首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microcirculation of the renal medulla traps NaCl and urea deposited to the interstitium by the loops of Henle and collecting ducts. Theories have predicted that countercurrent exchanger efficiency is favored by high permeability to solute. In contrast to the conceptualization of vasa recta as simple "U-tube" diffusive exchangers, many findings have revealed surprising complexity. Tubular-vascular relationships in the outer and inner medulla differ markedly. The wall structure and transport properties of descending vasa recta (DVR) and ascending vasa recta (AVR) are very different. The recent discoveries of aquaporin-1 (AQP1) water channels and the facilitated urea carrier UTB in DVR endothelia show that transcellular as well as paracellular pathways are involved in equilibration of DVR plasma with the interstitium. Efflux of water across AQP1 excludes NaCl and urea, leading to the conclusion that both water abstraction and diffusion contribute to transmural equilibration. Recent theory predicts that loss of water from DVR to the interstitium favors optimization of urinary concentration by shunting water to AVR, secondarily lowering blood flow to the inner medulla. Finally, DVR are vasoactive, arteriolar microvessels that are anatomically positioned to regulate total and regional blood flow to the outer and inner medulla. In this review, we provide historical perspective, describe the current state of knowledge, and suggest areas that are in need of further exploration.  相似文献   

2.
It has become widely accepted that the osmolality gradient along the corticomedullary axis of the mammalian outer medulla is generated and sustained by a process of countercurrent multiplication: active NaCl absorption from thick ascending limbs is coupled with the counterflow configuration of the descending and ascending limbs of the loops of Henle to generate an axial osmolality gradient along the outer medulla. However, aspects of anatomic structure (e.g., the physical separation of the descending limbs of short loops of Henle from contiguous ascending limbs), recent physiologic experiments (e.g., those that suggest that the thin descending limbs of short loops of Henle have a low osmotic water permeability), and mathematical modeling studies (e.g., those that predict that water-permeable descending limbs of short loops are not required for the generation of an axial osmolality gradient) suggest that countercurrent multiplication may be an incomplete, or perhaps even erroneous, explanation. We propose an alternative explanation for the axial osmolality gradient: we regard the thick limbs as NaCl sources for the surrounding interstitium, and we hypothesize that the increasing axial osmolality gradient along the outer medulla is primarily sustained by an increasing ratio, as a function of increasing medullary depth, of NaCl absorption (from thick limbs) to water absorption (from thin descending limbs of long loops of Henle and, in antidiuresis, from collecting ducts). We further hypothesize that ascending vasa recta that are external to vascular bundles will carry, toward the cortex, an absorbate that at each medullary level is hyperosmotic relative to the adjacent interstitium.  相似文献   

3.
The mature renal medulla, the inner part of the kidney, consists of the medullary collecting ducts, loops of Henle, vasa recta and the interstitium. The unique spatial arrangement of these components is essential for the regulation of urine concentration and other specialized kidney functions. Thus, the proper and timely assembly of medulla constituents is a crucial morphogenetic event leading to the formation of a functioning metanephric kidney. Mechanisms that direct renal medulla formation are poorly understood. This review describes the current understanding of the key molecular and cellular mechanisms underlying morphological aspects of medulla formation. Given that hypoplasia of the renal medulla is a common manifestation of congenital obstructive nephropathy and other types of congenital anomalies of the kidney and urinary tract (CAKUT), better understanding of how disruptions in medulla formation are linked to CAKUT will enable improved diagnosis, treatment and prevention of CAKUT and their associated morbidity.  相似文献   

4.
《Organogenesis》2013,9(1):10-17
The mature renal medulla, the inner part of the kidney, consists of the medullary collecting ducts, loops of Henle, vasa recta and the interstitium. The unique spatial arrangement of these components is essential for the regulation of urine concentration and other specialized kidney functions. Thus, the proper and timely assembly of medulla constituents is a crucial morphogenetic event leading to the formation of a functioning metanephric kidney. Mechanisms that direct renal medulla formation are poorly understood. This review describes the current understanding of the key molecular and cellular mechanisms underlying morphological aspects of medulla formation. Given that hypoplasia of the renal medulla is a common manifestation of congenital obstructive nephropathy and other types of congenital anomalies of the kidney and urinary tract (CAKUT), better understanding of how disruptions in medulla formation are linked to CAKUT will enable improved diagnosis, treatment and prevention of CAKUT and their associated morbidity.  相似文献   

5.
Hummingbirds have rates of water turnover that are among the highest of any bird, consuming up to five times their body mass in nectar each day. To determine if the processing of these extraordinary volumes of water is associated with structural specializations in the kidney, we examined the renal morphology of Anna's hummingbird (Calypte anna) using scanning electron microscopy of vascular and tubular casts. The glomerular tufts are simple, containing a single, unbranched capillary that is spiraled or folded back on itself only one or two times. There is no evidence that nectarivory in this species is associated with a relative increase in the size of the glomeruli. The medullary cones are small, containing only a few loops of Henle and collecting ducts. The vasa recta form a complex network of branching and anastomosing capillaries. In this nectarivore, the structures necessary to produce urine that is hyperosmotic to plasma are poorly developed or absent, which is consistent with urine osmolalities that are uniformly low. J. Morphol. 240:95–100, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

6.
7.
The stichosome (posterior glandular esophagus) of Capillaria pterophylli Heinze, 1933 consists of large gland cells (stichocytes) and lumenal epithelium with cuticular lining. Both structures are enclosed in a reticulum of muscle cells. The stichocyte cytoplasm contains small cisternae of rough endoplasmic reticulum, Golgi complexes, one kind of electron dense secretory granules, mitochondria and a branching system of intracellular collecting ducts without filament bundles around them.  相似文献   

8.
Maximum urine-concentrating capacity (UCC) differs widely among mammals of different species, being very high in some desert species (e.g. kangaroo rats) and very low in freshwater acquatic species (e.g. beaver). In this study, kidneys of 21 species of mammals from widely different habitats were studied in histological sections to determine whether differences in UCC can be attributed to differences in kidney structure. Parameters studied included the ratio of medullary to cortical thickness, the proportional subdivision of the medulla into inner and outer zones, and the dimensions of the vasa recta expressed in terms of the total area and the number of lumens within the vascular bundles. Determinations were made at a level where the size of individual vasa recta bundles has reached a constant maximum size, i.e. in the distal half of the outer zone. A positive correlation was found between the UCC and the ratio of medullary length to cortical thickness. No clear correlation existed between the proportion of the medullary length comprised of outer or inner zones and the UCC, although a trend to higher UCC in animals with relatively longer inner zones was apparent. Thus, it appears that the relative length of the entire medullary region is a major factor determining UCC, but the length of individual medullary zones is of lesser importance. A correlation was also found between the density of vasa recta per cubic millimeter of medullary tissue (the number of lumens regardless of identify in bundles, based on the number counted at the level sampled) and the UCC of the species. Data reported here support the view that UCC can be correlated with two parameters of kidney structure - the length of medulla relative to that of cortex and the density of vasa recta within the outer zone. It is proposed that the anatomical characteristics of the vascular supply to the medulla - that is, the vasa recta - are equally as important for the concentration of urine as is the primary mechanism determined by the characteristics of the loop of Henle and collecting ducts.  相似文献   

9.
The organization of the renal medulla of the Gambel's quail, Callipepla gambelii, kidney was examined to determine the number of loops of Henle and collecting ducts and the surface area occupied by the different nephron segments as a function of distance down the medullary cones. Eleven medullary cones were dissected from the kidneys of four birds, and the tissue was processed and sectioned for light microscopy. In addition, individual nephrons were isolated on which total loop thin descending segment and thick prebend segment lengths were measured. The results show no correlation between the absolute number of loops of Henle and the length of the medullary cones. The number of thick and thin limbs of Henle and collecting ducts decrease exponentially with distance toward the apex of the cones and the rate of decrease is similar for cones of different lengths. Initially there is a rapid decrease in the number of thin limbs of Henle, indicating that most nephrons do not penetrate the cones a great distance. Thick descending limbs of Henle (prebend segment) ranged in length from 50 to 770 microm, and there was little correlation with the total length of the loop of Henle. However, the length of the thin limb of Henle correlated well with total loop length. The cell surface areas of the limbs of the loop of Henle and the collecting ducts decreased toward the apex of the cones.  相似文献   

10.
Aquaporin-2 (AQP2) is a pore-forming protein that is required for regulated reabsorption of water from urine. Mutations in AQP2 lead to nephrogenic diabetes insipidus, a disorder in which functional AQP2 is not expressed on the apical cell surface of kidney collecting duct principal cells. The mechanisms and pathways directing AQP2 from the endoplasmic reticulum to the Golgi complex and beyond have not been defined. We found that approximately 25% of newly synthesized AQP2 is glycosylated. Nonglycosylated and complex-glycosylated wild-type AQP2 are stable proteins with a half-life of 6-12 h and are both detectable on the cell surface. We show that AQP2 forms tetramers in the endoplasmic reticulum during or very early after synthesis and reaches the Golgi complex in 1-1.5 h. We also report that glycosylation is neither essential for tetramerization nor for transport from the endoplasmic reticulum to the Golgi complex. Instead, the N-linked glycan is important for exit from the Golgi complex and sorting of AQP2 to the plasma membrane. These results are important for understanding the molecular mechanisms responsible for the intracellular retention of AQP2 in nephrogenic diabetes insipidus.  相似文献   

11.
Autoregulation of blood flow was assessed by a dual-slit technique in descending and ascending vasa recta of the exposed renal papillae of antidiuretic rats. There was complete autoregulation of blood flow in descending vasa recta. The lower limit of autoregulation was approximately 85 mmHg (1 mmHg = 133.3 Pa) and the upper limit was greater then 160 mmHg. Autoregulation in ascending vasa recta was also good. To test the role of angiotensin II in this autoregulation, the converting enzyme inhibitor captopril was infused. Captopril had no effect on autoregulation of blood flow in either descending or ascending vasa recta. We conclude that blood flow in vasa recta of renal medulla is efficiently autoregulated and that this autoregulation is independent of angiotensin II.  相似文献   

12.
Examination of the gross and microscopic anatomy of the kidney of the West Indian manatee, Trichechus manatus, revealed that: (1) the medulla is about 6 times thicker than the cortex; (2) juxtamedullary glomeruli have a mean diameter 1.3 times greater than that of cortical glomeruli; (3) juxtamedullary glomeruli have 1.7 times as much volume as cortical glomeruli; (4) there are about twice as many cortical glomeruli as juxtamedullary glomeruli per square millimeter of cortical tissue, and (5) the vasa recta are closely juxtaposed to the thin loops of Henle in the outer medulla. Many of these results suggest an enhanced urine-concentrating ability in this species.  相似文献   

13.
A model of countercurrent exchange has been developed to simulate transport of salt, urea and water among vasa recta and descending limbs of the loop of Henle in the inner medulla. These vessels are abstracted as three concentric cylinders: the inne one represents descending vasa recta, the middle one represents ascending vasa recta and the outer one represents descending limbs. The capillary plexus, which connects the ascending and descending vasa recta, is modeled as a series of well-mixe compartments. Multicomponent transport equations for the sytem are derived from steady state mass balances and simple passive flux relations. The resulting set of nonlinear equations are solved numerically by an iterative Gauss-Seidel algorithm with under-relaxation. Simulations yield the salt and urea concentrations as well as volume flow rates in all tubes and compartments. The simulations indicate that solute concentrations can increase monotonically toward the papillae even if all transport processes within the exchanger are passive and source fluxes decrease monotonically toward the papillae.  相似文献   

14.
Using light and electron microscope autoradiography in vivo, the localization of 125I-(Arg 101-Tyr 126) atrial natriuretic factor (ANF)-binding sites was studied in the renal medulla of rats. At the light microscopic level, the autoradiographic reaction was mainly distributed in patches in the outer medulla, and followed the tubular architecture in the innermost part of the inner medulla. At the electron microscopic level, binding sites were mainly found in the outer medullary descending vasa recta and inner medullary collecting ducts. These results suggest that, in rats, the renal medulla may participate in the natriuresis and diuresis produced by ANF through vascular and tubular effects; the former by changing medullary blood flow at the level of descending vasa recta and the latter by acting on electrolyte and water transport at the level of collecting ducts.  相似文献   

15.
An ultrastructural study of the prostate gland of Fasciola hepatica shows it to be composed of numerous unicellular glands. These gland cells contain an extensive granular endoplasmic reticulum (GER) system parts of which are intimately associated with septum-like invaginations of the plasma membrane extending almost to the nucleus. Also associated with the GER are many Golgi complexes which secrete large electron-lucid carbohydrate-rich secretory vesicles. The secretion passes up the gland ducts along with a very dense granular and fibrillar material. The ducts have a peripheral microtubular skeleton and are tightly bound to the epithelium of the ejaculatory duct by septate desmosomes. Secretory vesicles are stored in the expanded ends of the ducts where they pass through the ejaculatory epithelium and their content is discharged by the bursting of their limiting membrane.  相似文献   

16.
We extended a region-based mathematical model of the renal medulla of the rat kidney, previously developed by us, to represent new anatomic findings on the vascular architecture in the rat inner medulla (IM). In the outer medulla (OM), tubules and vessels are organized around tightly packed vascular bundles; in the IM, the organization is centered around collecting duct clusters. In particular, the model represents the separation of descending vasa recta from the descending limbs of loops of Henle, and the model represents a papillary segment of the descending thin limb that is water impermeable and highly urea permeable. Model results suggest that, despite the compartmentalization of IM blood flow, IM interstitial fluid composition is substantially more homogeneous compared with OM. We used the model to study medullary blood flow in antidiuresis and the effects of vascular countercurrent exchange. We also hypothesize that the terminal aquaporin-1 null segment of the long descending thin limbs may express a urea-Na(+) or urea-Cl(-) cotransporter. As urea diffuses from the urea-rich papillary interstitium into the descending thin limb luminal fluid, NaCl is secreted via the cotransporter against its concentration gradient. That NaCl is then reabsorbed near the loop bend, raising the interstitial fluid osmolality and promoting water reabsorption from the IM collecting ducts. Indeed, the model predicts that the presence of the urea-Na(+) or urea- Cl(-) cotransporter facilitates the cycling of NaCl within the IM and yields a loop-bend fluid composition consistent with experimental data.  相似文献   

17.
Summary The cytoarchitecture of the interstitial tissue of the rat kidney was studied by combined scanning and transmission electron microscopy. The renal interstitium is composed of an elaborate network of stellate sustentacular cells. In the cortex, sustentacular cells radiate thin branching processes to form a fine reticulum, which supports intertubular spaces. In the medulla, these cells extend thick processes horizontally along the basal surfaces of the thin limbs or vasa recta, reinforcing their attenuate walls. The horizontal processes connect with each other at their terminals, compartmentalizing the interstitial space into thin layers. The medullary sustentacular cells contain abundant small lipid droplets. The network of sustentacular cells houses vasa recta, keeping them in parallel position to each other and to the tubules. The arterial vasa recta are accompanied by pericytes, which frequently contain lipid droplets larger in size than those in the sustentacular cells. Venous vasa recta extend numerous basal microvilli, which anchor the venous wall to adjacent tubules or vessels. Numerous free cells, round in shape, are found in the sustentacular cell network, especially in the cortex. They consist of macrophages and occasional lymphocytes. Some macrophages extend long pseudopodia, while others make intimate contact with lymphocytes, suggesting their high level of activity.  相似文献   

18.
Ultrastructural aspects of cat submandibular glands   总被引:3,自引:0,他引:3  
Submandibular glands of five adult female cats were examined by conventional electron microscopic techniques. All gland acini are mucous secreting and each acinus is capped with mucous secreting demilunar cells. Secretory product of demilunar cells is more electron lucent than that of acinar cells. The demilunes show intercellular tissue spaces and intercellular canaliculi whereas similar specializations are absent between acinar cells. Mitochondria and arrays of granular endoplasmic reticulum are more numerous in demilunar cells than in acinar cells. In acinar and demilunar cells secretory droplets first appear as enlarged Golgi saccules which subsequently become closely related to cisternae of the granular endoplasmic reticulum. Filamentous structures, interpreted as mucin molecules, are present in secretory droplets of acinar cells. Intercalated ducts are short, consisting of several junctional cells between acini and striated ducts. Striated ducts are long and tortuous and contain light cells, dark cells and basal cells. Light cells contain numerous membrane bound granules in their distal ends whereas dark cells show electron lucent vesicles in the same position. Basal cells contain a paucity of organelles and membrane plications but exhibit hemidesmosomes along their basal plasma membranes. Myoepithelial cells are abundant in relation to acinar and demilunar cells. Nerve terminals are present in some instances between acinar cells or between acinar and myoepithelial cells.  相似文献   

19.
Immunocytochemical localization of Na+, K+-ATPase in the rat kidney   总被引:1,自引:0,他引:1  
To determine if rat kidney Na+, K+-ATPase can be localized by immunoperoxidase staining after fixation and embedding, we prepared rabbit antiserum to purified lamb kidney medulla Na+, K+-ATPase. When sodium dodecylsulfate polyacrylamide electrophoretic gels of purified lamb kidney Na+, K+-ATPase and rat kidney microsomes were treated with antiserum (1:200), followed by [125I]-Protein A and autoradiography, the rat kidney microsomes showed a prominent radioactive band coincident with the alpha-subunit of the purified lamb kidney enzyme and a fainter radioactive band which corresponded to the beta-subunit. When the Na+, K+-ATPase antiserum was used for immunoperoxidase staining of paraffin and plastic sections of rat kidney fixed with Bouin's, glutaraldehyde, or paraformaldehyde, intense immunoreactive staining was present in the distal convoluted tubules, subcapsular collecting tubules, thick ascending limb of the loops of Henle, and papillary collecting ducts. Proximal convoluted tubules stained faintly, and the thin portions of the loops of Henle, straight descending portions of proximal tubules, and outer medullary collecting ducts did not stain. Staining was confined to basolateral surfaces of tubular epithelial cells. No staining was obtained with preimmune serum or primary antiserum absorbed with purified lamb kidney Na+, K+-ATPase, or with osmium tetroxide postfixation. We conclude that the basolateral membranes of the distal convoluted tubules and ascending thick limb of the loops of Henle are the major sites of immunoreactive Na+, K+-ATPase concentration in the rat kidney.  相似文献   

20.
The canonical mass balance relation derived for the central core model of the renal medulla is extended to medullary models in which an arbitrary assemblage of renal tubules and vascular capillaries exchange with each other both directly and via the medullary interstitium and in which not all of the vascular loops or loops of Henle extend to the papilla. It is shown that if descending limbs of Henle and descending vasa recta enter the medulla at approximately plasma osmolality, the concentration ratio is given by: r = 1/[1 - ft(1 - fu)(1 - fw)], where ft is fractional solute transport out of ascending Henle's limb, fu is fractional urine flow, and fw is fractional dissipation; fw is a measure of the solute returned to the systemic circulation without its isotonic complement of water. A modified equation that applies to the diluting as well as the concentrating kidney is also derived. By allowing concentrations in interstitium and vascular capillaries to become identical at a given medullary level, conservation relations are derived for a multinephron central core model of the renal medulla.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号