首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Indwelling and temporary medical delivery devices (i.e. catheters) are increasingly used in hospital settings, providing clinicians with useful tools to administer nutrients, draw blood samples and deliver drugs. However, they can often put patients at risk for local or systemic infections, including bloodstream infections and endocarditis. Microorganisms readily adhere to the surfaces and colonize them by forming a slimy layer of biofilm. Bacteria growing in biofilms exhibit an increased antibiotic resistance in comparison with planktonic cells. Consequently the antibiotic treatment of these medical device-associated infections frequently fails. Detechment resulting in the formation of microemboli is a further biofilm related complication. Since infections often involve increased morbidity and morality, prolonged hospitalization and additional medical costs, various strategies to prevent biofilm formation on implanted medical devices have been developed over the last two decades. In this paper we review and discuss the most significant experimental approaches to inhibit bacterial adhesion and growth on these devices.  相似文献   

2.
The role of bacterial biofilms in ocular infections   总被引:7,自引:0,他引:7  
There is increasing evidence that bacterial biofilms play a role in a variety of ocular infections. Bacterial growth is characterized as a biofilm when bacteria attach to a surface and/or to each other. This is distinguished from a planktonic or free-living mode of bacterial growth where these interactions are not present. Biofilm formation is a genetically controlled process in the life cycle of bacteria resulting in numerous changes in the cellular physiology of the organism, often including increased antibiotic resistance compared to growth under planktonic conditions. The presence of bacterial biofilms has been demonstrated on many medical devices including intravenous catheters, as well as materials relevant to the eye such as contact lenses, scleral buckles, suture material, and intraocular lenses. Many ocular infections often occur when such prosthetic devices come in contact with or are implanted in the eye. For instance, 56% of corneal ulcers in the United States are associated with contact lens wear. Bacterial biofilms may participate in ocular infections by allowing bacteria to persist on abiotic surfaces that come in contact with, or are implanted in the eye, and by direct biofilm formation on the biotic surfaces of the eye. An understanding of the role of bacterial biofilm formation in ocular infections may aid in the development of future antimicrobial strategies in ophthalmology. We review the current literature and concepts relating to biofilm formation and infections of the eye.  相似文献   

3.
4.
Infectious endocarditis involves formation of a microbial biofilm in vivo. Enterococcus faecalis Aggregation Substance (Asc10) protein enhances the severity of experimental endocarditis, where it has been implicated in formation of large vegetations and in microbial persistence during infection. In the current study, we developed an ex vivo porcine heart valve adherence model to study the initial interactions between Asc10(+) and Asc10(-)E. faecalis and valve tissue, and to examine formation of E. faecalis biofilms on a relevant tissue surface. Scanning electron microscopy of the infected valve tissue provided evidence for biofilm formation, including growing masses of bacterial cells and the increasing presence of exopolymeric matrix over time; accumulation of adherent biofilm populations on the cardiac valve surfaces during the first 2-4 h of incubation was over 10-fold higher than was observed on abiotic membranes incubated in the same culture medium. Asc10 expression accelerated biofilm formation via aggregation between E. faecalis cells; the results also suggested that in vivo adherence to host tissue and biofilm development by E. faecalis can proceed by Asc10-dependent or Asc10-independent pathways. Mutations in either of two Asc10 subdomains previously implicated in endocarditis virulence reduced levels of adherent bacterial populations in the ex vivo system. Interference with the molecular interactions involved in adherence and initiation of biofilm development in vivo with specific inhibitory compounds could lead to more effective treatment of infectious endocarditis.  相似文献   

5.
The molecular pathogenesis of many Staphylococcus aureus infections involves growth of bacteria as biofilm. In addition to polysaccharide intercellular adhesin (PIA) and extracellular DNA, surface proteins appear to mediate the transition of bacteria from planktonic growth to sessile lifestyle as well as biofilm growth, and can enable these processes even in the absence of PIA expression. However, the molecular mechanisms by which surface proteins contribute to biofilm formation are incompletely understood. Here we demonstrate that self‐association of the serine‐aspartate repeat protein SdrC promotes both bacterial adherence to surfaces and biofilm formation. However, this homophilic interaction is not required for the attachment of bacteria to abiotic surfaces. We identified the subdomain that mediates SdrC dimerization and subsequent cell‐cell interactions. In addition, we determined that two adjacently located amino acid sequences within this subdomain are required for the SdrC homophilic interaction. Comparative amino acid sequence analysis indicated that these binding sites are conserved. In summary, our study identifies SdrC as a novel molecular determinant in staphylococcal biofilm formation and describes the mechanism responsible for intercellular interactions. Furthermore, these findings contribute to a growing body of evidence suggesting that homophilic interactions between surface proteins present on neighbouring bacteria induce biofilm growth.  相似文献   

6.
The biofilm formation on abiotic surfaces in food and medical sectors constitutes a great public health concerns. In fact, biofilms present a persistent source for pathogens, such as Pseudomonas aeruginosa and Staphylococcus aureus, which lead to severe infections such as foodborne and nosocomial infections. Such biofilms are also a source of material deterioration and failure. The environmental conditions, commonly met in food and medical area, seem also to enhance the biofilm formation and their resistance to disinfectant agents. In this regard, this review highlights the effect of environmental conditions on bacterial adhesion and biofilm formation on abiotic surfaces in the context of food and medical environment. It also describes the current and emergent strategies used to study the biofilm formation and its eradication. The mechanisms of biofilm resistance to commercialized disinfectants are also discussed, since this phenomenon remains unclear to date.  相似文献   

7.
8.
N-Acetyl-L-cysteine (NAC) is used in medical treatment of patients with chronic bronchitis. The positive effects of NAC treatment have primarily been attributed to the mucus-dissolving properties of NAC, as well as its ability to decrease biofilm formation, which reduces bacterial infections. Our results suggest that NAC also may be an interesting candidate for use as an agent to reduce and prevent biofilm formation on stainless steel surfaces in environments typical of paper mill plants. Using 10 different bacterial strains isolated from a paper mill, we found that the mode of action of NAC is chemical, as well as biological, in the case of bacterial adhesion to stainless steel surfaces. The initial adhesion of bacteria is dependent on the wettability of the substratum. NAC was shown to bind to stainless steel, increasing the wettability of the surface. Moreover, NAC decreased bacterial adhesion and even detached bacteria that were adhering to stainless steel surfaces. Growth of various bacteria, as monocultures or in a multispecies community, was inhibited at different concentrations of NAC. We also found that there was no detectable degradation of extracellular polysaccharides (EPS) by NAC, indicating that NAC reduced the production of EPS, in most bacteria tested, even at concentrations at which growth was not affected. Altogether, the presence of NAC changes the texture of the biofilm formed and makes NAC an interesting candidate for use as a general inhibitor of formation of bacterial biofilms on stainless steel surfaces.  相似文献   

9.
10.
11.
Bacterial attachment on various surfaces mostly takes place in the form of specialised bacterial communities, referred to as biofilm. The biofilm is formed through series of interactions between cells and adherence to surface, resulting in an organised structure. In this review we have been using Pseudomonas aeruginosa as a model microorganism to describe the series of events that occurred during this developmental process. P. aeruginosa is an opportunistic pathogen that has a wide variety of hosts and infectious sites. In addition to biofilm formation in certain tissues, inert surfaces, such as catheters, are also target for bacterial biofilm development. The use of convenient genetic screens has made possible the identification of numerous biofilm-defective mutants, which have been characterised further. These studies have allowed the proposal for a global model, in which key events are described for the different stages of biofilm formation. Briefly, flagellar mobility is crucial for approaching the surface, whereas type IV pili motility is preponderant for surface colonisation and microcolonies formation. These microcolonies are finally packed together and buried in an exopolysaccharide matrix to form the differentiated bio-film. It is obvious that the different stages of biofilm formation also involved perception of environmental stimuli. These stimuli, and their associated complex regulatory networks, have still to be fully characterised to understand the bacterial strategy, which initiates biofilm formation. One such regulatory system, called Quorum sensing, is one of the key player in the initial differentiation of biofilm. Finally, a better understanding, at the molecular level, of biofilm establishment and persistence should help for the design of antimicrobials that prevent bacterial infections.  相似文献   

12.
13.
The majority of Bordetella sp. virulence determinants are regulated by the BvgAS signal transduction system. BvgAS mediates the control of multiple phenotypic phases and a spectrum of gene expression profiles specific to each phase in response to incremental changes in the concentrations of environmental signals. Studies highlighting the critical role of this signaling circuitry in the Bordetella infectious cycle have focused on planktonically growing bacterial cells. It is becoming increasingly clear that the major mode of bacterial existence in the environment and within the body is a surface-attached state known as a biofilm. Biofilms are defined as consortia of sessile microorganisms that are embedded in a matrix. During routine growth of Bordetella under agitating conditions, we noticed the formation of a bacterial ring at the air-liquid interface of the culture tubes. We show here that this surface adherence property reflects the ability of these organisms to form biofilms. Our data demonstrate that the BvgAS locus regulates biofilm development in Bordetella. The results reported in this study suggest that the Bvg-mediated control in biofilm development is exerted at later time points after the initial attachment of bacteria to the different surfaces. Additionally, we show that these biofilms are highly tolerant of a number of antimicrobials, including the ones that are currently recommended for treatment of veterinary and human infections caused by Bordetella spp. Finally, we discuss the significance of the biofilm lifestyle mode as a potential contributor to persistent infections.  相似文献   

14.
It is well accepted that bacterial pathogens growing in a biofilm are recalcitrant to the action of most antibiotics and are resistant to the innate immune system. New treatment modalities are greatly warranted to effectively eradicate these infections. However, bacteria growing in a biofilm are metabolically unique in comparison to the bacteria growing in a planktonic state. Unfortunately, most antibiotics have been developed to inhibit the growth of bacteria in a planktonic mode of growth. This review focuses on the metabolism and physiology of biofilm growth with special emphasis on staphylococci. Future treatment options should include targeting unique metabolic niches found within bacterial biofilms in addition to the enzymes or compounds that inhibit biofilm accumulation molecules and/or interact with quorum sensing and intercellular bacterial communication.  相似文献   

15.
生物被膜分散方式的研究进展   总被引:1,自引:0,他引:1  
临床上生物被膜与感染的慢性迁延不愈密切相关,而生物被膜菌的分散又会造成感染的反复急性发作,给临床感染的有效控制带来很大困难。生物被膜菌的分散过程受到了遗传和环境等多因素的调控,主要是通过蜂式分散、块式分散和毯式分散3种形式来实现的。深入进行生物被膜基础研究对改变目前临床感染治疗的窘境有重大意义。  相似文献   

16.
生物膜,也称为生物被膜,是指附着于有生命或无生命物体表面被细菌胞外大分子包裹的有组织的细菌群体。与浮游菌相比,生物膜内的细菌对抗生素的耐受性提高了10–1000倍,是造成目前细菌耐药的主要原因之一。作为一种新型抗菌制剂,抗菌肽的使用为生物膜感染的治疗提供了一种新的思路和手段。抗菌肽在抑制生物膜形成、杀灭生物膜内细菌以及消除成熟生物膜的过程中发挥了独特的优势。文中分析了近30年的数据,从细菌生物膜的结构入手,对抗菌肽可能的抗生物膜机理进行了综述,以期为抗菌肽临床治疗生物膜感染提供一定参考。  相似文献   

17.
Abstract

Materials such as polyvinyl chloride, polypropylene, and polyethylene are used for the construction of medical equipment, including inhalation equipment. Inhalation equipment, because of the wet conditions and good oxygenation, constitutes a perfect environment for microbial biofilm formation. Biofilms may affect microbiological cleanliness of inhalation facilities and installations and promote the development of pathogenic bacteria. Microbial biofilms can form even in saline environments. Therefore, the aim of this study was to evaluate the effect of medicinal brines on microbial biofilm formation on the surfaces of inhalation equipment. The study confirmed the high risk of biofilm formation on surfaces used in inhalation equipment. Isolated microorganisms belonged to potential pathogens of the respiratory system, which can pose a health threat to hospital patients. The introduction of additional contaminants increased the amount of bacterial biofilm. On the other hand, the presence of brines significantly limited the amount of biofilm, thus eliminating the risk of infections.  相似文献   

18.
Bacteria are attracted to surfaces. Their surface adhesion, with subsequent binary fission and exopolymer production, leads to the formation of biofilms. Such biofilms consist of bacterial cells in a matrix of their own exopolysaccharide glycocalyces. In addition to the bulk fluid and the surface, biofilms constitute a third physical phase. The close proximity of the bacterial cells in the biofilm matrices assists the formation of metabolically dependent consortia. The chemical and physical activities of these microbial communities produces a heterogeneous system at the colonised surface. Metabolites, produced at specific points on the surface, can lead to the development of effective anodes and cathodes at adjoining locations on the surface. In this way the fouling of a surface by bacterial biofilm development facilitates focal attack on that surface. This pit formation is characteristic of bacterial surface activities as diverse as dental decay and metal corrosion. In this review, we examine bacterial adhesion, biofilm formation and several instances of focal bacterial attack on colonised surfaces. However, pathogenic biofilms and the fouling of biological surfaces, with the exception of caries formation, is outside the scope of this paper.  相似文献   

19.
Bacterial biofilm formation on inert surfaces is a significant health and economic problem in a wide range of environmental, industrial, and medical areas. Bacterial adhesion is generally a prerequisite for this colonization process and, thus, represents an attractive target for the development of biofilm-preventive measures. We have previously found that the preconditioning of several different inert materials with an aqueous fish muscle extract, composed primarily of fish muscle alpha-tropomyosin, significantly discourages bacterial attachment and adhesion to these surfaces. Here, this proteinaceous coating is characterized with regards to its biofilm-reducing properties by using a range of urinary tract infectious isolates with various pathogenic and adhesive properties. The antiadhesive coating significantly reduced or delayed biofilm formation by all these isolates under every condition examined. The biofilm-reducing activity did, however, vary depending on the substratum physicochemical characteristics and the environmental conditions studied. These data illustrate the importance of protein conditioning layers with respect to bacterial biofilm formation and suggest that antiadhesive proteins may offer an attractive measure for reducing or delaying biofilm-associated infections.  相似文献   

20.
Understanding the numerous factors that can affect biofilm formation and stability remain poorly understood. One of the major limitations is the accurate measurement of biofilm stability and cohesiveness in real-time when exposed to changing environmental conditions. Here we present a novel method to measure biofilm strength: interfacial rheology. By culturing a range of bacterial biofilms on an air-liquid interface we were able to measure their viscoelastic growth profile during and after biofilm formation and subsequently alter growth conditions by adding surfactants or changing the nutrient composition of the growth medium. We found that different bacterial species had unique viscoelastic growth profiles, which was also highly dependent on the growth media used. We also found that we could reduce biofilm formation by the addition of surfactants or changing the pH, thereby altering the viscoelastic properties of the biofilm. Using this technique we were able to monitor changes in viscosity, elasticity and surface tension online, under constant and varying environmental conditions, thereby providing a complementary method to better understand the dynamics of both biofilm formation and dispersal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号