首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
1. Cerebral-cortex slices prelabelled with gamma-amino[1-(14)C]butyrate (GABA) were incubated in a glucose-saline medium. After the initial rapid uptake there was no appreciable re-entry of (14)C into the GABA pool, either from the medium or from labelled metabolites formed in the tissue. The kinetic constants of GABA metabolism were determined by computer simulation of the experimental results by using mathematical procedures. The GABA flux was estimated to be 0.03mumol per min/g, or about 8% of the total flux through the tricarboxylic acid cycle. It was found that the assumption of compartmentation did not greatly affect the estimates of the GABA flux. 2. The time-course of incorporation of (14)C into amino acids associated with the tricarboxylic acid cycle was followed with [1-(14)C]GABA and [U-(14)C]-glucose as labelled substrates. The results were consistent with the utilization of GABA via succinate. This was confirmed by determining the position of (14)C in the carbon skeletons of aspartate and glutamate formed after the oxidation of [1-(14)C]GABA. These results also indicated that under the experimental conditions the reversal of reactions catalysed by alpha-oxoglutarate dehydrogenase and glutamate decarboxylase respectively was negligible. The conversion of [(14)C]GABA into gamma-hydroxybutyrate was probably also of minor importance, but decarboxylation of oxaloacetate did occur at a relatively slow rate. 3. When [1-(14)C]GABA was the labelled substrate there was evidence of a metabolic compartmentation of glutamate since, even before the peak of the incorporation of (14)C into glutamate had been reached, the glutamine/glutamate specific-radioactivity ratio was greater than unity. When [U-(14)C]glucose was oxidized this ratio was less than unity. The heterogeneity of the glutamate pool was indicated also by the relatively high specific radioactivity of GABA, which was comparable with that of aspartate during the whole incubation time (40min). The rates of equilibration of labelled amino acids between slice and medium gave evidence that the permeability properties of the glutamate compartments labelled as a result of oxidation of [1-(14)C]GABA were different from those labelled by the metabolism of [(14)C]glucose. The results showed therefore that in brain tissue incubated under the conditions used, the organization underlying metabolic compartmentation was preserved. The observed concentration ratios of amino acids between tissue and medium were also similar to those obtaining in vivo. These ratios decreased in the order: GABA>acidic acids>neutral amino acids>glutamine. 4. The approximate pool sizes of the amino acids in the different metabolic compartments were calculated. The glutamate content of the pool responsible for most of the labelling of glutamine during oxidation of [1-(14)C]GABA was estimated to be not more than 30% of the total tissue glutamate. The GABA content of the ;transmitter pool' was estimated to be 25-30% of the total GABA in the tissue. The structural correlates of metabolic compartmentation were considered.  相似文献   

2.
—Glucose is a major precursor of glutamate and related amino acids in the retina of adult rats. 14C from labelled glucose appears to gain access to a large glutamate pool, and the resulting specific activity of glutamate labelled from glucose is always higher than that of glutamine or the other amino acids. Radioactive acetate appeared to label a small glutamate pool. The specific activity of glutamine labelled from acetate relative to that of glutamate was always greater than 1.0. Other precursors of the small glutamate pool were found to include glutamate, aspartate, GABA, serine, leucine and sodium bicarbonate. The level of radioactivity present in retinae incubated with [U-14C]glucose or [1-14C]sodium acetate was reduced in the presence of 10?5m -ouabain. Under these conditions, the relative specific activity of glutamine labelled from [1-14C]sodium acetate was lowered, but it was raised when [U-14C]glucose was used as substrate. Ouabain also considerably reduced the synthesis of GABA from [1-14C]sodium acetate. In all cases ouabain caused a fall in the tissue levels of the amino acids. Aminooxyacetic acid (10?4m ) almost completely abolished the labelling of GABA from both [U-14C]glucose and [1-14C]sodium acetate, while the RSA of glutamine labelled from the latter substrate was significantly increased. Aminooxyacetic acid raised the tissue concentration of glutamate, but caused a fall in the tissue concentrations of glutamine, aspartate and GABA. The results suggest that there are separate compartments for the metabolism of glutamate in retina and that these can be modified in different ways by different drugs.  相似文献   

3.
The utilization of amino acids and other compounds as carbon and energy sources by Legionella pneumophila was examined. Based on the stimulation of oxygen consumption in washed-cell suspensions, glutamate, serine, threonine, and tyrosine were the only amino acids which were utilized as energy sources. Other stimulators of oxygen uptake were lactate, pyruvate, acetate, fumarate, and succinate. Citrate was a good stimulator only when the bacteria were grown in the presence of the substrate. Radiolabeling studies showed that [14C]glutamate was rapidly metabolized, with the label distributed evenly in all cell fractions. [14C]pyruvate and [14C]acetate were incorporated into the lipid-containing cell fraction, whereas glucose and glycerol were found in both the lipid- and polysaccharide-containing cell fractions. Radiorespirometry of differentially labeled [14C]glucose indicated that this compound was metabolized primarily by the pentose phosphate and Entner-Doudoroff pathways rather than by the glycolytic pathway.  相似文献   

4.
Spontaneous and electrically evoked release of exogenous labelled amino acids and endogenous amino acids labelled from D-[U-14C]glucose were compared in control and Ca2+-free medium using guinea pig cerebral cortex slices. Spontaneous release of all labelled amino acids, except that of endogenous 14C-labelled threonine-serine-glutamine (unseparated) and exogenous [14C]aspartate, was doubled in Ca2+-free medium. The major portion of the electrically evoked release of endogenous [14C]glutamate, [14C]aspartate, gamma-amino[14C]butyrate (14C-labelled GABA) and exogenous 3H-labelled GABA was Ca2+-inpendent. More than half of the evoked release of the other labelled amino acids was Ca2+-independent. As the pattern of Ca2+-dependence of the evoked release concurred with the selectivity of the evoked release for endogenous [14C]-glutamate, [14C]aspartate, and 14C-labelled GABA, it was concluded that these labelled amino acids were probably released from the amino acid 'transmitter pool'.  相似文献   

5.
—(1) The effects of aminooxyacetic acid, ouabain and Ca2+ on the compartmentation of amino acid metabolism have been studied in slices of brain incubated with sodium-[1-14C]acetate, l-[U-14C]glutamate and l-[U-14C]aspartate as tracer metabolites. (2) Aminooxyacetic acid (10-3 m) inhibited the labelling of aspartate from [14C]acetate and [14C]glutamate, as well as the incorporation of label from [14C]aspartate into glutamate and glutamine. It also inhibited the labelling of GABA from all three radioactive precursors, as would be anticipated if there was inhibition of several transaminases as well as glutamate decarboxylase. The RSA of glutamine labelled from [1-14C]acetate was increased. This finding indicated that the glutamate pool which is utilized for glutamine formation is associated with glutamate dehydrogenase, and this enzyme appears to be related to the ‘synthetic tricarboxylic acid cycle’. AOAA exerted its major inhibitory effects on the citric acid‘energy cycle’with which transaminases are associated. (3) Ouabain (10-5 m) inhibited the labelling of glutamine to a much greater extent than the labelling of glutamate from [1-14C]acetate. It also caused leakage of amino acids from the tissue into the medium. Its effect on the glutamate–glutamine system was interpreted to be a selective inhibition of the 'synthetic’citric acid cycle. (4) The omission of Ca2+ from the incubation medium was associated with formation of glutamine with RSA less than 1·0 when labelled from [U-14C]glutamate, [U-14C]aspartate and lower than normal when labelled from [1-14C]acetate.  相似文献   

6.
Mice were anaesthetized with nembutal and the effects of intraventricularly injected excitant amino acids on [U-14C]acetate metabolism were investigated. The natural excitant amino acids, l -glutamate and l -aspartate, reduced the incorporation of 14C from [U-14C]acetate into glutamine, GAB A and possibly alanine. The synthetic excitant amino acid, N-methyl-d -aspartate caused a reduction in the incorporation of 14C from intraventricularly injected [U-14C]acetate into all of the brain amino acids labelled by [U-14C]acetate within 5 min. It is suggested that these effects may be due to changes in pool sizes of tricarboxylic cycle intermediates, to inhibition of acetyl-CoA formation, or both. Differences in the metabolic effects of the synthetic and natural excitants are interpreted in terms of the uptake of the natural amino acids into glutamine-forming pool(s) of glutamate metabolism.  相似文献   

7.
—Isolated rat posterior pituitary glands were incubated with [14C]glucose or [14C]acetate and the incorporation of radioactivity into several amino acids was followed. The results indicated that radioactivity was incorporated from [14C]glucose into a large pool of glutamate which appeared to be responsible for a large proportion of GABA synthesis in the gland. The specific activity of glutamine was always less than that of glutamate when [14C]glucose was the precursor employed, whereas [14C]acetate labelled a glutamate pool which had approximately the same specific activity as that of glutamine. The results are discussed with reference to the compartmentation of amino acid metabolism in the nervous system.  相似文献   

8.
1. The metabolism of gamma-aminobutyrate (GABA) was investigated in cerebral-cortex slices incubated in glucose-saline medium with [1-(14)C]GABA and [U-(14)C]-glucose as labelled substrates. 2. A rapid release of GABA from the tissue, amounting to 25-30% of the total, was observed on addition of 66m-equiv. of K(+)/1 to the medium; the liberation of other amino acids was relatively small. The effect was apparently specific for K(+); GABA was not released on addition of equivalent amounts of Na(+) or on increasing the respiration rate with 10mm-ammonium chloride. The results show that GABA behaves like the transmitter compounds (acetylcholine, catecholamines) on K(+) stimulation, and therefore now satisfies certain of the criteria required for a transmitter in mammalian brain. 3. The release of GABA from the tissue on addition of K(+) was followed by a slow re-uptake. The rate of uptake of GABA in a medium containing 5.9m-equiv. of K(+)/1 was more than four times that in a medium containing 66m-equiv. of K(+)/1. 4. The concentration of GABA in brain tissue incubated for 1h in a medium containing 66m-equiv. of K(+)/1 was about 50% higher than that observed under normal conditions. 5. There was evidence that exogenous [(14)C]GABA mixed with the endogenous pool(s), since the proportion of the total GABA released on K(+) stimulation was the same, and the specific radioactivity of the liberated GABA was close to that remaining in the tissue, whether the GABA was labelled by [1-(14)C]GABA from the medium or generated in the tissue from [(14)C]glucose. 6. On the basis of these findings and the observations outlined in the preceding papers it was possible to calculate the kinetic constants of GABA metabolism by computer simulation of the results. K(+) stimulation led to a 2.5-fold increase in the flux through the tricarboxylic acid cycle, whereas the flux in the GABA bypath was little affected; as a result the flux through the GABA bypath, which under normal conditions was 8% of that through the tricarboxylic acid cycle, decreased to 3-5%. 7. The metabolism of glutamine was greatly affected by K(+)-stimulation. The ratio of the concentration of glutamine in the slices to that in the medium, which under normal conditions was the smallest among the amino acids investigated, increased from about 17 to 63 in 1h. This effect was attributable partly to an uptake of glutamine from the medium (1.8mumol/h per g) and partly to a net increase in the total amount of glutamine (2.6mumol/h per g). At 1h after the addition of K(+) the net gain of glutamine could be accounted for by the decrease of glutamate. 8. Metabolic compartmentation was evident when brain-cortex slices were incubated in glucose-saline medium and the labelled substrate was [(14)C]GABA, since the specific radioactivity of glutamine exceeded that of glutamate. On addition of K(+) the signs of metabolic compartmentation promptly disappeared: this effect was apparently associated with an increase in the permeability of the compartments containing labelled metabolites derived from [(14)C]GABA. The change in the permeability, however, did not affect all the compartments; when the labelled substrate was [(14)C]glucose the equilibration of labelled amino acids between tissue and medium was similar under normal conditions and in the presence of high concentrations of K(+). 9. The metabolism of [(14)C]glucose was followed by measuring oxygen uptake, respiratory (14)CO(2), and incorporation of (14)C into amino acids. The results showed that K(+) stimulation increased the flux of glucose carbon, both in the glycolytic pathway and in the tricarboxylic acid cycle.  相似文献   

9.
Na+-dependent uptake of dicarboxylic amino acids in membrane saccules, due to exchange diffusion and independent of ion gradients, was highly sensitive to inhibition by K+. The IC50 was 1-2 mM under a variety of conditions (i.e., whole tissue or synaptic membranes, frozen/thawed or fresh, D-[3H]aspartate (10-1000 nM) or L-[3H]glutamate (100 nM), phosphate or Tris buffer, NaCl or Na acetate, presence or absence of Ca2+ and Mg2+). The degree of inhibition by K+ was also not affected on removal of ion gradients by ionophores, or by extensive washing with H2O and reloading of membrane saccules with glutamate and incubation medium in the presence or absence of K+ (3 mM, i.e., IC70). Rb+, NH4+, and, to a lesser degree Cs+, but not Li+, could substitute for K+. [K+] showed a competitive relationship to [Na+]2. Incubation with K+ before or after uptake suggested that the ion acts in part by allowing net efflux, thus reducing the internal pool of amino acid against which D-[3H]aspartate exchanges, and in part by inhibiting the interaction of Na+ and D-[3H]aspartate with the transporter. The current model of the Na+-dependent high-affinity acidic amino acid transport carrier allows the observations to be explained and reconciled with previous seemingly conflicting reports on stimulation of acidic amino acid uptake by low concentrations of K+. The findings correct the interpretation of recent reports on a K+-induced inhibition of Na+-dependent "binding" of glutamate and aspartate, and partly elucidate the mechanism of action.  相似文献   

10.
(1) The metabolism of glucose and amino acids in vitro was compared in the rat cerebral cortex and the optic and vertical lobes of the octopus brain. (2) Specific activities and pool sizes of the five amino acids, glutamate, aspartate, glutamine, alanine and γ-aminobutyric acid (GABA), were determined in octopus and rat brain slices after 2 hr incubation with 10 mm -[U-14C]glucose, 10 mm -L-[U-14C]glutamate, and 10mm -L-[U-14C]glutamate with added 10 mM-glucose. Amino acid pool sizes were similar in rat and octopus brain, with the exception of alanine, which was higher in the octopus. Generally specific activities were from four- to 20-fold higher in rat brain. With [U-14C]glucose as substrate, specific activities of GABA and glutamate were highest in rat; those of alanine and glutamine highest in octopus brain. With L-[U-14C]glutamate the specific activities of GABA and aspartate were highest in rat, that of aspartate highest and GABA lowest in octopus. The addition of glucose to L-[U-14C]glutamate as substrate had little effect on the specific activities of any of the amino acids. (3) The uptake of some amino acids was determined by incubation with [U-14C]amino acids for 2 hr, and 14CO2 formation was also measured. The amount of label taken up by octopus was uniformly 20-25 per cent of that found for rat brain. The amount of 14CO2, however, differed according to the amino acid. Four times as much 14CO2 was generated from alanine by octopus optic lobe and twice as much by the vertical lobe than rat cortex, but from glutamate, only 24 per cent in the optic and 15 per cent in the vertical lobe. No 14CO2 was generated from [U-14C]GABA in the octopus, by contrast with the rat. (4) Activity of some of the enzymes involved in amino acid metabolism was determined in homogenates of rat cortex and octopus optic and vertical lobes, with and without activation by Triton X-100. Enzymic activities in the octopus, with the exception of alanine aminotransferase, were lower than in the rat, and glutamate decarboxylase could not be detected in octopus brain, in the absence of detergent.  相似文献   

11.
Abstract— The metabolism of a tricarboxylic acid cycle (cycle) intermediate, [1.4-'14C]succinate, was studied in the brain at 2 20 min after intracerebral injection. The oxidation of [14C]succinate was rapid, as shown by the incorporation of 14C into cycle amino acids which accounted for about 30 per cent and 70 per cent of the tissue -“Cat 2 and 10 min respectively. During the whole experimental period the specific radioactivity of glutamine was about three times higher than that of glutamate. Thus exogenous [14C]succinate elicited signs of metabolic compartmentation similar to those seen after the administration of short chain fatty acids or amino acids. A computer programme, based on data obtained previously on the metabolic compartmentation of acetate and of glucose in the brain, was used to simulate the kinetics of labelling of cycle amino acids after an input of [1.4-14C]succinate. The correspondence of the simulated data with the experimental results was good in the first 10 min after injection, although the deviations were significant at later time points. Incorporation of 14C into GABA was very low (< 1 per cent of the amino acid -14C) after the injection of [1.4-14C]succinate. Further, labelled GABA formation was not detected in the decapitated rat brain labelled in vivo with [1.4-14C]succinate 2 min beforehand. Since the oxidation of [l,4-14C]succinate via the cycle yields unlabellcd GABA. whereas the reversal of the reactions in the GABA bypath may introduce 14C from succinate into the GABA pool, the results indicate that this reversal is negligible even under the most favourable conditions, i.e. post mortem when both the NADH/NAD+ ratios and [14C]succinate concentrations arc high. The observations are therefore consistent with the view that glutamate is the predominant and probably the only source of GABA carbon in the brain both in vivo and post mortem.  相似文献   

12.
Abstract— The effect of 15 h continuous exposure to CS2 on the metaboliam of glucose and free amino acids in the brain of rats was studied. CS2 caused a moderate hypoglycaemia. There were also changes in the amounts of some amino acids in the brain. Glutamate and γ-aminobutyrate were lower whereas glutamine was markedly increased. Comparative studies in vivo of the metabolism of [2-14C]glucose and [1-14C]butyrate indicated that CS2 did not affect glycolysis or the incorporation of 14C from glucose into amino acids except into γ-aminobutyrate which was reduced. Contrary to the findings with [14C]glucose, CS2 provoked distinct changes in the labelling of amino acids when [14C]butyrate was the precursor. The most notable change was a markedly increased incorporation of 14C into glutamine. Based on the two-compartment model of brain glutamate the experimental findings indicated that CS2 affected metabolism associated with the 'small' pool of glutamate but had a minimal effect on metabolism associated with the 'large' glutamate pool. The possibility is suggested that the changes observed involved an increased rate of ammonia removal. The low incorporation of 14C into γ-aminobutyrate from either precursor is consistent with other evidence showing that CS2 interferes with pyridoxal phosphate-dependent enzymes.  相似文献   

13.
1. (14)C from [1-(14)C]glucose injected intraperitoneally into mice is incorporated into glutamate, aspartate and glutamine in the brain to a much greater extent than (14)C from [2-(14)C]glucose. This difference for [1-(14)C]glucose and [2-(14)C]glucose increases with time. The amount of (14)C in C-1 of glutamate increases steadily with time with both precursors. It is suggested that a large part of the glutamate and aspartate pools in brain are in close contact with intermediates of a fast-turning tricarboxylic acid cycle. 2. (14)C from [1-(14)C]acetate and [2-(14)C]acetate is incorporated to a much larger extent into glutamine than into glutamate. An examination of the time-course of (14)C incorporated into glutamine and glutamate reveals that glutamine is not formed from the glutamate pool, labelled extensively by glucose, but from a small glutamate pool. This small glutamate pool is not derived from an intermediate of a fast-turning tricarboxylic acid cycle. 3. It is proposed that two different tricarboxylic acid cycles exist in brain.  相似文献   

14.
Abstract– The pattern of incorporation of [3H, 1-14C]- and [3H. 2-14C]acetate into glutamate and related amino acids was studied in the brain of 10-day-old mice. A comparison of these patterns with those obtained for the adult brain led to the suggestion that the glutamate pool labelled directly by acetate is a much larger fraction of the total glutamate pool in the 10-day-old brain than it is in the adult brain.
Some data on the pattern of labelling of brain amino acids by 3-hydroxybutyrate. glucose and acetate support the hypothesis that direct carboxylation of pyruvate is somewhat more active in the immature than in the mature brain.
Differences in the labelling patterns of free and protein-bound brain amino acids by acetate, do indicate that the free amino acid pool labelled by acetate is not the precursor pool for protein synthesis.  相似文献   

15.
Abstract—
  • 1 The metabolism of three substrates, [U-14C]glucose, [U-14C]pyruvate and [U-14C]glutamate has been studied in vitro in neuronal and glial cell fractions obtained from rat cerebral cortex by a density gradient technique.
  • 2 The mixed cell suspension, after washing, metabolized glucose and glutamate in a manner essentially similar to the tissue slice. Exceptions were a reduced ability to generate lactate from glucose and alanine from glutamate, and a lowered effect of added glucose in suppressing the production of aspartate from glutamate.
  • 3 After 2 hr incubation with [U-14C]glucose, the concentration of the amino acids glutamate, glutamine, GABA, aspartate and alanine were raised in the neuronal, compared to the glial fraction to 234 per cent, 176 per cent, 202 per cent, 167 per cent and 230 per cent respectively although both were lower than in the tissue slice. Incorporation of radio-activity was absolutely lower in the neuronal fraction, however, and the specific activities of the amino acids were: glutamate 12 per cent, GABA 18 per cent, aspartate 34 per cent, and alanine 33 per cent of those in the glial fraction.
  • 4 After the incubation with [U-14C]pyruvate, the pool size of the amino acids were higher than after incubation with glucose, except for GABA, which was reduced to one-third. The concentrations of the amino acids glutamate, glutamine, GABA, aspartate, and alanine in the neuronal fraction were respectively 46 per cent, 143 per cent, 105 per cent, 97 per cent, and 57 per cent of those in the glial. Thus, with the exception of alanine, the specific activity of the neuronal amino acids compared to the glial was little increased when pyruvate replaced glucose as substrate.
  • 5 After 2 hr incubation with [U-14C]glutamate in the presence of non-radioactive glucose, the pool sizes of all the amino acids were increased in both neuronal and glial fractions, with the exception of neuronal alanine and glial glutamine. The concentrations of the amino acids glutamine, GABA, aspartate and alanine were raised in the neuronal fraction, compared to the glial, to 425 per cent, 187 per cent, 222 per cent, and 133 per cent respectively. The specific activities of all the amino acids were higher than with glucose alone with the exception of alanine, and neuronal GABA. Neuronal glutamine and aspartate had specific activities respectively 102 per cent and 84 per cent of glial.
  • 6 An unidentified amino acid, with RF comparable to that of alanine and specific activity close to that of glutamate, was also present after incubation. It was relatively concentrated in the neuronal fraction.
  • 7 The distribution of the enzymes glutamate dehydrogenase, aspartate aminotransferase, glutamate decarboxylase and glutamine synthetase between the cell fractions was studied. With the exception of glutamine synthetase, none of the enzymes was lost from the cell fractions during their preparation. Only 14 per cent of the glutamine synthetase, compared with 75 per cent of total protein, was recovered in the fractions. Of the enzymes, glutamate dehydrogenase activity was 406 per cent, and glutamate synthetase activity 177 per cent in the neuronal fraction compared to the glial in the absence of detergent. In the presence of detergent, glutamate dehydrogenase control was 261 per cent, aspartate aminotransferase activity 237 per cent is the neuronal as compared to the glial fraction.
  • 8 Incorporation of radioactivity into acid-insoluble material from either glutamate or pyruvate was twice as high into the neuronal as the glial fraction.
  • 9 The extent to which these differences may be extrapolated back to the intact tissue is considered, and certain correction factors calculated. The significance of the observations for an understanding of the compartmentation of amino acid pools and metabolism in the brain, and the possible identification of such compartments, is discussed.
  相似文献   

16.
The release of [3H]GABA formed from [3H]glutamate in rat hippocampal slices   总被引:1,自引:0,他引:1  
to compare the storage and release of endogenous GABA, of [3H]GABA formed endogenously from glutamate, and of exogenous [14C]GABA, hippocampal slices were incubated with 5 microCi/ml [3,4-3H]1-glutamate and 0.5 microCi/ml [U-14C]GABA and then were superfused in the presence or absence of Ca+ with either 50 mM K+ or 50 microM veratridine. Endogenous GABA was determined by high performance liquid chromatography which separated labeled GABA from its precursors and metabolites. Exogenous [14C]GABA content of the slices declined spontaneously while endogenous GABA and endogenously formed [3H]GABA stayed constant over a 48 min period. In the presence of Ca+ 50 mM K+ and in the presence or absence of Ca2+ veratridine released exogenous [14C]GABA more rapidly than endogenous or endogenously formed [3H]GABA, the release of the latter two occurring always in parallel. The initial specific activity of released exogenous [14C]GABA was three times, while that of endogenously formed [3H]GABA was only 50% higher than that in the slices. There was an excess of endogenous GABA content following superfusion with 50 mM K+ and Ca2+, which did not occur in the absence of Ca2+ or after veratridine. The observation that endogenous GABA and [3H]GABA formed endogenously from glutamate are stored and released in parallel but differently from exogenous labelled GABA, suggests that exogenous [3H] glutamate can enter a glutamate pool that normally serves as precursor of GABA.  相似文献   

17.
The incorporation of [15N]glutamic acid into glutathione was studied in primary cultures of astrocytes. Turnover of the intracellular glutathione pool was rapid, attaining a steady state value of 30.0 atom% excess in 180 min. The intracellular glutathione concentration was high (20-40 nmol/mg protein) and the tripeptide was released rapidly into the incubation medium. Although labeling of glutathione (atom% excess) with [15N]glutamate occurred rapidly, little accumulation of 15N in glutathione was noted during the incubation compared with 15N in aspartate, glutamine, and alanine. Glutathione turnover was stimulated by incubating the astrocytes with diethylmaleate, an electrophile that caused a partial depletion of the glutathione pool(s). Diethylmaleate treatment also was associated with significant reductions of intraastrocytic glutamate, glycine, and cysteine, i.e., the constituents of glutathione. Glutathione synthesis could be stimulated by supplementing the steady-state incubation medium with 0.05 mM L-cysteine, such treatment again partially depleting intraastrocytic glutamate and causing significant reductions of 15N labeling of both alanine and glutamine, suggesting that glutamate had been diverted from the synthesis of these amino acids and toward the formation of glutathione. The current study underscores both the intensity of glutathione turnover in astrocytes and the relationship of this turnover to the metabolism of glutamate and other amino acids.  相似文献   

18.
Release of endogenous amino acids labelled via D-[U-14C]glucose was compared with that of several exogenous labelled amino acids using slices of guinea pig cerebral cortex. Electrical field stimulation evoked a selective release of endogenous [14C]glutamate, [14C]aspartate, and gamma-amino[14C]butyrate (14C-labelled GABA). The selectivity of release correlated well with 14C incorporation into endogenous amino acids. Calculations of the fraction of the tissue radioactivity released indicated that the selectivity was not an artifact due to differential incorporation. Because glucose in mammalian brain is metabolized almost entirely by the so-called 'large compartment', it is tentatively concluded that the releasable 'transmitter pool' of glutamate, aspartate, and GABA is located in this 'large compartment'.  相似文献   

19.
Abstract: Metabolic compartmentation of amino acid metabolism in brain is exemplified by the differential synthesis of glutamate and glutamine from the identical precursor and by the localization of the enzyme glutamine synthetase in glial cells. In the current study, we determined if the oxidative metabolism of glutamate and glutamine was also compartmentalized. The relative oxidation rates of glutamate and glutamine in the hippocampus of free-moving rats was determined by using microdialysis both to infuse the radioactive substrate and to collect 14CO2 generated during their oxidation. At the end of the oxidation experiment, the radioactive substrate was replaced by artificial CSF, 2 min-fractions were collected, and the specific activities of glutamate and glutamine were determined. Extrapolation of the specific activity back to the time that artificial CSF replaced 14C-amino acids in the microdialysis probe yielded an approximation of the interstitial specific activity during the oxidation. The extrapolated interstitial specific activities for [14C]glutamate and [14C]glutamine were 59 ± 18 and 2.1 ± 0.5 dpm/pmol, respectively. The initial infused specific activities for [U-14C]glutamate and [U-14C]glutamine were 408 ± 8 and 387 ± 1 dpm/pmol, respectively. The dilution of glutamine was greater than that of glutamate, consistent with the difference in concentrations of these amino acids in the interstitial space. Based on the extrapolated interstitial specific activities, the rate of glutamine oxidation exceeds that of glutamate oxidation by a factor of 5.3. These data indicate compartmentation of either uptake and/or oxidative metabolism of these two amino acids. The presence of [14C]glutamine in the interstitial space when [14C]glutamate was perfused into the brain provided further evidence for the glutamate/glutamine cycle in brain.  相似文献   

20.
l-Aspartate-[U-14C] was quickly metabolized in rice seedlings into amino acids, organic acids and sugars. On feeding simultaneously with ammonium for 2 hr, about 1% of the total soluble radioactivity was recovered as asparagine. Major amino acids labelled were aspartate, glutamate, glutamine and alanine in both shoots and roots. On the other hand, on feeding l-aspartate-[U-14C] to rice seedlings precultured in an ammonium medium, asparagine accounted for 35% of the total soluble radioactivity in the roots. Different labelling patterns in amino acids from those of non-precultured tissues were observed, and the main amino acids labelled in this case were asparagine and γ-aminobutyrate in the roots; glutamate, asparagine and glutamine in the shoots. It was observed in the roots that this increase of asparagine labelling was associated with a decrease of label in glutamate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号