetal corneas have very similar cross-linking patterns, but these patterns are different from those in normal adult collagen. The similarities between collagen and glycosaminoglycans in healing corneal wounds and in fetuses suggest some recapitulation of ontogenetic processes. The biochemical sequence and eventual return of transparency to the rabbit cornea indicate a capability for true regeneration of stromal tissue in the rabbit.  相似文献   

2.
This review highlights recent research on structure–function relationships in tendon and comments on the parallels between development and healing. The processes of tendon development and collagen fibrillogenesis are reviewed, but due to the abundance of information in this field, this work focuses primarily on characterizing the mechanical behavior of mature and developing tendon, and how the latter parallels healing tendon. The role that extracellular matrix components, mainly collagen, proteoglycans, and collagen cross-links, play in determining the mechanical behavior of tendon will be examined in this review. Specifically, collagen fiber re-alignment and collagen fibril uncrimping relate mechanical behavior to structural alterations during development and during healing. Finally, attention is paid to a number of recent efforts to augment injured tendon and how future efforts could focus on recreating the important structure–function relationships reviewed here.  相似文献   

3.
The influence of indomethacin on collagen synthesis in intact and healing plantaris longus tendons in the rabbit was investigated. Forty-four male New Zealand White rabbits were subjected to a standardized trauma (tenetomy + repair) on the left hindlimb. Half of the animals were subsequently treated with indomethacin, 10 mg/kg per day orally, and the other half with placebo. After 2 and 4 weeks the rabbits were injected intravenously with 3H-proline and killed 18 h later. Indomethacin affected the collagen metabolism differently depending on whether the tendons were involved in wound healing or not. In intact tendons the drug caused a small general inhibition of collagen synthesis. In the healing tendon there was a shift towards the synthesis of more insoluble collagen with little effect on the total synthesis. After 4 weeks there was also a slight but significant decrease in the amount of hydroxyproline in the most soluble collagen fraction from the tenotomized, indomethacin treated tendons.  相似文献   

4.
The influence of indomethacin on collagen synthesis in intact and healing plantaris longus tendons in the rabbit was investigated. Forty-four male New Zealand White rabbits were subjected to a standardized trauma (tenetomy + repair) on the left hindlimb. Half of the animals were subsequently treated with indomethacin, 10 mg/kg per day orally, and the other half with placebo. After 2 and 4 weeks the rabbits were injected intravenously with 3H-proline and killed 18 h later. Indomethacin affected the collagen metabolism differently depending on whether the tendons were involved in wound healing or not. In intact tendons the drug caused a small general inhibition of collagen synthesis. In the healing tendon there was a shift towards the synthesis of more insoluble collagen with little effect on the total synthesis. After 4 weeks there was also a slight but significant decrease in the amount of hydroxyproline in the most soluble collagen fraction from the tenotomized, indomethacin treated tendons.  相似文献   

5.
Wound healing in muscle involves the deposition of collagen, but it is not known whether this is achieved by changes in the synthesis or the degradation of collagen. We have used a reliable flooding dose method to measure collagen synthesis rate in vivo in rat abdominal muscle following a surgical incision. Collagen synthesis rate was increased by 480% and 860% on days 2 and 7 respectively after surgery in the wounded muscle compared with an undamaged area of the same muscle. Collagen content was increased by approximately 100% at both day 2 and day 7. These results demonstrate that collagen deposition during wound healing in muscle is achieved entirely by an increase in the rate of collagen synthesis.  相似文献   

6.
Altering dietary ratios of n-3 and n-6 polyunsaturated fatty acids (PUFA) represents an effective nonpharmaceutical means to improve systemic inflammatory conditions. An effect of PUFA on cartilage and bone formation has been demonstrated, and the purpose of this study was to determine the potential of PUFA modulation to improve ligament healing. The effects of n-3 and n-6 PUFA on the in vitro healing response of medial collateral ligament (MCL) fibroblasts were investigated by studying the cellular coverage of an in vitro wound and the production of collagen, PGE2, IL-1, IL-6, and TNF. Cells were exposed to a bovine serum albumin (BSA) control or either eicosapentaenoic acid (EPA, 20:5n-3) or arachidonic acid (AA, 20:4n-6) in the form of soaps loaded onto BSA for 4 days and wounded on Day 5. AA and EPA improved the healing of an in vitro wound over 72 hr. EPA increased collagen synthesis and the overall percentage of collagen produced, but AA reduced collagen production and total protein. PGE2 production was increased in the AA-treated group and decreased in the EPA-treated group, but was not affected by wounding. IL-1 was not produced at the time point evaluated, but TNF and IL-6 were both produced, and their levels varied relative to the PUFA or wounding treatment. There was a significant linear correlation (r2 = 0.57, P = 0.0045) between IL-6 level and collagen production. These results demonstrate that n-3 PUFA (represented by EPA in this study) positively affect the healing characteristics of MCL cells and therefore may represent a possible noninvasive treatment to improve ligament healing. Additionally, these results show that MCL fibroblasts produce PGE2, IL-6, and TNF and that IL-6 production is related to MCL collagen synthesis.  相似文献   

7.
Tendon mechanical function after injury and healing is largely determined by its underlying collagen structure, which in turn is dependent on the degree of mechanical loading experienced during healing. Experimental studies have shown seemingly conflicting outcomes: although collagen content steadily increases with increasing loads, collagen alignment peaks at an intermediate load. Herein, we explored potential collagen remodeling mechanisms that could give rise to this structural divergence in response to strain. We adapted an established agent-based model of collagen remodeling in order to simulate various strain-dependent cell and collagen interactions that govern long-term collagen content and fiber alignment. Our simulation results show two collagen remodeling mechanisms that give rise to divergent collagen content and alignment in healing tendons: (1) strain-induced collagen fiber damage in concert with increased rates of deposition at higher strains, or (2) strain-dependent rates of enzymatic degradation. These model predictions identify critical future experiments needed to isolate each mechanism’s specific contribution to the structure of healing tendons.  相似文献   

8.
Mechano-regulation during tendon healing, i.e. the relationship between mechanical stimuli and cellular response, has received more attention recently. However, the basic mechanobiological mechanisms governing tendon healing after a rupture are still not well-understood. Literature has reported spatial and temporal variations in the healing of ruptured tendon tissue. In this study, we explored a computational modeling approach to describe tendon healing. In particular, a novel 3D mechano-regulatory framework was developed to investigate spatio-temporal evolution of collagen content and orientation, and temporal evolution of tendon stiffness during early tendon healing. Based on an extensive literature search, two possible relationships were proposed to connect levels of mechanical stimuli to collagen production. Since literature remains unclear on strain-dependent collagen production at high levels of strain, the two investigated production laws explored the presence or absence of collagen production upon non-physiologically high levels of strain (>15%). Implementation in a finite element framework, pointed to large spatial variations in strain magnitudes within the callus tissue, which resulted in predictions of distinct spatial distributions of collagen over time. The simulations showed that the magnitude of strain was highest in the tendon core along the central axis, and decreased towards the outer periphery. Consequently, decreased levels of collagen production for high levels of tensile strain were shown to accurately predict the experimentally observed delayed collagen production in the tendon core. In addition, our healing framework predicted evolution of collagen orientation towards alignment with the tendon axis and the overall predicted tendon stiffness agreed well with experimental data. In this study, we explored the capability of a numerical model to describe spatial and temporal variations in tendon healing and we identified that understanding mechano-regulated collagen production can play a key role in explaining heterogeneities observed during tendon healing.  相似文献   

9.
In this study, we investigated the role of nerve growth factor (NGF)-incorporated collagen on wound healing in rats. Full-thickness excision wounds were made on the back of female rats weighing about 150-160 g. Topical application of NGF-incorporated collagen, at a concentration of 1 microg/1.2 mg collagen/cm(2), once a day, for 10 days resulted in complete healing of wounds on the 15th day. The concentrations of collagen, hexosamine and uronic acid in the granulation tissue were determined. The NGF-incorporated collagen-treated rats required shorter duration for the healing with an increased rate of wound contraction. Histological and electron microscopical evaluations were also performed, which reveal the activation of fibroblasts and endoplasmic reticulum and therefore increased level of collagen synthesis due to NGF application. These results clearly indicate that the topical application of NGF-incorporated collagen enhanced the rate of healing of excision wounds.  相似文献   

10.
Growth hormone (GH) and IGF-I play important roles in wound healing during intestinal injury and inflammation, but there is also indirect evidence that locally expressed IGF-I may act to induce excessive collagen deposition, which can lead to intestinal fibrosis. Factors that dictate the balance between normal wound healing and excessive healing responses are unknown. Using RNase protection assay and in situ hybridization, we determined whether GH and/or IGF-I increase type I collagen deposition in the intestine of rats fed by total parenteral nutrition (TPN), a feeding modality used for many patients following intestinal surgery and resection. We also used an in vitro model system to confirm our in vivo effects and to directly evaluate the relative potency of GH and IGF-I on DNA synthesis and collagen deposition in intestinal myofibroblasts. Both GH and IGF-I stimulated collagen production in vivo and in vitro, and IGF-I, but not GH, stimulated DNA synthesis in vitro. In collagen production, GH was less potent than IGF-I. Suppressors of cytokine signaling (SOC) are cytokine-inducible proteins that negatively feedback to inhibit the actions of cytokines and we recently found that GH selectively upregulates SOC-2 in the intestine of TPN-fed rats. We examined whether SOC-2 may be responsible for the difference in magnitude of action of GH and IGF-I on collagen accumulation. GH, but not IGF-I, induced SOC-2 in isolated myofibroblasts, and overexpression of SOC-2 led to a suppression of GH- and IGF-I-induced collagen accumulation. SOC-2 null mice infused with IGF-I showed greater collagen gene expression compared with wild-type (WT) mice. Myofibroblasts isolated from SOC-2 null mice showed increased IGF-I-stimulated DNA synthesis compared with WT cells. Taken together, these findings suggest that SOC-2 induced by GH may play an important role in suppressing collagen accumulation and mesenchymal cell proliferation induced by GH or GH-induced IGF-I, providing a mechanism for the differing potencies of GH and IGF-I on intestinal mesenchyme and collagen synthesis.  相似文献   

11.
Scarring of the skin is a large unmet clinical problem that is of high patient concern and impact. Wound healing is complex and involves numerous pathways that are highly orchestrated, leaving the skin sealed, but with abnormal organization and composition of tissue components, namely collagen and proteoglycans, that are then remodeled over time. To improve healing and reduce or eliminate scarring, more rapid restoration of healthy tissue composition and organization offers a unique approach for development of new therapeutics. A synthetic collagen-binding peptidoglycan has been developed that inhibits matrix metalloproteinase-1 and 13 (MMP-1 and MMP-13) mediated collagen degradation. We investigated the synthetic peptidoglycan in a rat incisional model in which a single dose was delivered in a hyaluronic acid (HA) vehicle at the time of surgery prior to wound closure. The peptidoglycan treatment resulted in a significant reduction in scar tissue at 21 days as measured by histology and visual analysis. Improved collagen architecture of the treated wounds was demonstrated by increased tensile strength and transmission electron microscopy (TEM) analysis of collagen fibril diameters compared to untreated and HA controls. The peptidoglycan's mechanism of action includes masking existing collagen and inhibiting MMP-mediated collagen degradation while modulating collagen organization. The peptidoglycan can be synthesized at low cost with unique design control, and together with demonstrated preclinical efficacy in reducing scarring, warrants further investigation for dermal wound healing.  相似文献   

12.
BACKGROUND INFORMATION: Leeches respond to surgical lesions with the same sequence of events as that described for wound healing in vertebrates, where collagen is important for the development of tensions in healing wounds, functioning as an extracellular scaffold for accurate regeneration of the structures disrupted by surgical or traumatic actions. RESULTS: In surgically lesioned leeches, newly synthesized collagen is arranged in hierarchical structures. Fibrils can be packed and shaped to form cords or tubular structures, thus acting as an extracellular scaffold that directs and organizes the outgrowth of new vessels and the migration of immune cells towards lesioned tissues. In these animals, the general architecture of collagen fibrils, generated during tissue regeneration, shows similarities to both the structural pattern of collagen bundles and assembly processes observed in several vertebrate systems (fish scales, amphibian skin and human cornea). CONCLUSIONS: The production of extracellular matrix during wound healing in leeches is a surprising example of conservation of an extremely close relationship between the structure and function of molecular structures. It could be hypothesized that collagen structures, characterized not only by a striking structural complexity, but also by multifunctional purposes, are anatomical systems highly conserved throughout evolution.  相似文献   

13.
We investigated whether therapeutic drugs given during healing following acute myocardial infarction (AMI) modify infarct collagens and left ventricular (LV) distensibility. We treated dogs with drugs from major classes (i.e., indomethacin, ibuprofen, captopril, enalapril, verapamil, amlodipine, propranolol, isosorbide dinitrate [ISDN] and digoxin) between day 2 and 6 weeks and measured hemodynamics, LV remodeling and function during healing over 6 weeks after transmural anterior AMI, and regional collagens, LV distensibility under increasing pressure, rupture threshold (RT), and topography at 6 weeks. Relative to sham, AMI controls showed infarct zone (IZ) expansion and thinning, 9.3-fold increase in IZ collagen, LV dilation and dysfunction, and no change in distensibility and RT. Relative to controls, indomethacin as well as enalapril, captopril and amlodipine decreased IZ collagen. Infarct expansion was attenuated by ibuprofen, captopril, amlodipine and ISDN but augmented by indomethacin. Infarct thinning was prevented by captopril, amlodipine and ISDN but enhanced by indomethacin. Importantly, indomethacin and enalapril enhanced LV distensibility and lowered RT. Distensibility correlated positively with IZ type III collagen and negatively with type I/III collagen ratio and pyridinoline cross-links whereas RT correlated positively with IZ type I collagen. Systolic volume and ejection fraction deteriorated with indomethacin but were improved or preserved with other therapies. The results demonstrate that different therapeutic drugs may produce different effects on IZ collagens during healing post-AMI: drugs that attenuate or adversely alter IZ collagens also enhance LV distensibility, augment adverse remodeling and lower RT, suggesting that testing for these effects post-AMI is warranted.  相似文献   

14.
The collagen produced in response to an injury of human skin is initially stabilized by a cross-link derived from hydroxyallysine, and characteristic of embryonic skin. In normal healing there is a change over with time to the cross-link derived from allysine, which is typical of young skin collagen. In contrast, hypertrophic scars fail to follow the time-related changes of normal skin, but retain the characteristics of embryonic collagen, indicating a continued rapid turnover of the collagen. This is further supported by the high proportion of the embryonic Type III collagen present in hypertrophic scars.  相似文献   

15.
The response of transected canine medical collateral ligaments (MCL) to clinical treatment regimens was investigated. These regimens included no surgical repair with no immobilization and surgical repair with various periods of immobilization. The biomechanical, biochemical, and histological properties of the healing MCL were examined 6 and 12 wk postoperatively. At 6 wk, all healing MCLs had increased cellularity with decreased levels of total collagen and increased amounts of reducible Schiff base cross-links and type III collagen. Biomechanically, the varus-valgus (V-V) knee laxity was significantly increased, and no group achieved normal structural or mechanical properties. At 12 wk the histological appearance of the MCL became more normal but still had increased cellularity. Biochemically, the total collagen levels in experimental MCLs were not statistically different from the controls, but these MCLs still had high amounts of type III collagen and an even higher number of reducible cross-links. From knees in which the MCL was not treated, the V-V knee laxity and the ultimate loads of the femur-MCL-tibia complex achieved normal values. However, the stress-strain properties for these MCLs and those treated with repair and immobilization did not completely recover.  相似文献   

16.
Fracture repair recapitulates in adult organisms the sequence of cell biological events of endochondral ossification during skeletal development and growth. After initial inflammation and deposition of granulation tissue, a cartilaginous callus is formed which, subsequently, is remodeled into bone. In part, bone formation is influenced also by the properties of the extracellular matrix of the cartilaginous callus. Deletion of individual macromolecular components can alter extracellular matrix suprastructures, and hence stability and organization of mesenchymal tissues. Here, we took advantage of the collagen IX knockout mouse model to better understand the role of this collagen for organization, differentiation and maturation of a cartilaginous template during formation of new bone. Although a seemingly crucial component of cartilage fibrils is missing, collagen IX-deficient mice develop normally, but are predisposed to premature joint cartilage degeneration. However, we show here that lack of collagen IX alters the time course of callus differentiation during bone fracture healing. The maturation of cartilage matrix was delayed in collagen IX-deficient mice calli as judged by collagen X expression during the repair phase and the total amount of cartilage matrix was reduced. Entering the remodeling phase of fracture healing, Col9a1(-/-) calli retained a larger percentage of cartilage matrix than in wild type indicating also a delayed formation of new bone. We concluded that endochondral bone formation can occur in collagen IX knockout mice but is impaired under conditions of stress, such as the repair of an unfixed fractured long bone.  相似文献   

17.
18.
In healing ligaments and tendons, the cells are not aligned and collagen matrix is not organized as in normal tissues. In addition, the mechanical properties of the tissues are abnormal. We hypothesized that the lack of alignment of the collagen matrix results from random orientation of the cells seen in the healing area. To test this hypothesis, a novel in vitro model was used in which the orientation of cells could be controlled via microgrooves, and alignment of the collagen matrix formed by these cells could be easily observed. It is known that cells align uniformly along the direction of microgrooves; therefore MC3T3-E1 cells, which produce large amounts of collagen, were grown on silicone membranes with parallel microgrooves (10 microm wide x 3 microm deep) in the surface. As a control, the same cells were also grown on smooth silicone membranes. Cells on both the microgrooved and smooth silicone surfaces produced a layer of readily visible collagen matrix. Immunohistochemical staining showed that the matrix consisted of abundant type I collagen. Polarized light microscopy of the collagen matrix revealed the collagen fibers to be parallel to the direction of the microgrooves, whereas the collagen matrix produced by the randomly oriented cells on the smooth membranes was disorganized. Thus, the results of this study suggest that the orientation of cells affects the organization of the collagenous matrix produced by the cells. The results also suggest that orienting cells along the longitudinal direction of healing ligaments and tendons may lead to the production of aligned collagenous matrix that more closely represents the uninjured state. This may enhance the mechanical properties of healing ligaments and tendons.  相似文献   

19.
The effect of disodium cromoglycate on skin wound healing and collagen formation in the wounds was studied. Disodium cromoglycate (a mast cell stabilizer) administered to the rats in a dose of 2 mg/animal was found to retard wound healing and markedly increased wound surface in all examined days (3rd, 5th, 7th, 10th, 14th day of healing). The mast cell stabilizer injected directly into wounds decreased collagen content, especially on 10th and 14th day of the healing process.  相似文献   

20.
Immunohistochemical localization of growth factors in fetal wound healing   总被引:26,自引:0,他引:26  
Fetal wound healing occurs rapidly, in a regenerative fashion, and without scar formation, by contrast with adult wound healing, where tissue repair results in scar formation which limits tissue function and growth. The extracellular matrix deposited in fetal wounds contains essentially the same structural components as that in the adult wound but there are distinct differences in the spatial and temporal distribution of these components. In particular the organization of collagen in the healed fetal wound is indistinguishable from the normal surrounding tissue. Rapidity of healing, lack of an inflammatory response, and an absence of neovascularization also distinguish fetal from adult wound healing. The mechanisms controlling these differing processes are undefined but growth factors may play a critical role. The distribution of growth factors in healing fetal wounds is unknown. We have studied, by immunohistochemistry, the localization of platelet-derived growth factor (PDGF), transforming growth factor beta (TGF beta), and basic fibroblast growth factor (bFGF), in fetal, neonatal, and adult mouse lip wounds. TGF beta and bFGF were present in neonatal and adult wounds, but were not detected in the fetal wounds, while PDGF was present in fetal, neonatal, and adult wounds. This pattern correlates with the known effects in vitro of these factors, the absence of an inflammatory response and neovascularization in the fetal wound, and the patterns of collagen deposition in both fetal and adult wounds. The results suggest that it may be possible to manipulate the adult wound to produce more fetal-like, scarless, wound healing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号