首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the possibility of using starter cultures in sauerkraut fermentation and thereby reducing the quantity of salt used in the process. This, in turn, would reduce the amount of waste salt that would enter in our water resources. Phage, naturally present in sauerkraut fermentation, could potentially affect the starter cultures introduced. Thus, a mechanistic mathematical model was developed to quantify the growth kinetics of the phage and starter cultures. The model was validated by independent experiments with two Leuconostoc mesenteroides strains isolated from sauerkraut and their corresponding phage. Model simulations and experimental evidence showed the presence of phage-resistant cell populations in starter cultures which replaced phage-sensitive cells, even when the initial phage density (P(0)) and multiplicity of infection (MOI) were low (P(0) < 1 x 10(3) PFU/ml; MOI < 10(-4)) in the MRS media. Based on the results of model simulation and parameter optimization, it was suggested that the kinetic parameters of phage-host interaction, especially the adsorption rate, vary with the initial phage and host densities and with time. The model was validated in MRS broth. Therefore, the effects of heterogeneity and other environmental factors, such as temperature and pH, should be considered to make the model applicable to commercial fermentations.  相似文献   

2.
一株肺炎克雷伯菌噬菌体的生物学特性及全基因组分析   总被引:1,自引:0,他引:1  
【背景】随着抗生素的广泛使用甚至滥用,细菌耐药性问题日益显著,利用噬菌体治疗耐药致病菌的方法重新开始被人们关注。【目的】对一株烈性肺炎克雷伯菌噬菌体vB_KpnP_IME279进行生物学特性研究及生物信息学分析。【方法】以一株多重耐药的肺炎克雷伯菌为宿主菌,从医院污水中分离噬菌体,应用双层平板法检测噬菌体效价、最佳感染复数(Optimal MOI)、一步生长曲线以及裂解谱,纯化后通过透射电镜观察噬菌体形态;应用蛋白酶K/SDS法提取噬菌体全基因组,使用Illumina MiSeq测序平台进行噬菌体全基因组测序,测序后对噬菌体全基因组序列进行组装、注释、进化和比较基因组学分析。【结果】分离到一株新的肺炎克雷伯菌噬菌体,命名为vB_KpnP_IME279;其最佳感染复数为0.1,一步生长曲线显示潜伏期为20 min,平均裂解量140 PFU/cell,电镜观察显示该噬菌体属于短尾噬菌体科(Podoviridae)。基因组测序表明,噬菌体基因组全长为42 518 bp,(G+C)mol%含量为59.3%。BLASTn比对结果表明,该噬菌体与目前已知噬菌体的相似性较低,基因组仅70%区域与已知噬菌体有同源性。构建噬菌体主要衣壳蛋白的基因进化树,分析了噬菌体IME279与其他短尾科噬菌体的进化关系,结果表明该噬菌体是短尾科噬菌体的一名新成员。【结论】分离鉴定了一株新的肺炎克雷伯菌噬菌体,进行了生物学特性、全基因组测序和生物信息学分析,为研究肺炎克雷伯菌噬菌体与宿主之间的相互作用关系以及治疗多重耐药细菌感染奠定了基础。  相似文献   

3.
The potential replication of somatic coliphages in the environment has been considered a drawback for their use as viral indicators, although the extent to which this affects their numbers in environmental samples has not been assessed. In this study, the replication of somatic coliphages in various conditions was assayed using suspensions containing naturally occurring somatic coliphages and Escherichia coli WG5, which is a host strain recommended for detecting somatic coliphages. The effects on phage replication of exposing strain WG5 and phages to a range of physiological conditions and the effects of the presence of suspended particles or other bacteria were also assayed. Phage replication was further tested using a strain of Klebsiella terrigena and naturally occurring E. coli cells as hosts. Our results indicate that threshold densities of both host bacterium and phages should occur simultaneously to ensure appreciable phage replication. Host cells originating from a culture in the exponential growth phase and incubation at 37 degrees C were the best conditions for phage replication in E. coli WG5. In these conditions the threshold densities required to ensure phage replication were about 10(4) host cells/ml and 10(3) phages/ml, or 10(3) host cells/ml and 10(4) phages/ml, or intermediate values of both. The threshold densities needed for phage replication were higher when the cells proceeded from a culture in the stationary growth phase or when suspended particles or other bacteria were present. Furthermore E. coli WG5 was more efficient in supporting phage replication than either K. terrigenae or E. coli cells naturally occurring in sewage. Our results indicate that the phage and bacterium densities and the bacterial physiological conditions needed for phage replication are rarely expected to be found in the natural water environments.  相似文献   

4.
We have isolated a number of plaque-morphology mutants from a strain of herpes simplex virus type I which, unlike the wild type, cause extensive cell fusion during a productive viral infection. After the onset of fusion, there is an exponential decrease in the number of single cells as a function of time after infection. At a multiplicity of infection (MOI) of 3.8 plaque-forming units per cell, fusion begins 5.3 h after infection with the number of single cells decreasing to 10% of the original number 10.2 h after infection. As the MOI is gradually increased from 0.4 to 8, the onset of fusion occurs earlier during infection. However, when the MOI is increased from 8 to 86, the onset of fusion does not occur any earlier. The rate of fusion is independent of the MOI for an MOI greater than 1. The rate of fusion varies linearly with initial cell density up to 3.5 X 10(4) cells/cm2 and is independent of initial cell density at higher cell concentrations. To assay cell fusion we have developed a smiple quantitative assay using a Coulter counter to measure the number of single cells as a function of time after infection. Data obtained using a Coulter counter are similar to those obtained with a microscope assay.  相似文献   

5.
Welin A  Eklund D  Stendahl O  Lerm M 《PloS one》2011,6(5):e20302
Mycobacterium tuberculosis (Mtb) infects lung macrophages, which instead of killing the pathogen can be manipulated by the bacilli, creating an environment suitable for intracellular replication and spread to adjacent cells. The role of host cell death during Mtb infection is debated because the bacilli have been shown to be both anti-apoptotic, keeping the host cell alive to avoid the antimicrobial effects of apoptosis, and pro-necrotic, killing the host macrophage to allow infection of neighboring cells. Since mycobacteria activate the NLRP3 inflammasome in macrophages, we investigated whether Mtb could induce one of the recently described inflammasome-linked cell death modes pyroptosis and pyronecrosis. These are mediated through caspase-1 and cathepsin-B, respectively. Human monocyte-derived macrophages were infected with virulent (H37Rv) Mtb at a multiplicity of infection (MOI) of 1 or 10. The higher MOI resulted in strongly enhanced release of IL-1β, while a low MOI gave no IL-1β response. The infected macrophages were collected and cell viability in terms of the integrity of DNA, mitochondria and the plasma membrane was determined. We found that infection with H37Rv at MOI 10, but not MOI 1, over two days led to extensive DNA fragmentation, loss of mitochondrial membrane potential, loss of plasma membrane integrity, and HMGB1 release. Although we observed plasma membrane permeabilization and IL-1β release from infected cells, the cell death induced by Mtb was not dependent on caspase-1 or cathepsin B. It was, however, dependent on mycobacterial expression of ESAT-6. We conclude that as virulent Mtb reaches a threshold number of bacilli inside the human macrophage, ESAT-6-dependent necrosis occurs, activating caspase-1 in the process.  相似文献   

6.
Cyanophages, that is, viruses infecting cyanobacteria, are a key component driving cyanobacterial community dynamics both ecologically and evolutionarily. In addition to reducing biomass and influencing the genetic diversity of their host populations, they can also have a wider community‐level impact due to the release of nutrients by phage‐induced cell lysis. In this study, we isolated and characterized a new cyanophage, a siphophage designated as vB_NpeS‐2AV2, capable of infecting the filamentous nitrogen fixing cyanobacterium Nodularia sp. AV2 with a lytic cycle between 12 and 18 hours. The role of the phage in the ecology of its host Nodularia and competitor Synechococcus was investigated in a set of microcosm experiments. Initially, phage‐induced cell lysis decreased the number of Nodularia cells in the cultures. However, around 18%–27% of the population was resistant against the phage infection. Nitrogen was released from the Nodularia cells as a consequence of phage activity, resulting in a seven‐fold increase in Synechococcus cell density. In conclusion, the presence of the cyanophage vB_NpeS‐2AV2 altered the ecological dynamics in the cyanobacterial community and induced evolutionary changes in the Nodularia population, causing the evolution from a population dominated by susceptible cells to a population dominated by resistant ones.  相似文献   

7.
Bacteriophage PM2 has a closed circular form of double stranded DNA as a genome. This DNA from the phage is a useful source for nick-circle endonuclease assay in the fmol range. Due to difficulties in the maintenance of viral infectivity, storage conditions of the phage should be considered for the purification of PM2 DNA. The proper condition for a short-term storage of less than 2 months is to keep the PM2 phage at 4 degrees C; whereas the proper condition for a long-term storage of the PM2 phage for over 2 months is to keep it under liquid nitrogen in 7.5% glycerol. The optimal conditions for a high yield of phage progeny were also considered with the goal to achieve a successful PM2 DNA preparation. A MOI(Multiplicity Of Infection) of 0.03, in which the OD600 of the host bacteria was between 0.3 and 0.5, turned out to be optimal for the mass production of PM2 phage with a burst size of about 214. Considerations of PM2 genome size, and the concentrations and radiospecific activities of purified PM2 DNA, are required to measure the endonuclease activity in the fmol range. This study reports the proper quantitation of radioactivity and the yield of purified DNA based on these conditions.  相似文献   

8.
9.
We have isolated a number of plaque-morphology mutants from a strain of herpes simplex virus type I which, unlike the wild type, cause extensive cell fusion during a productive viral infection. After the onset of fusion, there is an exponential decrease in the number of single cells as a function of time after infection. At a multiplicity of infection (MOI) of 3.8 plaque-forming units per cell, fusion begins 5.3 h after infection with the number of single cells decreasing to 10% of the original number 10.2 h after infection. As the MOI is gradually increased from 0.4 to 8, the onset of fusion occurs earlier during infection. However, when the MOI is increased from 8 to 86, the onset of fusion does not occur any earlier. The rate of fusion is independent of the MOI for an MOI greater than 1. The rate of fusion varies linearly with initial cell density up to 3.5 × 104 cells/cm2 and is independent of initial cell density at higher cell concentrations. To assay cell fusion we have developed a simple quantitative assay using a Coulter counter to measure the number of single cells as a function of time after infection. Data obtained using a Coulter counter are similar to those obtained with a microscope assay.  相似文献   

10.
Eliminating helper phage from phage display   总被引:1,自引:0,他引:1       下载免费PDF全文
Phage display technology involves the display of proteins or peptides, as coat protein fusions, on the surface of a phage or phagemid particles. Using standard technology, helper phage are essential for the replication and assembly of phagemid particles, during library production and biopanning. We have eliminated the need to add helper phage by using 'bacterial packaging cell lines' that provide the same functions. These cell lines contain M13-based helper plasmids that express phage packaging proteins which assemble phagemid particles as efficiently as helper phage, but without helper phage contamination. This results in genetically pure phagemid particle preparations. Furthermore, by using constructs differing in the form of gene 3 that they contain, we have shown that the display, from a single library, can be modulated between monovalent (phagemid-like) and multivalent display (phage-like) without any further engineering. These packaging cells eliminate the use of helper phage from phagemid-based selection protocols; reducing the amount of technical preparation, facilitating automation, optimizing selections by matching display levels to diversity, and effectively using the packaged phagemid particles as means to transfer genetic information at an efficiency approaching 100%.  相似文献   

11.
[目的]鉴定一株新分离的铜绿假单胞菌噬菌体PaP4的生物学特性.[方法]双层琼脂培养法制备PaP4的单个噬斑,观察噬斑特点;用聚乙二醇8000浓缩PaP4颗粒后,再用氯化铯密度梯度离心纯化;用透射电子显微镜观察磷钨酸负染色的PaP4颗粒;提取PaP4基因组核酸,通过限制性内切酶图谱分析其核酸类型;按照感染复数(MOI)分别为0.000 1、0.001、0.01、0.1、1和10加入噬菌体纯培养液和宿主菌,充分裂解细菌后,测定噬菌体滴度;以MOI=10的比例加入噬菌体及宿主菌,进行一步生长实验,绘制一步生长曲线.[结果]PaP4的噬斑直径约3 mm-5 mm,圆形透明边缘清晰;PaP4噬菌体呈多面体立体对称的头部,直径约50 nm,有一个约30 nm的短尾;限制性酶切实验表明PaP4基因组为双链DNA;当MOI为0.001时PaP4感染其宿主菌产生的子代噬菌体滴度最高;用一步生长曲线描绘了其生长特性.[结论]PaP4属dsDNA短尾科裂解性噬菌体;最佳感染复数是0.001;由一步生长曲线得出感染宿主菌的潜伏期是25 min,裂解期是20 min,平均裂解量是150.  相似文献   

12.
We have examined the localization of DNA replication of the Bacillus subtilis phage phi 29 by immunofluorescence. To determine where phage replication was localized within infected cells, we examined the distribution of phage replication proteins and the sites of incorporation of nucleotide analogues into phage DNA. On initiation of replication, the phage DNA localized to a single focus within the cell, nearly always towards one end of the host cell nucleoid. At later stages of the infection cycle, phage replication was found to have redistributed to multiple sites around the periphery of the nucleoid, just under the cell membrane. Towards the end of the cycle, phage DNA was once again redistributed to become located within the bulk of the nucleoid. Efficient redistribution of replicating phage DNA from the initial replication site to various sites surrounding the nucleoid was found to be dependent on the phage protein p16.7.  相似文献   

13.
Non-targeted mutagenesis of lambda phage by ultraviolet light is the increase over background mutagenesis when non-irradiated phage are grown in irradiated Escherichia coli host cells. Such mutagenesis is caused by different processes from targeted mutagenesis, in which mutations in irradiated phage are correlated with photoproducts in the phage DNA. Non-irradiated phage grown in heavily irradiated uvr+ host cells showed non-targeted mutations, which were 3/4 frameshifts, whereas targeted mutations were 2/3 transitions. For non-targeted mutagenesis in heavily irradiated host cells, there were one to two mutant phage per mutant burst. From this and the pathways of lambda DNA synthesis, it can be argued that non-targeted mutagenesis involves a loss of fidelity in semiconservative DNA replication. A series of experiments with various mutant host cells showed a major pathway of non-targeted mutagenesis by ultraviolet light, which acts in addition to "SOS induction" (where cleavage of the LexA repressor by RecA protease leads to din gene induction): (1) the induction of mutants has the same dependence on irradiation for wild-type and for umuC host cells; (2) a strain in which the SOS pathway is constitutively induced requires irradiation to the same level as wild-type cells in order to fully activate non-targeted mutagenesis; (3) non-targeted mutagenesis occurs to some extent in irradiated recA recB cells. In cells with very low levels of PolI, the induction of non-targeted mutagenesis by ultraviolet light is enhanced. We propose that the major pathway for non-targeted mutagenesis in irradiated host cells involves binding of the enzyme DNA polymerase I to damaged genomic DNA, and that the low polymerase activity leads to frameshift mutations during semiconservative DNA replication. The data suggest that this process will play a much smaller role in ultraviolet mutagenesis of the bacterial genome than it does in the mutagenesis of lambda phage.  相似文献   

14.
15.
一株粘质沙雷氏菌烈性噬菌体污水分离及特性   总被引:1,自引:0,他引:1  
[目的]以粘质沙雷氏菌(8039)为宿主菌从医院污水中分离噬菌体并对其基本生物学特点进行研究.[方法]四步法污水分离噬菌体;单、双层平板噬菌斑实验筛选烈性噬菌体并观察噬菌斑形态;纯化后2%磷钨酸染色电镜观察;手工法提取噬菌体核酸酶切后琼脂糖凝胶电泳分析;利用双层平板噬菌斑实验测定最佳感染复数和完成一步生长实验.[结果]从医院污水中成功分离出粘质沙雷氏菌烈性噬菌体一株(SM701),该噬菌体有一个正多面体立体对称的头部,头径约64nm,无囊膜,有一长尾,无收缩尾鞘,尾长约143nm;基因组核酸能被双链DNA内切酶BamH Ⅰ及Hind Ⅲ切开,大小约57kb;噬菌斑圆形透明,直径1mm左右(培养12h,),边界清楚;当感染复数(multiplicity of infection,MOI)为10时,子代噬菌体滴度较高;按照一步生长实验结果绘制出一步生长曲线,可知感染宿主菌的潜伏期是约为30min,爆发期约100min,平均爆发量约为630[结论]按照国际病毒分类委员会分类标准,该噬菌体属于长尾噬菌体科(siphoviridae)烈性噬菌体,按照Bradley和Ackermann形态分类法属于B1亚群;噬菌斑与周围红色细菌生长区,颜色差异明显,非常便于观察和计数;噬菌体头部大小和形态与呼吸道病毒中的呼肠病毒和腺病毒最为接近;国内尚未见粘质沙雷氏菌噬菌体相关报道.  相似文献   

16.
The death process of baculovirus-infected insect cells was divided into two phases: a constant viability (or delay) phase characterized by a delay time (t(d)) and a first-order death phase characterized by a half-life (t(1/2)). These two parameters were used in conjunction with the n-target theory to classify the kinetics of cell death under various conditions, including different multiplicity of infection (MOI), host cell lines, virus types, incubation volumes, cell density and extracellular L(+)-lactate and ammonium concentrations. Two groups of kinetic effects were found: one characterized by a constant number of hypothetical targets and the other by decreased numbers of hypothetical targets. The first group includes effects such as MOI, virus types, and host cell lines. The second includes the effects of environmental perturbations, such as incubation volume, cell density, and extracellular concentrations of L(+)-lactate and ammonium. Although the underlying mechanisms of these effects are as yet unknown, the death kinetics of infected cells significantly affects the recombinant protein production. In general, foreign protein production does not correlate with the cell life after infection (c) 1993 John Wiley & Sons, Inc.  相似文献   

17.
Bacteriophage 80 alpha did not increase in number in cultures containing less than about 1.0 X 10(4) to 1.5 X 10(4) CFU of Staphylococcus aureus per ml, but bacteriophage replication did occur when the number of bacteria exceeded this density, either initially or as a result of host cell multiplication. The minimum density of an asporogenous strain of Bacillus subtilis required for an increase in the number of bacteriophage SP beta cI was about 3 X 10(4) CFU/ml. The threshold density of Escherichia coli for the multiplication of bacteriophage T4 was about 7 X 10(3) CFU/ml. In the presence of montmorillonite, bacteriophage T4 did not increase in number until the E. coli population exceeded 10(4) CFU/ml. The mineralization of glucose was not affected in E. coli cultures inoculated with a low number of bacteriophage T4, but it could not be detected in cultures inoculated with a large number of phage. The numbers of bacteriophage T4 and a bacteriophage that lyses Pseudomonas putida declined rapidly after being added to lake water or sewage. We suggest that bacteriophages do not affect the number or activity of bacteria in environments where the density of the host species is below the host cell threshold of about 10(4) CFU/ml.  相似文献   

18.
Bacteriophage 80 alpha did not increase in number in cultures containing less than about 1.0 X 10(4) to 1.5 X 10(4) CFU of Staphylococcus aureus per ml, but bacteriophage replication did occur when the number of bacteria exceeded this density, either initially or as a result of host cell multiplication. The minimum density of an asporogenous strain of Bacillus subtilis required for an increase in the number of bacteriophage SP beta cI was about 3 X 10(4) CFU/ml. The threshold density of Escherichia coli for the multiplication of bacteriophage T4 was about 7 X 10(3) CFU/ml. In the presence of montmorillonite, bacteriophage T4 did not increase in number until the E. coli population exceeded 10(4) CFU/ml. The mineralization of glucose was not affected in E. coli cultures inoculated with a low number of bacteriophage T4, but it could not be detected in cultures inoculated with a large number of phage. The numbers of bacteriophage T4 and a bacteriophage that lyses Pseudomonas putida declined rapidly after being added to lake water or sewage. We suggest that bacteriophages do not affect the number or activity of bacteria in environments where the density of the host species is below the host cell threshold of about 10(4) CFU/ml.  相似文献   

19.
The validity of in vivo fluorometric assays was ascertained for phage and bacterial DNA measurements. The following parameters were determined by this simple technique. The DNA content of dividing cells of Bacillus subtilis 168/2 was 2.65 times higher than in resting cells. Assuming that resting cells harbor 1 genomic equivalent, its Mr was estimated to be 4.4 x 10(9) Da. A polymerization rate during growth of 788,000 bp min-1/cell is accounted for by a multifork replication mechanism. Both phage and host DNA could be measured accurately during the lytic cycle. Phage 2C DNA synthesis proceeded at a linear rate of 5.2 genome equivalents min-1.  相似文献   

20.
Mutagenesis in Escherichia coli, a subject of many years of study is considered to be related to DNA replication. DNA lesions nonrepaired by the error-free nucleotide excision repair (NER), base excision repair (BER) and recombination repair (RR), stop replication at the fork. Reinitiation needs translesion synthesis (TLS) by DNA polymerase V (UmuC), which in the presence of accessory proteins, UmuD', RecA and ssDNA-binding protein (SSB), has an ability to bypass the lesion with high mutagenicity. This enables reinitiation and extension of DNA replication by DNA polymerase III (Pol III). We studied UV- and MMS-induced mutagenesis of lambdaO(am)8 phage in E. coli 594 sup+ host, unable to replicate the phage DNA, as a possible model for mutagenesis induced in nondividing cells (e.g. somatic cells). We show that in E. coli 594 sup+ cells UV- and MMS-induced mutagenesis of lambdaO(am)8 phage may occur. This mutagenic process requires both the UmuD' and C proteins, albeit a high level of UmuD' and low level of UmuC seem to be necessary and sufficient. We compared UV-induced mutagenesis of lambdaO(am)8 in nonpermissive (594 sup+) and permissive (C600 supE) conditions for phage DNA replication. It appeared that while the mutagenesis of lambdaO(am)8 in 594 sup+ requires the UmuD' and C proteins, which can not be replaced by other SOS-inducible protein(s), in C600 supE their functions may be replaced by other inducible protein(s), possibly DNA polymerase IV (DinB). Mutations induced under nonpermissive conditions for phage DNA replication are resistant to mismatch repair (MMR), while among those induced under permissive conditions, only about 40% are resistant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号