首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
L Cui  B A Webb 《Journal of virology》1997,71(11):8504-8513
Polydnaviruses (PDVs) are double-stranded DNA viruses with segmented genomes that replicate only in the oviducts of some species of parasitic wasps and are required for the successful parasitization of lepidopteran insects. PDV DNA segments are integrated in the genomes of their associated wasp hosts, and some are nested; i.e., smaller segments are produced from and largely colinear with larger segments. To determine the internal structure of nested viral segments, the first complete nucleotide sequence of a PDV genome segment and its integration locus was determined. By restriction mapping, Southern blot, and sequence analyses, we demonstrated that the Campoletis sonorensis PDV segment W is integrated into wasp genomic DNA. DNA sequence analysis revealed that proviral segment W terminates in two 1,185-bp direct long terminal repeats (LTRs) in the wasp chromosome, while only one LTR copy is present in the extrachromosomal (viral) W. The results suggest that terminal direct repeats are a general feature of PDV DNA segment integration but that the homology and size of the repeats can vary extensively. Segment W contains 12 imperfect direct repeats of six different types between 89 bp and 1.9 kbp with 65 to 90% homology. The orientation and structure of the repeats suggest that W itself may have arisen through sequence duplication and subsequent divergence. Mapping, hybridization, and sequence analyses of cloned R and M demonstrated that these segments are nested within segment W and that internal imperfect direct repeats of one type are implicated in the homologous intramolecular recombination events that generate segments R and M. Interestingly, segment nesting differentially increases the copy number of genes encoded by segment W, suggesting that the unusual genomic organization of PDVs may be directly linked to the unique functions of this virus in its obligate mutualistic association with parasitic wasps.  相似文献   

3.
Many ichneumonid and braconid endoparasitoids inject a polydnavirus (PDV) into their caterpillar hosts during oviposition. The viral entities carried by wasps of these families are referred to as "ichnoviruses" (IVs) and "bracoviruses" (BVs), respectively. All IV genomes characterized to date are found in wasps of the subfamily Campopleginae; consequently, little is known about PDVs found in wasps of the subfamily Banchinae, the only other ichneumonid taxon thus far shown to carry these viruses. Here we report on the genome sequence and virion morphology of a PDV carried by the banchine parasitoid Glypta fumiferanae. With an aggregate genome size of approximately 290 kb and 105 genome segments, this virus displays a degree of genome segmentation far greater than that reported for BVs or IVs. The size range of its genome segments is also lower than those in the latter two groups. As reported for other PDVs, the predicted open reading frames of this virus cluster into gene families, including the protein tyrosine phosphatase (PTP) and viral ankyrin (ank) families, but phylogenetic analysis indicates that ank genes of the G. fumiferanae virus are not embedded within the IV lineage, while its PTPs and those of BVs form distinct clusters. The banchine PDV genome also encodes a novel family of NTPase-like proteins displaying a pox-D5 domain. The unique genomic features of the first banchine virus examined, along with the morphological singularities of its virions (IV-like nucleocapsids, but enveloped in groups like some of the BVs), suggest that they could have an origin distinct from those of IVs and BVs.  相似文献   

4.
寄生蜂多分DNA病毒对寄主昆虫的免疫抑制作用   总被引:1,自引:0,他引:1  
周剑  尹丽红  王琛柱 《生命科学》2001,13(5):205-208
多分DNA病毒(PDV)是在膜翅目姬蜂科和茧蜂科寄生蜂体内的一类很独特的病毒,寄生蜂产卵时,PDV随同卵和萼液一起被注射入寄主体内,能干扰寄主的细胞免疫和体液免疫,该病毒直接侵染或间接作用于血细胞,主要是浆细胞和颗粒细胞,导致血细胞变圆或凋亡,PDV也能抑制血淋巴酚氧化酶活性,诱导抗菌因子的大量合成,最近有关研究主要集中在病毒基因的表达和伴随寄主血细胞功能失常的分子事件上,一些寄主蜂的PDV与其他因子,如卵巢蛋白,畸形细胞或蜂毒等协同发挥作用。  相似文献   

5.
D M Xu  D Stoltz 《Journal of virology》1991,65(12):6693-6704
Evidence is presented in support of a chromosomal location for sequences homologous to polydnavirus DNA in the ichneumonid parasitoid Hyposoter fugitivus. In this study, four different viral genome segments were cloned and used as probes against genomic DNA extracted from male parasitoids and digested with a variety of restriction enzymes. Each probe typically identified a single off-size fragment (OSF) in the case of enzymes not cutting viral genome segments, while two OSFs were generated by enzymes cutting at one and two sites. While extra OSFs were occasionally observed, these were invariably found to be due to the presence of polymorphic restriction sites in flanking chromosomal DNA. Analysis of these data suggests that a single, stable chromosomal locus exists for sequences homologous to each viral genome segment; the data also indicate that viral and cognate parasitoid genomic DNAs are largely if not entirely colinear.  相似文献   

6.
由条锈菌Puccinia striiformis引致的小麦条锈病是小麦最重要的病害之一。由于其活体寄生的特点,对小麦条锈菌的遗传学和分子生物学研究十分有限,大片段核DNA的提取研究还未见报道。高分子量基因组DNA是开展大片段基因组文库构建、基因组分析以及基因组重建的重要基础,通过系统建立和优化小麦条锈菌大片段基因组DNA的分离方法,成功获得分子量大于1Mb高质量的病菌基因组DNA。  相似文献   

7.
RAD-seq技术在基因组研究中的现状及展望   总被引:4,自引:0,他引:4  
王洋坤  胡艳  张天真 《遗传》2014,36(1):41-49
Restriction-site associated DNA sequencing(RAD-seq)技术是在二代测序基础上发展起来的一项基于全基因组酶切位点的简化基因组测序技术。该方法技术流程简单, 不受有无参考基因组的限制, 可大大简化基因组的复杂性, 减少实验费用, 通过一次测序就可以获得数以万计的多态性标记。目前, RAD-seq技术已成功应用于超高密度遗传图谱的构建、重要性状的精细定位、辅助基因组序列组装、群体基因组学以及系统发生学等基因组研究热点领域。文章主要介绍了RAD-seq的技术原理、技术发展及其在基因组研究中的广泛应用。鉴于RAD-seq方法的独特性, 该技术必将在复杂基因组研究领域具有广泛的应用前景。  相似文献   

8.
Polydnavirus genomes and viral gene functions are atypical for viruses. Polydnaviruses are the only group of viruses with segmented DNA genomes and have an unusual obligate mutualistic association with parasitic Hymenoptera, in which the virus is required for survival of the wasp host and vice versa. The virus replicates asymptomatically in the wasp host but severely disrupts lepidopteran host physiology in the absence of viral DNA replication. It is not surprising then that viral gene expression is divergent in its two insect hosts and that differences in viral gene expression are linked to these divergent functions. Some viral genes are expressed only in the wasp host while other viral genes are expressed only in the lepidopteran host and are presumed to be involved in the disruption of host physiological systems. Our laboratory has described the expression and regulation of a family of viral genes implicated in suppressing the lepidopteran immune system, the cys-motif genes. In conjunction with these studies we have described the physical organization of additional viral gene segments. We have cloned, mapped and begun the sequence analysis of selected viral DNA segments. We have noted that some viral DNA segments are nested and that nested viral DNA segments encode the abundantly expressed, secreted cys-motif genes. Conversely, other viral segments are not nested, encode less abundantly expressed genes and may be targeted intra-cellularly. These results suggest that nesting of segments in polydnavirus genomes may be linked to the levels of gene expression. By extension, the unique, segmented organization of polydnavirus genomes may be associated, in part, with the requirement for divergent levels of viral gene expression in lepidopteran hosts in the absence of viral DNA replication.  相似文献   

9.
Abstract  Accurate estimates of DNA quantity are likely to become increasingly important for successful genomic screening of insect populations via recently developed, highly multiplexed genotyping assays and high-throughput sequencing methods. Here we show that genomic DNA extractions from single Anopheles gambiae Giles using a standard commercial kit-based methodology yield extracts with concentrations below the linear range of spectrophotometric absorbance at 260 nm. Concentrations determined by spectrophotometry were not reproducible, and are therefore neither accurate nor reliable. However, DNA quantification using a fluorescent nucleic acid stain (PicoGreen®) gave highly reproducible concentration estimates, and indicated that, on average, single mosquitoes yielded approximately 300 ng of DNA. Such a total yield is currently insufficient for many high-throughput genome screening applications, necessitating whole genome amplification of all or most individuals in a population prior to genotyping.  相似文献   

10.
11.
12.
The Polydnaviridae (PDV), including the Bracovirus (BV) and Ichnovirus genera, originated from the integration of unrelated viruses in the genomes of two parasitoid wasp lineages, in a remarkable example of convergent evolution. Functionally active PDVs represent the most compelling evolutionary success among endogenous viral elements (EVEs). BV evolved from the domestication by braconid wasps of a nudivirus 100 Ma. The nudivirus genome has become an EVE involved in BV particle production but is not encapsidated. Instead, BV genomes have co-opted virulence genes, used by the wasps to control the immunity and development of their hosts. Gene transfers and duplications have shaped BV genomes, now encoding hundreds of genes. Phylogenomic studies suggest that BVs contribute largely to wasp diversification and adaptation to their hosts. A genome evolution model explains how multidirectional wasp adaptation to different host species could have fostered PDV genome extension. Integrative studies linking ecological data on the wasp to genomic analyses should provide new insights into the adaptive role of particular BV genes. Forthcoming genomic advances should also indicate if the associations between endoparasitoid wasps and symbiotic viruses evolved because of their particularly intimate interactions with their hosts, or if similar domesticated EVEs could be uncovered in other parasites.  相似文献   

13.
14.
Comparison of genomic DNA sequences: solved and unsolved problems   总被引:5,自引:0,他引:5  
MOTIVATION: The DNA sequences of entire genomes are being determined at a rapid rate. Whereas initial genome sequencing efforts were for organisms chosen to be widely spaced in the tree of life, there is a growing emphasis on projects to sequence a species that is sufficiently similar to an already-sequenced species to allow direct comparison of those two DNA sequences. This and other changes in genome sequencing strategies have created a strong need for new methods to compare genomic sequences. RESULTS: We sketch the current state of software for comparing genomic DNA sequences and outline research directions that we believe are likely to result in important advances in practice.  相似文献   

15.
Corynebacterium pseudotuberculosis is a gram-positive bacterium that causes caseous lymphadenitis in sheep and goats. However, despite the economic losses caused by caseous lymphadenitis, there is little information about the molecular mechanisms of pathogenesis of this bacterium. Genomic libraries constructed in bacterial artificial chromosome (BAC) vectors have become the method of choice for clone development in high-throughput genomic-sequencing projects. Large-insert DNA libraries are useful for isolation and characterization of important genomic regions and genes. In order to identify targets that might be useful for genome sequencing, we constructed a C. pseudotuberculosis BAC library in the vector pBeloBAC11. This library contains about 18,000 BAC clones, with inserts ranging in size from 25 to 120 kb, theoretically representing a 390-fold coverage of the C. pseudotuberculosis genome (estimated to be 2.5-3.1 Mb). Many genomic survey sequences (GSSs) with homology to C. diphtheriae, C. glutamicum, C. efficiens, and C. jeikeium proteins were observed within a sample of 215 sequenced clones, confirming their close phylogenetic relationship. Computer analyses of GSSs did not detect chimeric, deleted, or rearranged BAC clones, showing that this library has low redundancy. This GSSs collection is now available for further genetic and physical analysis of the C. pseudotuberculosis genome. The GSS strategy that we used to develop our library proved to be efficient for the identification of genes and will be an important tool for mapping, assembly, comparative, and functional genomic studies in a C. pseudotuberculosis genome sequencing project that will begin this year.  相似文献   

16.
Single-cell genomic sequencing using Multiple Displacement Amplification   总被引:1,自引:0,他引:1  
Single microbial cells can now be sequenced using DNA amplified by the Multiple Displacement Amplification (MDA) reaction. The few femtograms of DNA in a bacterium are amplified into micrograms of high molecular weight DNA suitable for DNA library construction and Sanger sequencing. The MDA-generated DNA also performs well when used directly as template for pyrosequencing by the 454 Life Sciences method. While MDA from single cells loses some of the genomic sequence, this approach will greatly accelerate the pace of sequencing from uncultured microbes. The genetically linked sequences from single cells are also a powerful tool to be used in guiding genomic assembly of shotgun sequences of multiple organisms from environmental DNA extracts (metagenomic sequences).  相似文献   

17.
叶恭银  方琦 《昆虫知识》2011,48(6):1531-1538
昆虫种类繁多,它与生态系统中的生物多样性,以及人类的日常生活和生产密切相关。自2000年黑腹果蝇Drosophila melanogaster全基因组测序完成以来,至今已先后开展了88种昆虫全基因组测序工作,这标志着昆虫学研究进入了基因组时代。本文综述了近年来昆虫基因组测序进展,以及基于基因组的昆虫学研究方法及应用等两方面的研究成果。同时,着重介绍了昆虫全基因组测序进程,昆虫基因组在个体生物学、多物种间及种群,及系统生物学研究中的应用等方面的内容。最后,还探讨了基因组时代昆虫学研究所面临的挑战。  相似文献   

18.
Organellar genome sequences provide numerous phylogenetic markers and yield insight into organellar function and molecular evolution. These genomes are much smaller in size than their nuclear counterparts; thus, their complete sequencing is much less expensive than total nuclear genome sequencing, making broader phylogenetic sampling feasible. However; for some organisms, it is challenging to isolate plastid DNA for sequencing using standard methods. To overcome these difficulties, we constructed partial genomic libraries from total DNA preparations of two heterotrophic and two autotrophic angiosperm species using fosmid vectors. We then used macroarray screening to isolate clones containing large fragments of plastid DNA. A minimum tiling path of clones comprising the entire genome sequence of each plastid was selected, and these clones were shotgun-sequenced and assembled into complete genomes. Although this method worked well for both heterotrophic and autotrophic plants, nuclear genome size had a dramatic effect on the proportion of screened clones containing plastid DNA and, consequently, the overall number of clones that must be screened to ensure full plastid genome coverage. This technique makes it possible to determine complete plastid genome sequences for organisms that defy other available organellar genome sequencing methods, especially those for which limited amounts of tissue are available.  相似文献   

19.
Summary Recently investigators showed that polydnavirus DNA from the parasitic wasp Glyptapanteles indiensis could transform gypsy moth L. dispar cell lines in vitro (McKelvey et al., 1996). Here we show GiPDV DNA is capable of transforming in vitro to varying degrees lepidopteran (IPLB-TN-R2, IPLB-SF-21, IAL-PID2, IPLB-HvT1) and coleopteran (IPLB-DU182E) insect cell lines derived from various somatic tissue types. An insect cell line derived from dipteran Aedes albopictus (C7/10) could not be transformed with G. indiensis polydnavirus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号