首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: We genotyped 180 captive desert tortoises (Gopherus agassizii) from Kingman (n = 45), Phoenix (n = 113), and Tucson (n = 22), Arizona, USA, to determine if the genetic lineage of captives is associated with that of wild tortoises in the local area (Sonoran Desert). We tested all samples for 16 short tandem repeats and sequenced 1,109 base pairs of mitochondrial DNA (mtDNA). To determine genetic origin, we performed assignment tests against a reference database of 997 desert tortoise samples collected throughout the Mojave and Sonoran Deserts. We found that >40% of our Arizona captive samples were genetically of Mojave Desert or hybrid origin, with the percentage of individuals exhibiting the Mojave genotype increasing as the sample locations approached the California, USA, border. In Phoenix, 11.5% were Sonoran–Mojave crosses, and 8.8% were hybrids between desert tortoise and Texas tortoise (G. berlandieri). Our findings present many potential implications for wild tortoises in the Sonoran Desert of Arizona. Escaped or released captive tortoises with Mojave or hybrid genotypes have the potential to affect the genetic composition of Sonoran wild populations. Genotyping captive desert tortoises could be used to inform the adoption process, and thereby provide additional protection to native desert-tortoise populations in Arizona.  相似文献   

2.
We used the doubly labeled water method to measure the field metabolic rates (FMRs, in kJ kg?1?day?1) and water flux rates (WIRs, in ml H2O?kg?1?day?1) of adult desert tortoises (Gopherus agassizii) in three parts of the Mojave Desert in California over a 3.5-year period, in order to develop insights into the physiological responses of this threatened species to climate variation among sites and years. FMR, WIR, and the water economy index (WEI, in ml H2O?kJ?1, an indicator of drinking of free water) differed extensively among seasons, among study sites, between sexes, and among years. In high-rainfall years, males had higher FMRs than females. Average daily rates of energy and water use by desert tortoises were extraordinarily variable: 28-fold differences in FMR and 237-fold differences in WIR were measured. Some of this variation was due to seasonal conditions, with rates being low during cold winter months and higher in the warm seasons. However, much of the variation was due to responses to year-to-year variation in rainfall. Annual spring peaks in FMR and WIR were higher in wet years than in drought years. Site differences in seasonal patterns were apparently due to geographic differences in rainfall patterns (more summer rain at eastern Mojave sites). In spring 1992, during an El Niño (ENSO) event, the WEI was greater than the maximal value obtainable from consuming succulent vegetation, indicating copious drinking of rainwater at that time. The physiological and behavioral flexibility of desert tortoises, evident in individuals living at all three study sites, appears central to their ability to survive droughts and benefit from periods of resource abundance. The strong effects of the El Niño (ENSO) weather pattern on tortoise physiology, reproduction, and survival elucidated in this and other studies suggest that local manifestations of global climate events could have a long-term influence on the tortoise populations in the Mojave Desert.  相似文献   

3.
Following field observations of wild Agassiz's desert tortoises (Gopherus agassizii) with oral lesions similar to those seen in captive tortoises with herpesvirus infection, we measured the prevalence of antibodies to Testudinid herpesvirus (TeHV) 3 in wild populations of desert tortoises in California. The survey revealed 30.9% antibody prevalence. In 2009 and 2010, two wild adult male desert tortoises, with gross lesions consistent with trauma and puncture wounds, respectively, were necropsied. Tortoise 1 was from the central Mojave Desert and tortoise 2 was from the northeastern Mojave Desert. We extracted DNA from the tongue of tortoise 1 and from the tongue and nasal mucosa of tortoise 2. Sequencing of polymerase chain reaction products of the herpesviral DNA-dependent DNA polymerase gene and the UL39 gene respectively showed 100% nucleotide identity with TeHV2, which was previously detected in an ill captive desert tortoise in California. Although several cases of herpesvirus infection have been described in captive desert tortoises, our findings represent the first conclusive molecular evidence of TeHV2 infection in wild desert tortoises. The serologic findings support cross-reactivity between TeHV2 and TeHV3. Further studies to determine the ecology, prevalence, and clinical significance of this virus in tortoise populations are needed.  相似文献   

4.
Changes to animal movement in response to human‐induced changes to the environment are of growing concern in conservation. Most research on this problem has focused on terrestrial endotherms, but changes to herpetofaunal movement are also of concern given their limited dispersal abilities and specialized thermophysiological requirements. Animals in the desert region of the southwestern United States are faced with environmental alterations driven by development (e.g., solar energy facilities) and climate change. Here, we study the movement ecology of a desert species of conservation concern, the Mojave desert tortoise (Gopherus agassizii). We collected weekly encounter locations of marked desert tortoises during the active (nonhibernation) seasons in 2013–2015, and used those data to discriminate movements among activity centers from those within them. We then modeled the probability of movement among activity centers using a suite of covariates describing characteristics of tortoises, natural and anthropogenic landscape features, vegetation, and weather. Multimodel inference indicated greatest support for a model that included individual tortoise characteristics, landscape features, and weather. After controlling for season, date, age, and sex, we found that desert tortoises were more likely to move among activity centers when they were further from minor roads and in the vicinity of barrier fencing; we also found that movement between activity centers was more common during periods of greater rainfall and during periods where cooler temperatures coincided with lower rainfall. Our findings indicate that landscape alterations and climate change both have the potential to impact movements by desert tortoises during the active season. This study provides an important baseline against which we can detect future changes in tortoise movement behavior.  相似文献   

5.
ABSTRACT The distribution of desert tortoises (Gopherus agassizii) spans a wide range of biotic and abiotic conditions in the southwestern United States and northwestern Mexico, with physical and behavioral differences distinguishing tortoises inhabiting the Mojave Desert from those inhabiting the Sonoran Desert. Relative to tortoise populations in the Mojave Desert, populations in the Sonoran Desert have not been well-studied. To assess how habitat use of desert tortoises in the Sonoran Desert was influenced by topography, vegetation, geomorphology, and soil, we surveyed 40 randomly located 3-ha sites for presence of adult tortoises within a site-occupancy framework. We modeled both occupancy and detection probability as a function of environmental features, and compared those results with a logistic regression model that assumed detection probability was equal to 1. Results from both approaches agreed, suggesting that habitat selection of tortoises in the Sonoran Desert was influenced primarily by topographic and geomorphologic features rather than by vegetation. Specifically, tortoises were more likely to occupy sites that were steep (we detected tortoises on 29% of sites with mean slope <5° and 92% of sites with mean slope >15°) and predominantly east-facing (53% of sites with <5% of site facing E and 92% of sites with >20% facing E), and less likely to occupy north-facing slopes (100% of sites with <10% of site facing N and 14% of sites with >60% facing N). Our results contrast with patterns of habitat use in the Mojave Desert where tortoises primarily occupy valley bottoms. Habitat use of tortoises in Sonoran and Mojave Desert populations differ considerably, contributing to the mounting body of evidence suggesting that these geographically distinct populations may represent separate species.  相似文献   

6.
Previous studies of desert tortoise foraging ecology in the western Mojave Desert suggest that these animals are selective herbivores, which alter their diet according to the temporal availability of preferred food plants. These studies, however, did not estimate availability of potential food plants by taking into account the spatial and temporal variability in ephemeral plant abundance that occurs within the spring season. In this study, we observed 18 free-ranging adult tortoises take 35,388 bites during the spring foraging season. We also estimated the relative abundance of potential food plants by stratifying our sampling across different phenological periods of the 3-month long spring season and by different habitats and microhabitats. This methodology allowed us to conduct statistical tests comparing tortoise diet against plant abundance. Our results show that tortoises choose food plants non-randomly throughout the foraging season, a finding that corroborates the hypothesis that desert tortoises rely on key plants during different phenological periods of spring. Moreover, tortoises only consumed plants in a succulent state until the last few weeks of spring, at which time most annuals and herbaceous perennials had dried and most tortoises had ceased foraging. Many species of food plants—including several frequently eaten species—were not detected in our plant surveys, yet tortoises located these rare plants in their home ranges. Over 50% of bites consumed were in the group of undetected species. Interestingly, tortoises focused heavily on several leguminous species, which could be nutritious foods owing to their presumably high nitrogen contents. We suggest that herbaceous perennials, which were rare on our study area but represented ~30% of tortoise diet, may be important in sustaining tortoise populations during droughts when native annuals are absent. These findings highlight the vulnerability of desert tortoises to climate change if such changes alter the availability of their preferred food plants.  相似文献   

7.
Desert tortoise (Gopherus agassizii) populations have experienced precipitous declines resulting from the cumulative impact of habitat loss and human and disease-related mortality. Diagnosis of disease in live, free-ranging tortoises is facilitated by evaluation of clinical signs and laboratory test results but may be complicated by seasonal and environmental effects. The goals of this study were: 1) to describe and monitor clinical and laboratory signs of disease in adult, free-ranging desert tortoises at three sites in the Mojave Desert of California (USA) between October 1990 and October 1995; 2) to evaluate associations between clinical signs and hematologic, biochemical, serologic, and microbiologic test results; 3) to characterize disease patterns by site, season, and sex; and 4) to assess the utility of diagnostic tests in predicting morbidity and mortality. Venous blood samples were obtained four times per year from tortoises of both sexes at the Desert Tortoise Research Natural Area (DTNA), Goffs/Fenner Valley, and Ivanpah Valley. Tortoises were given a physical examination, and clinical abnormalities were graded by type and severity. Of 108 tortoises, 68.5% had clinical signs of upper respiratory tract disease consistent with mycoplasmosis at least once during the study period. In addition, 48.1% developed moderate to severe shell lesions consistent with cutaneous dyskeratosis. Ulcerated or plaque-like oral lesions were noted on single occasions in 23% of tortoises at Goffs and 6% of tortoises at Ivanpah. Tortoises with oral lesions were significantly more likely than tortoises without lesions to have positive nasal cultures for Mycoplasma agassizii (P = 0.001) and to be dehydrated (P = 0.0007). Nine tortoises had marked azotemia (blood urea nitrogen [BUN] > 100 mg/dl) or persistent azotemia (BUN 63-76 mg/dl); four of these died, three of which had necropsy confirmation of urinary tract disease. Laboratory tests had low sensitivity but high specificity in assessing morbidity and mortality; there was marked discrepancy between serologic and culture results for M. agassizii. Compared with tortoises at other sites, tortoises at DTNA were more likely to be seropositive for M. agassizii. Tortoises at Goffs were significantly more likely to have moderate to severe shell disease, oral lesions, positive nasal cultures for M. agassizii, and increased plasma aspartate aminotransferase activity. The severe disease prevalence in Goffs tortoises likely contributed to the population decline that occurred during and subsequent to this study.  相似文献   

8.
Upper respiratory tract disease (URTD) has been associated with major losses of free-ranging desert tortoises (Gopherus agassizii) in the southwestern United States. This prompted a clinical examination of 63 free-ranging desert tortoises for signs of URTD and sampling for Mycoplasma agassizii, the causative agent of URTD. Tortoises were sampled from three sites in the eastern Mojave Desert (1992-93), and from three sites in the Sonoran Desert (1992-94). Plasma samples were tested for antibodies to M. agassizii using an enzyme-linked immunosorbent assay (ELISA). Nasal aspirate samples from 12 Sonoran tortoises were tested using polymerase chain reaction (PCR) test directed at the 16S rRNA gene of M. agassizii. Nasal aspirate samples from all tortoises were cultured for M. agassizii. In the Mojave Desert, nine tortoises had clinical signs of URTD and eight were seropositive for M. agassizii. In the Sonoran Desert, there were no clinical signs of URTD, but two tortoises were seropositive, and two tortoises had positive PCR results.  相似文献   

9.
Esler  Karen J.  Rundel  Philip W. 《Plant Ecology》1999,142(1-2):97-104
A comparative study of community structure and seasonal growth dynamics in the arid winter rainfall regions of the Succulent Karoo in South Africa and the Mojave Desert of the United States suggests that remarkably divergent patterns of resource use and resultant growth form diversity exist in regions with outwardly similar climatic regimes. An understanding of these divergent patterns in the two winter rainfall deserts allows predictions to be made on vegetation response to global change. Above-ground plant growth in the Succulent Karoo begins with the first significant rains in late summer and continues through winter because moderate minimum temperatures allow continued growth. These communities have low structural diversity above-ground, but also below-ground, where root systems commonly do not exceed 20 cm in depth. These shallow root systems harvest water from upper soil horizons soon after rain falls, and growth declines as rainfall decreases in late spring. In contrast, low temperatures during winter inhibit growth in the Mojave Desert until early spring at a time when a mean 74% of the hydrologic year precipitation (July-June) has already occurred. Thus species in this structurally diverse system rely on deeper stores of water for growth in spring and early summer. A global change scenario of a 2 to 4°C increase in mean annual temperature and increased summer rainfall in the Mojave desert would be expected to produce similar conditions in the Mojave Desert to those that exist in the Succulent Karoo today. Assuming no genetic constraints on phenotypic plasticity, this would suggest increased species diversity and a decline in structural diversity in the Mojave Desert over evolutionary time. Increased summer rainfall in the Succulent Karoo would be expected to lead to invasions of grasses and thus increased competitive pressure reducing community diversity.  相似文献   

10.
Mycoplasma agassizi has been identified as a cause of upper respiratory tract disease (URTD) in the threatened Mojave population of the desert tortoise (Gopherus agassizii), and anti-M. agassizii antibodies have been found by ELISA in as many as 15% of these animals across their geographic range. Here we report that a cohort of 16 egg-reared desert tortoises never exposed to M. agassizii had ELISA antibody titers to this organism that overlapped with titers obtained from some M. agassizii-infected tortoises. These natural antibodies were predominantly of the IgM class. Western blots of plasma from these non-infected tortoises produced a characteristic banding pattern against M. agassizii antigens. A group of 38 wild-caught desert tortoises was tested by ELISA, and although some of these tortoises had antibody titers significantly higher than the non-infected tortoises, there was considerable overlap at the lower titer levels. However, Western blot analysis revealed distinct banding patterns that could readily distinguish between the non-infected tortoises and tortoises with acquired antibodies, regardless of ELISA antibody titers. We conclude that desert tortoises have natural antibodies to M. agassizii that can compromise the determination of infection status by ELISA. However, the Western blot technique can distinguish between natural and acquired antibody patterns and can be used to confirm the diagnosis of M. agassizii infections in the desert tortoise.  相似文献   

11.
The conservation of tortoises poses a unique situation because several threatened species are commonly kept as pets within their native ranges. Thus, there is potential for captive populations to be a reservoir for repatriation efforts. We assess the utility of captive populations of the threatened Agassiz’s desert tortoise (Gopherus agassizii) for recovery efforts based on genetic affinity to local areas. We collected samples from 130 captive desert tortoises from three desert communities: two in California (Ridgecrest and Joshua Tree) and the Desert Tortoise Conservation Center (Las Vegas) in Nevada. We tested all samples for 25 short tandem repeats and sequenced 1,109 bp of the mitochondrial genome. We compared captive genotypes to a database of 1,258 Gopherus samples, including 657 wild caught G. agassizii spanning the full range of the species. We conducted population assignment tests to determine the genetic origins of the captive individuals. For our total sample set, only 44 % of captive individuals were assigned to local populations based on genetic units derived from the reference database. One individual from Joshua Tree, California, was identified as being a Morafka’s desert tortoise, G. morafkai, a cryptic species which is not native to the Mojave Desert. Our data suggest that captive desert tortoises kept within the native range of G. agassizii cannot be presumed to have a genealogical affiliation to wild tortoises in their geographic proximity. Precautions should be taken before considering the release of captive tortoises into the wild as a management tool for recovery.  相似文献   

12.
We used highly variable microsatellite markers to identify population structure, movement, and biological boundaries for populations of the desert tortoise, Gopherus agassizii, in the Mojave and Colorado Deserts of the southwestern United States. The Mojave desert tortoise (listed as “threatened” by the U.S. Fish and Wildlife Service) has a large geographic range, long generation time, low population densities, and little above-ground activity. Additionally, the dispersal patterns of individual tortoises are virtually unknown, making indirect methods to assess movement among populations valuable. Using Bayesian assignment tests, we detected hierarchical structuring within the Mojave desert tortoise. Three basal groups were identified, and these corresponded to the mitochondrial DNA haplotypes reported in 1989. Additional population structure was evident within each basal unit, and this structure corresponds with major geographic barriers. Our analyses suggest that gene flow among populations was historically high because levels of population differentiation were low across the range. Geographic distance explained a large proportion of variation in genetic distance (68%), which pinpoints that dispersal is limited only on a regional scale. In light of these new analyses of the genetic population structure of the Mojave desert tortoise, we make new recommendations for the number and locations of recovery units for conservation of this species.  相似文献   

13.
Increasingly, renewable energy comprises a larger share of global energy production. Across the western United States, public lands are being developed to support renewable energy production. Where there are conflicts with threatened or endangered species, translocation can be used in an attempt to mitigate negative effects. For the threatened Mojave desert tortoise (Gopherus agassizii), we sought to compare habitat- and space-use patterns between short-distance translocated, resident, and control groups. We tested for differences in home range size based on utilization distributions and used linear mixed-effects models to compare space-use intensity, while controlling for demographic and environmental variables. In addition, we examined mean movement distances as well as home range overlap between years and for male and female tortoises in each study group. During the first active season post-translocation, home range size was greater and space-use intensity was lower for translocated tortoises than resident and control groups. These patterns were not present in the second season. In both years, there was no difference in home range size or space-use intensity between control and resident groups. Translocation typically resulted in one active season of questing followed by a second active season characterized by space-use patterns that were indistinguishable from control tortoises. Across both years, the number of times a tortoise was found in a burrow was positively related to greater space-use intensity. Minimizing the time required for translocated tortoises to exhibit patterns similar to non-translocated individuals may have strong implications for conservation by reducing exposure to adverse environmental conditions and predation. With ongoing development, our results can be used to guide future efforts aimed at understanding how translocation strategies influence patterns of animal space use.  相似文献   

14.
We translocated 120 Agassiz's desert tortoises to 5 sites in Nevada and Utah to evaluate the effects of translocation on tortoise survivorship, reproduction, and habitat use. Translocation sites included several elevations, and extended to sites with vegetation assemblages not typically associated with desert tortoises in order to explore the possibility of moving animals to upper elevation areas. We measured survivorship, reproduction, and movements of translocated and resident animals at each site. Survivorship was not significantly different between translocated and resident animals within and among sites, and survivorship was greater overall during non-drought years. The number of eggs produced by tortoises was similar for translocated and resident females, but differed among sites. Animals translocated to atypical habitat generally moved until they reached vegetation communities more typical of desert tortoise habitat. Even within typical tortoise habitat, tortoises tended to move greater distances in the first year after translocation than did residents, but their movements in the second or third year after translocation were indistinguishable from those of resident tortoises. Our data show that tortoises translocated into typical Mojave desert scrub habitats perform well; however, the large first-year movements of translocated tortoises have important management implications. Projects that employ translocations must consider how much area will be needed to contain translocated tortoises and whether roads need fencing to prevent the loss of animals. © 2012 The Wildlife Society.  相似文献   

15.
Mycoplasma agassizi has been identified as a cause of upper respiratory tract disease (URTD) in the threatened Mojave population of the desert tortoise (Gopherus agassizii), and anti-M. agassizii antibodies have been found by ELISA in as many as 15% of these animals across their geographic range. Here we report that a cohort of 16 egg-reared desert tortoises never exposed to M. agassizii had ELISA antibody titers to this organism that overlapped with titers obtained from some M. agassizii-infected tortoises. These natural antibodies were predominantly of the IgM class. Western blots of plasma from these non-infected tortoises produced a characteristic banding pattern against M. agassizii antigens. A group of 38 wild-caught desert tortoises was tested by ELISA, and although some of these tortoises had antibody titers significantly higher than the non-infected tortoises, there was considerable overlap at the lower titer levels. However, Western blot analysis revealed distinct banding patterns that could readily distinguish between the non-infected tortoises and tortoises with acquired antibodies, regardless of ELISA antibody titers. We conclude that desert tortoises have natural antibodies to M. agassizii that can compromise the determination of infection status by ELISA. However, the Western blot technique can distinguish between natural and acquired antibody patterns and can be used to confirm the diagnosis of M. agassizii infections in the desert tortoise.  相似文献   

16.
Understanding the relationships between environmental variables and wildlife activity is an important part of effective management. The desert tortoise (Gopherus agassizii), an imperiled species of arid environments in the southwest US, may have increasingly restricted windows for activity due to current warming trends. In summer 2013, we deployed 48 motion sensor cameras at the entrances of tortoise burrows to investigate the effects of temperature, sex, and day of the year on the activity of desert tortoises. Using generalized estimating equations, we found that the relative probability of activity was associated with temperature (linear and quadratic), sex, and day of the year. Sex effects showed that male tortoises are generally more active than female tortoises. Temperature had a quadratic effect, indicating that tortoise activity was heightened at a range of temperatures. In addition, we found significant support for interactions between sex and day of the year, and sex and temperature as predictors of the probability of activity. Using our models, we were able to estimate air temperatures and times (days and hours) that were associated with maximum activity during the study. Because tortoise activity is constrained by environmental conditions such as temperature, it is increasingly vital to conduct studies on how tortoises vary their activity throughout the Sonoran Desert to better understand the effects of a changing climate.  相似文献   

17.
Aerobic bacteria were collected from three free-ranging desert tortoise (Gopherus agassizii) populations in the eastern Mojave Desert (Arizona, Utah; USA) from 1989 to 1993, and from two free-ranging populations in the central Sonoran Desert (Arizona, USA) from 1990 to 1994. Six species of nasal bacteria and 18 species of cloacal bacteria were identified. At least one potential pathogen was found in the nasal cavity (Pasteurella testudinis), and at least two potential pathogens in the cloaca (Pseudomonas spp., Salmonella spp.).  相似文献   

18.
Most research of upper respiratory tract disease (mycoplasmal URTD) in the threatened Mojave Desert tortoise (Gopherus agassizii) has worked under the hypothesis that the pathogen, Mycoplasma agassizii, has a relatively consistent and predictable effect on tortoise populations across their natural range. In contrast, we hypothesized that multiple factors influence the prevalence of disease and analyzed biological and environmental variables that vary significantly across the Mojave Desert. We used multiple regression models to analyze associations between mycoplasmal URTD and the genetic structure of 24 tortoise populations, levels of natural antibody (NAb) to M. agassizii in tortoises (one component of the innate immune system), precipitation, and colder thermal regimes. We detected a significant, positive association between mean levels of NAb and seroprevalence to M. agassizii. We hypothesized that NAbs may provide tolerance to mycoplasmal infections and that more tolerant populations may act as host reservoirs of disease. We also detected significant associations between colder winters and mycoplasmal URTD, suggesting that colder winters may depress tortoise immune resistance against M. agassizii or enhance conditions for the growth of M. agassizii.  相似文献   

19.
Blood samples from 30 female and 20 male adult desert tortoises, Gopherus agassizii, were collected at monthly intervals during the annual reproductive cycle (April to October). Plasma corticosterone and the sex steroids in each of the samples were analyzed by radioimmunoassay. Mean corticosterone levels in males were significantly higher than in females (P < 0.001) in every month. Male tortoises showed a marked seasonal pattern in plasma corticosterone with a highly significant peak in July, August, September, and October that corresponded with a similar peak in plasma testosterone. Testosterone and corticosterone in the male showed a highly significant correlation (P < 0.0001). The pattern of corticosterone in the female was less marked, with a significant peak in May during the mating and nesting season, but no association with the peak in estradiol in late summer was apparent. The highest levels of corticosterone in the males were associated with the peak in spermatogenesis and intense male-male combat. These results support similar data from other reptiles that suggest increased glucocorticoid secretion during periods of increased activity and metabolism.  相似文献   

20.
The expansion of road networks in desert tortoise (Gopherus agassizii) habitat in the Sonoran Desert has raised questions concerning appropriate mitigation to reduce impacts at the population level. Although some effects, namely road-kill and habitat loss, have been well documented, illegal tortoise collection has been insufficiently addressed. It has become increasingly important for wildlife and land-use managers to understand the cumulative impacts of roads on tortoises and the effect that those impacts have on population persistence. We estimated the probability of desert tortoise detection and collection along 2-lane paved, maintained gravel, and non-maintained gravel roads to evaluate whether collection probabilities were related to road type. Although collection probability did not vary by road type, the probability of desert tortoise detection by passing motorists was greatest on maintained gravel roads and fewest on non-maintained gravel and paved roads. These results have implications for effectively mitigating the impacts of roads on desert tortoises. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号