首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bergeron F  Sirois F  Mbikay M 《FEBS letters》2002,512(1-3):259-262
7B2 is a pan-neuroendocrine protein known to facilitate the trafficking and activation of the prohormone proprotein convertase-2 (PC2). 7B2-null mice not only lack PC2 activity, but they also develop an adrenocorticotropic hormone (ACTH) hypersecretion syndrome, suggesting that 7B2 may regulate hormone secretion. To verify this possibility, we introduced into mouse corticotroph AtT20 cells a retroviral vector carrying either a sense or an antisense 7B2 transgene to induce higher and lower 7B2 expression, respectively. Relative to control AtT20 cells, 7B2-overexpressing cells released less ACTH following KCl-induced membrane depolarization, whereas cells expressing lower levels of 7B2 released relatively more, suggesting that 7B2-related peptides modulate regulated secretion in neuroendocrine cells.  相似文献   

2.
Adrenocorticotrophic hormone (ACTH)-secreting pituitary tumors are associated with high morbidity due to excess glucocorticoid production. No suitable drug therapies are currently available, and surgical excision is not invariably curative. Here we demonstrate immunoreactive expression of the nuclear hormone receptor peroxisome proliferator-activated receptor-gamma (PPAR-gamma) exclusively in normal ACTH-secreting human anterior pituitary cells: PPAR-gamma was abundantly expressed in all of six human ACTH-secreting pituitary tumors studied. PPAR-gamma activators induced G0/G1 cell-cycle arrest and apoptosis and suppressed ACTH secretion in human and murine corticotroph tumor cells. Development of murine corticotroph tumors, generated by subcutaneous injection of ACTH-secreting AtT20 cells, was prevented in four of five mice treated with the thiazolidinedione compound rosiglitazone, and ACTH and corticosterone secretion was suppressed in all treated mice. Based on these findings, thiazolidinediones may be an effective therapy for Cushing disease  相似文献   

3.
The neuroendocrine protein 7B2 has been implicated in activation of prohormone convertase 2 (PC2), an important neuroendocrine precursor processing endoprotease. To test this hypothesis, we created a null mutation in 7B2 employing a novel transposon-facilitated technique and compared the phenotypes of 7B2 and PC2 nulls. 7B2 null mice have no demonstrable PC2 activity, are deficient in processing islet hormones, and display hypoglycemia, hyperproinsulinemia, and hypoglucagonemia. In contrast to the PC2 null phenotype, these mice show markedly elevated circulating ACTH and corticosterone levels, with adrenocortical expansion. They die before 9 weeks of severe Cushing's syndrome arising from pituitary intermediate lobe ACTH hypersecretion. We conclude that 7B2 is indeed required for activation of PC2 in vivo but has additional important functions in regulating pituitary hormone secretion.  相似文献   

4.
Corticotropin-releasing factor (CRF) is a major regulatory peptide in the hypothalamic-pituitary-adrenal (HPA) axis under stress conditions. In response to stress, CRF, produced in the hypothalamic paraventricular nucleus, releases adrenocorticotropic hormone (ACTH) from the anterior pituitary (AP). ACTH in turn stimulates the release of glucocorticoid from the adrenal glands. Glucocorticoid then inhibits hypothalamic production of CRF and pituitary production of ACTH. Mice lacking a functional gene for CRF (CRF KO) showed severe impairment of the HPA axis, indicating that CRF is required for its regulation. We applied oligonucleotide microarray analysis to the AP of CRF KO to identify gene expression induced by CRF. Twenty-four genes showed less than 60% expression in CRF KO compared with normal mice. Real-time PCR analysis revealed that p21-activated kinase 3 (Pak3), prohormone convertase type 1 (PC1), and CRF-binding protein (BP) mRNA expression levels were increased by CRF in AP cells. Both Pak3 and PC1 were also increased by dexamethasone in AP cells, while CRF-BP mRNA levels were reduced. Therefore, both Pak3 and PC1 mRNA levels would be regulated by both CRF and glucocorticoids. Pak3 knockdown inhibited CRF-induced cell viability in AtT-20 cells, suggesting the important role of Pak3 in the proliferation of corticotrophs.  相似文献   

5.
The complexity of corticotropic cell regulation by multiple central and peripheral factors is well recognized. The present study provides evidence for the participation of an additional factor in the regulation of this cell type of the anterior pituitary. Using the clonal AtT20 cell line as a model for corticotropes, homodimeric activin-A was observed to suppress basal ACTH secretion and POMC mRNA accumulation by approximately 50%. These effects required prolonged treatment with activin-A and were concentration dependent; the half-maximum concentration was in the range of 30-50 pM. Consistently, AtT20 cells were found to express specific high affinity binding sites for [125I]activin-A. The simultaneous addition of inhibin-A along with increasing concentrations of activin-A did not alter the characteristics of the inhibition of ACTH secretion by activin-A alone. This is in contrast to observations with gonadotropes of the anterior pituitary as well as a number of other cell types in which inhibin-A can partially antagonize the biological actions of activin-A. The results may suggest the participation of a subclass of activin receptors that mediate effects on ACTH secretion and POMC mRNA accumulation. As previously shown, the incubation of AtT20 cells with a synthetic glucocorticoid, dexamethasone, attenuated basal ACTH secretion and POMC expression in a concentration-dependent manner. The inhibition of both of these parameters by activin-A, however, was independent of glucocorticoids, because the two agents were additive in their actions. In addition to effects on secretion and mRNA levels, treatment with activin-A also inhibited the rate of proliferation of AtT20 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Atrial natriuretic factor (ANF) is stored within atrial myocyte secretory granules as pro-ANF (ANF-(1-126] and is proteolytically processed co-secretionally C-terminal to a single basic amino acid to form ANF-(1-98) and the bioactive product ANF-(99-126). Pro-ANF is also expressed in certain non-cardiac neuroendocrine cell types (e.g. brain, adrenal). Although the relatively low levels of the peptide in these cell types have precluded detailed processing and secretion studies using cultured cells, some work with tissue extracts suggests that pro-ANF is pre-secretionally processed between or C-terminal to Arg101-Arg102 in such cells. In order to assess whether cultured non-cardiac endocrine cells process pro-ANF pre- or co-secretionally, and to establish whether both paired and single basic amino acids can serve as cleavage sites, transfection studies were carried out using the adrenocorticotropic hormone (ACTH)-producing pituitary tumor cell line AtT-20/D-16v. These cells normally cleave pro-ACTH/endorphin pre-secretionally at selected, but not all, pairs of basic amino acids to a variety of product peptides. A prepro-ANF expression plasmid was constructed and transfected into the AtT-20 cells. The resulting ANF/AtT-20 cell clone selected for this study expressed ACTH at levels similar to the untransfected wild type cells and secreted immunoreactive ANF-related material at a rate of approximately 1 fmol/min/10(5) cells, which was about 10% the rate of ACTH secretion. The rates of secretion of both ANF and ACTH could be increased 3-5-fold with a variety of known AtT-20 cell secretagogues including phorbol esters and the beta-adrenergic agonist, isoproterenol, thus indicating that both peptides were routed through regulated secretory pathways. Utilizing a combination of specific antisera directed against various regions of pro-ANF, size exclusion and reversed phase high performance liquid chromatography, and peptide mapping, it was shown that the ANF/AtT-20 cells contained and secreted the bioactive peptide ANF-(103-126) and -(1-97). These results indicate that the ANF/AtT-20 cells specifically cleave pro-ANF pre-secretionally at the same single basic site used by cardiac tissue; this single basic cleavage is apparently followed by removal of Arg98 by carboxypeptidase H. It is also apparent that the cells can cleave at the sole paired basic site in pro-ANF, which is the probable cleavage site used by neurons and some other endocrine cells that express low levels of the prohormone.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Vasopressin (VP)-induced exocytosis was dissected in native and aquaporin-2 (AQP2)-expressing renal LLC-PK(1) cells by a fluorimetric exocytosis assay based on soluble secreted yellow fluorescent protein (ssYFP). YFP was targeted to the secretory pathway by addition of an 18-amino acid signal peptide from hen egg white lysozyme. Immunofluorescence labeling, together with analysis of Alexa 555-dextran internalization, revealed that ssYFP is exclusively located in the secretory pathway. Immunofluorescence and immunogold electron microscopy showed significant colocalization of ssYFP and AQP2. Fluorimetry and Western blot analysis demonstrated similar constitutive ssYFP secretion in native LLC-PK(1) and AQP2-expressing cells. In AQP2-expressing cells, a twofold increase in ssYFP secretion was observed within 15 min of VP stimulation. This transient burst of ssYFP secretion was abolished by the PKA inhibitor H-89 and was not observed in native cells. The endocytotic inhibitor methyl-beta-cyclodextrin, which also promotes membrane accumulation of AQP2, had no effect on ssYFP secretion. Although cells expressing phosphorylation-deficient AQP2-S256A showed significantly lower baseline levels of constitutive secretion, VP induced a significant increase in exocytosis. Our data indicate that 1) this assay can monitor exocytosis in cultured epithelial cells, 2) VP has an acute stimulatory effect on ssYFP secretion in AQP2-expressing, but not native, cells, and 3) phosphorylation of AQP2 at S256 may be involved in the regulation of constitutive AQP2 exocytosis and play only a minor role in the VP-induced burst. These results support the idea that, in addition to its role in reducing AQP2 endocytosis, VP increases AQP2 exocytosis.  相似文献   

8.
Prohormone convertase 2 is widely co-localized with cholecystokinin in rodent brain. To examine its role in cholecystokinin processing, cholecystokinin levels were measured in dissected brain regions from prohormone convertase 2 knock-out mice. Cholecystokinin levels were lower in hippocampus, septum, thalamus, mesencephalon, and pons in knock-out mice than wild-type mice. In cerebral cortex, cortex-related structures and olfactory bulb, cholecystokinin levels were higher than wild type. Female mice were more affected by the loss of prohormone convertase 2 than male mice. The decrease in cholecystokinin levels in these brain regions shows that prohormone convertase 2 is important for cholecystokinin processing. Quantitative polymerase chain reaction measurements were performed to examine the relationship between peptide levels and cholecystokinin and enzyme expression. They revealed that cholecystokinin and prohormone convertase 1 mRNA levels in cerebral cortex and olfactory bulb were actually lower in knock-out than wild type, whereas their expression in other brain regions of knock-out mouse brain was the same as wild type. Female mice frequently had higher expression of cholecystokinin and prohormone convertase 1, 2, and 5 mRNA than male mice. The loss of prohormone convertase 2 alters CCK processing in specific brain regions. This loss also appears to trigger compensatory mechanisms in cerebral cortex and olfactory bulb that produce elevated levels of cholecystokinin but do not involve increased expression of cholecystokinin, prohormone convertase 1 or 5 mRNA.  相似文献   

9.
Vesicular transport of peptide hormones from the cell body to the plasma membrane for activity-dependent secretion is important for endocrine function, but how it is achieved is unclear. Here we uncover a mechanism in which the cytoplasmic tail of transmembrane carboxypeptidase E (CPE) found in proopiomelanocotin (POMC)/ACTH vesicles interacts with microtubule-based motors to control transport of these vesicles to the release site in pituitary cells. Overexpression of the CPE tail in live cells significantly reduced the velocity and distance of POMC/ACTH- and CPE-containing vesicle movement into the cell processes. Biochemical studies showed that the CPE tail interacted with dynactin, which, in turn, recruited microtubule plus-end motors kinesin 2 and kinesin 3. Overexpression of the CPE tail inhibited the stimulated secretion of ACTH from AtT20 cells. Thus, the CPE cytoplasmic tail interaction with dynactin-kinesin 2/kinesin 3 plays an important role in the transport of POMC vesicles for activity-dependent secretion.  相似文献   

10.
Production and secretion of hormones by the pituitary involve highly orchestrated intracellular transport and sorting steps. Hormone precursors are routed through a series of compartments before being packaged in secretory granules. These highly dynamic carriers play crucial roles in both prohormone processing and peptide exocytosis. We have employed the ACTH-secreting AtT-20 cell line to study the membrane sorting events that confer functionality (prohormone activation and regulated exocytosis) to these secretory carriers. The unique ability of granules to promote prohormone processing is attributed to their acidic interior. Using a novel avidin-targeted fluorescence ratio imaging technique, we have found that the trans-Golgi of live AtT-20 cells maintains a mildly acidic (approximately pH 6.2) interior. Budding of secretory granules causes the lumen to acidify to 相似文献   

11.
Translocation of Protein Kinase C in Anterior Pituitary Tumor Cells   总被引:5,自引:5,他引:0  
Previous studies have shown that phorbol esters and lithium each stimulate the secretion of adrenocorticotropic hormone (ACTH) by the anterior pituitary tumor cell line AtT20/D16-16. Pretreatment with either lithium or phorbol ester desensitizes the cells to subsequent stimulation by phorbol ester. An early consequence of phorbol ester action in other systems is the translocation of protein kinase C from cytosol to membranes. We have assayed protein kinase C activity in cytosol and membranes of AtT20 cells after treatment with phorbol dibutyrate, lithium, or other agents that stimulate secretion of ACTH in these cells. Phorbol dibutyrate clearly induced translocation of protein kinase C, but lithium treatment did not cause translocation itself, nor did pretreatment with lithium affect the translocation induced by phorbol dibutyrate. These results are consistent with a role for translocation of protein kinase C in the stimulatory and desensitizing effects of phorbol esters but fail to implicate translocation in the actions of lithium on AtT20 cells.  相似文献   

12.
The hormonal regulation of adenylate cyclase, cAMP-dependent protein kinase activation, and adrenocorticotropic hormone (ACTH) secretion was studied in AtT20 mouse pituitary tumor cells. Corticotropin releasing factor (CRF) stimulated cAMP accumulation and ACTH release in these cells. Maximal ACTH release was seen with 30 nM CRF and was accompanied by a 2-fold rise in intracellular cAMP. When cells were incubated with both 30 nM CRF and 0.5 mM 3-methylisobutylxanthine (MIX) cAMP levels were increased 20-fold, however, ACTH release was not substantially increased beyond release seen with CRF alone. The activation profiles of cAMP-dependent protein kinases I and II were studied by measuring residual cAMP-dependent phosphotransferase activity associated with immunoprecipitated regulatory subunits of the kinases. Cells incubated with CRF in the absence of MIX showed concentration-dependent activation of protein kinase I which paralleled stimulation of ACTH release. Protein kinase II was minimally activated. When cells were exposed to CRF in the presence of 0.5 mM MIX there was still a preferential activation of protein kinase I, although 50% of the cytosolic protein kinase II was activated. Complete activation of both protein kinases I and II was seen when cells were incubated with 0.5 mM MIX and 10 microM forskolin. Under these conditions cAMP levels were elevated 80-fold. CRF, isoproterenol, and forskolin stimulated adenylate cyclase activity in isolated membranes prepared from AtT20 cells. CRF and isoproterenol stimulated cyclase activity up to 5-fold while forskolin stimulated cyclase activity up to 15-fold. Our data demonstrate that ACTH secretion from AtT20 cells is mediated by small changes in intracellular levels of cAMP and activation of only a small fraction of the total cytosolic cAMP-dependent protein kinase in these cells is required for maximal ACTH secretion.  相似文献   

13.
Synthetic corticotropin-releasing factor (CRF) stimulates ACTH secretion in the clonal mouse pituitary cell strain AtT20/D16v (D16) in a dose-dependent manner with a half-maximal effect at 2×10?9M. A single dose of 5×10?9M CRF maximally stimulates the rate of ACTH secretion during the initial two hrs of treatment. During the period of maximal CRF stimulation intracellular hormone concentration declines progressively to a nadir at 4 hrs. During the ensuing 24 hrs of incubation intracellular hormone levels in CRF-stimulated cells increase gradually toward control values. Somatostatin (SRIF) inhibits the secretory response to CRF. This action of SRIF is dose-dependent with a half-maximal effect at 1×10?9M and results in decreased maximal ACTH secretion with little effect on the ED50 for CRF.  相似文献   

14.
The metalloendopeptidase EP24.15 (EC3.4.24.15) is a neuropeptide-metabolizing enzyme present in neural and endocrine tissues, presumably functioning extracellularly. Because the majority of the EP24.15 activity is identified in the soluble fraction of cellular homogenates, suggesting that the enzyme is primarily an intracellular protein, we addressed the issue of how EP24.15 arrives in the extracellular environment. We utilized a model system of neuroendocrine secretion, the AtT20 cell. According to both enzymatic activity and immunologic assays, EP24.15 was synthesized in and released from AtT20 cells. Under basal conditions and after stimulation by corticotropin-releasing hormone or the calcium ionophore A23187, EP24.15 activity accumulated in the culture medium. This secretion was not attributable to cell damage, as judged by the absence of release of cytosolic enzyme markers and the ability to exclude trypan blue dye. Pulse-chase analysis and subcellular fractionation of AtT20 cell extracts suggested that the mechanism of EP24.15 secretion is not solely via classical secretory pathways. Additionally, drugs which disrupt the classical secretory pathway, such as Brefeldin A and nocodazole, blocked A23187-stimulated EP24.15 release yet had no effect on basal EP24.15 release, suggesting differences in the basal and stimulated pathways of secretion for EP24.15. In summary, EP24.15 appears to be secreted from AtT20 pituitary cells into the extracellular milieu, where the enzyme can participate in the physiologic metabolism of neuropeptides.  相似文献   

15.
16.
Synthetic corticotropin-releasing factor (CRF) is a potent adrenocorticotropin (ACTH) secretagogue in the mouse pituitary tumor cell strain AtT20/D16v (D16). In the absence of added calcium in the incubation medium a dose of 5 nM CRF stimulates ACTH secretion 2-fold over control values while at medium calcium concentrations greater than 1 mM the same dose of CRF elicits a 3-fold stimulation. In the presence of EGTA or of the calcium antagonists verapamil, cobalt, or lanthanum the CRF effect is abolished. Depolarizing concentrations of extracellular K+ lead to a rapid increase in cell-associated calcium, a response which is inhibited by the dihydropyridine calcium antagonist nimodipine. Although treatment with CRF does not alter the concentration of cell-associated calcium in D16 cells, ACTH secretion stimulated by both CRF and elevated medium K+ are inhibited by nimodipine in a dose-related manner. The results indicate that D16 cells possess both voltage-sensitive and CRF-activated calcium channels.  相似文献   

17.
We used the fluorometric substrate, pGlu-Arg-Thr-Lys-Arg-MCA and the C-terminal peptide of human 7B2155–185, a specific inhibitor of prohormone convertase 2 (PC2), to specifically measure the enzymatic activity of the prohormone convertases, PC2. Using lysates from the pancreatic cell line, TC1-6 cells, which contain moderate levels of PC2 enzymatic activity, we determined that the PC2 assay was linear with respect to time of incubation and protein added and had a pH optimum of 5.5 and a calcium optimum of 2.5 mM. Rat pituitary contained high levels of PC2 enzymatic activity, while the hypothalamus and other brain regions contained moderate levels. This enzyme assay was used to document that both mice null for PC2 as well as mice null for the PC2 cofactor, 7B2, had only trace levels of PC2 activity in various brain regions, while mice heterozygous for these alleles had approximately half of the PC2 activity in most brain regions. PC2 enzymatic activity and PC2 mRNA levels were somewhat discordant suggesting that PC2 mRNA levels do not always reflect PC2 enzymatic activity.  相似文献   

18.
Alpha-melanocyte-stimulating hormone (alpha-MSH) is a neuropeptide expressed in pituitary and brain that is known to regulate energy balance, appetite control, and neuroimmune functions. The biosynthesis of alpha-MSH requires proteolytic processing of the proopiomelanocortin (POMC) precursor. Therefore, this study investigated the in vivo role of the prohormone convertase 2 (PC2) processing enzyme for production of alpha-MSH in PC2-deficient mice. Specific detection of alpha-MSH utilized radioimmunoassay (RIA) that does not crossreact with the POMC precursor, and which does not crossreact with other adrenocorticotropin hormone (ACTH) and beta-endorphin peptide products derived from POMC. alpha-MSH in PC2-deficient mice was essentially obliterated in pituitary, hypothalamus, cortex, and other brain regions (collectively), compared to wild-type controls. These results demonstrate the critical requirement of PC2 for the production of alpha-MSH. The absence of alpha-MSH was accompanied by accumulation of ACTH, ACTH-containing imtermediates, and POMC precursor. ACTH was increased in pituitary and hypothalamus of PC2-deficient mice, evaluated by RIA and reversed-phase high pressure liquid chromatography (RP-HPLC). Accumulation of ACTH demonstrates its role as a PC2 substrate that can be converted for alpha-MSH production. Further analyses of POMC-derived intermediates in pituitary, conducted by denaturing western blot conditions, showed accumulation of ACTH-containing intermediates in pituitaries of PC2-deficient mice, which implicate participation of such intermediates as PC2 substrates. Moreover, accumulation of POMC was observed in PC2-deficient mice by western blots with anti-ACTH and anti-beta-endorphin. In addition, increased beta-endorphin1-31 was observed in pituitary and hypothalamus of PC2-deficient mice, suggesting beta-endorphin1-31 as a substrate for PC2 in these tissues. Overall, these studies demonstrated that the PC2 processing enzyme is critical for the in vivo production of alpha-MSH in pituitary and brain.  相似文献   

19.
P-selectin (CD62), formerly called GMP-140 or PADGEM, is a membrane protein located in secretory storage granules of platelets and endothelial cells. To study the mechanisms responsible for the targeting of P-selectin to storage granules, we transfected its cDNA into COS-7 and CHO-K1 cells, which lack a regulated exocytic pathway, or into AtT20 cells, which are capable of regulated secretion. P-selectin was expressed on the plasma membrane of COS-7 and CHO-K1 cells but was concentrated in storage granules of AtT20 cells. Immunogold electron microscopy indicated that the electron-dense granules containing P-selectin in AtT20 cells also stored the endogenous soluble hormone ACTH. Activation of AtT20 cells with 8-Br-cAMP increased the surface expression of P-selectin, consistent with agonist-induced fusion of granule membranes with the plasma membrane. Deletion of the last 23 amino acids of the 35-residue cytoplasmic domain resulted in delivery of P-selectin to the plasma membrane of AtT20 cells. Replacement of the cytoplasmic tail of tissue factor, a plasma membrane protein, with the cytoplasmic domain of P-selectin redirected the chimeric molecule to granules. We conclude that the cytoplasmic domain of P-selectin is both necessary and sufficient for sorting of membrane proteins into the regulated pathway of secretion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号