首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Regulated secretion of hormones, digestive enzymes, and other biologically active molecules requires the formation of secretory granules. Clathrin and the clathrin adaptor protein complex 1 (AP-1) are necessary for maturation of exocrine, endocrine, and neuroendocrine secretory granules. However, the initial steps of secretory granule biogenesis are only minimally understood. Powerful genetic approaches available in the fruit fly Drosophila melanogaster were used to investigate the molecular pathway for biogenesis of the mucin-containing "glue granules" that form within epithelial cells of the third-instar larval salivary gland. Clathrin and AP-1 colocalize at the trans-Golgi network (TGN) and clathrin recruitment requires AP-1. Furthermore, clathrin and AP-1 colocalize with secretory cargo at the TGN and on immature granules. Finally, loss of clathrin or AP-1 leads to a profound block in secretory granule formation. These findings establish a novel role for AP-1- and clathrin-dependent trafficking in the biogenesis of mucin-containing secretory granules.  相似文献   

3.
During feeding ticks secrete bioactive components into the host to counter-act its immune and hemostatic defense systems. These bioactive components are stored in secretory granules that are secreted during feeding in an exocrine stimulus-response type of mechanism. All proteins destined for secretion are packaged into these granules during granule biogenesis. Up to date no mechanism for granule biogenesis has been proposed, except to note that biogenesis occurs under conditions of high protein and calcium concentrations in an acidic environment. Previously, the most abundant proteins (TSGPs) found in the salivary glands of the soft tick, Ornithodoros savignyi, were suggested to play a part in granule biogenesis, based on their high abundance. The TSGPs are part of the lipocalin family, of which numerous members have been identified in ticks. We consider here the high concentrations of the TSGPs in salivary glands and what effect this will have on the crowded environment inside the secretory granules. It is shown that the TSGPs occur at concentrations that will lead to molecular crowding of which one result is the non-specific aggregation of components to reduce crowding effects. Aggregation of proteins as a mechanism of granule biogenesis has been proposed before, but not in terms of molecular crowding. We thus propose molecular crowding as the general mechanism of granule biogenesis, in tick secretory granules, but can also be extended to other forms of secretory granules in general.  相似文献   

4.
The events in the biogenesis of secretory granules after the budding of a dense-cored vesicle from the trans-Golgi network (TGN) were investigated in the neuroendocrine cell line PC12, using sulfate-labeled secretogranin II as a marker. The TGN-derived dense-cored vesicles, which we refer to as immature secretory granules, were found to be obligatory organellar intermediates in the biogenesis of the mature secretory granules which accumulate in the cell. Immature secretory granules were converted to mature secretory granules with a half-time of approximately 45 min. This conversion entailed an increase in their size, implying that the maturation of secretory granules includes a fusion event involving immature secretory granules. Pulse-chase labelling of PC12 cells followed by stimulation with high K+, which causes the release of secretogranin II, showed that not only mature, but also immature secretory granules were capable of undergoing regulated exocytosis. The kinetics of secretion of secretogranin II, as well as those of a constitutively secreted heparan sulfate proteoglycan, were reduced by treatment of PC12 cells with nocodazole, suggesting that both secretory granules and constitutive secretory vesicles are transported to the plasma membrane along microtubules. Our results imply that certain membrane proteins, e.g., those involved in the fusion of post-TGN vesicles with the plasma membrane, are sorted upon exit from the TGN, whereas other membrane proteins, e.g., those involved in the interaction of post-TGN vesicles with the cytoskeleton, may not be sorted.  相似文献   

5.
Pancreatic beta-cells store insulin in secretory granules that undergo exocytosis upon glucose stimulation. Sustained stimulation depletes beta-cells of their granule pool, which must be quickly restored. However, the factors promoting rapid granule biogenesis are unknown. Here we show that beta-cell stimulation induces the nucleocytoplasmic translocation of polypyrimidine tract-binding protein (PTB). Activated cytosolic PTB binds and stabilizes mRNAs encoding proteins of secretory granules, thus increasing their translation, whereas knockdown of PTB expression by RNA interference (RNAi) results in the depletion of secretory granules. These findings may provide insight for the understanding and treatment of diabetes, in which insulin secretion is typically impaired.  相似文献   

6.
Secretory granules, such as neuronal dense core vesicles, are specialized for storing cargo at high concentration and releasing it via regulated exocytosis in response to extracellular stimuli. Here, we used expression profiling to identify new components of the machinery for sorting proteins into mucocysts, secretory granule-like vesicles in the ciliate Tetrahymena thermophila. We show that assembly of mucocysts depends on proteins classically associated with lysosome biogenesis. In particular, the delivery of nonaggregated, but not aggregated, cargo proteins requires classical receptors of the sortilin/VPS10 family, which indicates that dual mechanisms are involved in sorting to this secretory compartment. In addition, sortilins are required for delivery of a key protease involved in T. thermophila mucocyst maturation. Our results suggest potential similarities in the formation of regulated secretory organelles between even very distantly related eukaryotes.  相似文献   

7.
SG (serglycin) PGs (proteoglycans) are strongly implicated in the assembly of MC (mast cell) granules. However, this notion has mainly been on the basis of studies of MCs of the connective tissue subtype, whereas the role of SG PG in mucosal MCs has not been explored. In the present study, we have addressed the latter issue by using mice with an inactivated SG gene. Bone marrow cells were differentiated in vitro into the mucosal MC phenotype, expressing the markers mMCP (mouse MC protease) -1 and -2. Biosynthetic labelling experiments performed on these cells revealed an approximately 80% reduction of 35SO4(2-) incorporation into PGs recovered from SG-/- cells as compared with SG+/+ counterparts, indicating that SG is the dominating cell-associated PG of mucosal MCs. Moreover, the absence of SG led to defective metachromatic staining of mucosal MCs, both in vivo and in the in vitro-derived mucosal MCs. Ultrastructural analysis showed that granules were present in similar numbers in SG+/+ and SG-/- cells, but that their morphology was markedly affected by the absence of SG, e.g. with electron-dense core formation only seen in SG+/+ granules. Analysis of the MC-specific proteases showed that mMCP-1 and mMCP-7 were completely independent of SG for storage, whereas mMCP-2 showed a partial dependence. In contrast, mMCP-4 and -6, and carboxypeptidase A were strongly dependent on SG for storage. Together, our data indicate that SG PG is of crucial importance for assembly of mature mucosal MC granules, but that the specific dependence on SG for storage varies between individual granule constituents.  相似文献   

8.
9.
Glombik MM  Gerdes HH 《Biochimie》2000,82(4):315-326
Neuropeptides and hormones, in contrast to constitutive secretory proteins, are sorted to and stored in secretory granules and released upon a stimulus. During the last two decades, signals and mechanisms involved in their sorting to the regulated pathway of protein secretion have been addressed in numerous studies. Taken together these studies revealed three important features of regulated secretory proteins: aggregation, sorting signal motifs and membrane binding. Here we try to dissect the sorting process with regard to these features and discuss their relevance in the context of current sorting models. We especially address the question where in the secretory pathway sorting takes place and discuss a possible role of sorting receptors.  相似文献   

10.
11.
Chromogranin A (CgA) may be critical for secretory granule biogenesis in sympathoadrenal cells. We found that silencing the expression of CgA reduced the number of secretory granules in normal sympathoadrenal cells (PC12), and we therefore questioned whether a discrete domain of CgA might promote the formation of a regulated secretory pathway in variant sympathoadrenal cells (A35C) devoid of such a phenotype. The secretory granule-forming activity of a series of human CgA domains labeled with a hemagglutinin epitope, green fluorescent protein, or embryonic alkaline phosphatase was assessed in A35C cells by deconvolution and electron microscopy and by secretagogue-stimulated release assays. Expression of CgA in A35C cells induced the formation of vesicular organelles throughout the cytoplasm, whereas two constitutive secretory pathway markers accumulated in the Golgi complex. The lysosome-associated membrane protein LGP110 did not co-localize with CgA, consistent with non-lysosomal targeting of the granin in A35C cells. Thus, CgA-expressing A35C cells showed electron-dense granules approximately 180-220 nm in diameter, and secretagogue-stimulated exocytosis of CgA from A35C cells suggested that expression of the granin may be sufficient to restore a regulated secretory pathway and thereby rescue the sorting of other secretory proteins. We show that the formation of vesicular structures destined for regulated exocytosis may be mediated by a determinant located within the CgA N-terminal region (CgA-(1-115), with a necessary contribution of CgA-(40-115)), but not the C-terminal region (CgA-(233-439)) of the protein. We propose that CgA promotes the biogenesis of secretory granules by a mechanism involving a granulogenic determinant located within CgA-(40-115) of the mature protein.  相似文献   

12.

Background

Mast cell secretory granules accommodate a large number of components, many of which interact with highly sulfated serglycin proteoglycan (PG) present within the granules. Polyamines (putrescine, spermidine and spermine) are absolutely required for the survival of the vast majority of living cells. Given the reported ability of polyamines to interact with PGs, we investigated the possibility that polyamines may be components of mast cell secretory granules.

Methodology/Principal Findings

Spermidine was released by mouse bone marrow derived mast cells (BMMCs) after degranulation induced by IgE/anti-IgE or calcium ionophore A23187. Additionally, both spermidine and spermine were detected in isolated mouse mast cell granules. Further, depletion of polyamines by culturing BMMCs with α-difluoromethylornithine (DFMO) caused aberrant secretory granule ultrastructure, impaired histamine storage, reduced serotonin levels and increased β-hexosaminidase content. A proteomic approach revealed that DFMO-induced polyamine depletion caused an alteration in the levels of a number of proteins, many of which are connected either with the regulated exocytosis or with the endocytic system.

Conclusions/Significance

Taken together, our results show evidence that polyamines are present in mast cell secretory granules and, furthermore, indicate an essential role of these polycations during the biogenesis and homeostasis of these organelles.  相似文献   

13.
14.
Lipins are phosphatidate phosphatases that generate diacylglycerol (DAG). In this study, we report that yeast lipin, Pah1p, controls the formation of cytosolic lipid droplets. Disruption of PAH1 resulted in a 63% decrease in droplet number, although total neutral lipid levels did not change. This was accompanied by an accumulation of neutral lipids in the endoplasmic reticulum (ER). The droplet biogenesis defect was not a result of alterations in neutral lipid ratios. No droplets were visible in the absence of both PAH1 and steryl acyltransferases when grown in glucose medium, even though the strain produces as much triacylglycerol as wild type. The requirement of PAH1 for normal droplet formation can be bypassed by a knockout of DGK1. Nem1p, the activator of Pah1p, localizes to a single punctum per cell on the ER that is usually next to a droplet, suggesting that it is a site of droplet assembly. Overall, this study provides strong evidence that DAG generated by Pah1p is important for droplet biogenesis.  相似文献   

15.
Luminal acidification is important for the maturation of secretory granules, yet little is known regarding the regulation of pH within them. A pH-sensitive green fluorescent protein (EGFP) was targeted to secretory granules in RIN1046-38 insulinoma cells by using a construct in which the EGFP gene was preceded by the nucleotide sequence for human growth hormone. Stimulatory levels of glucose doubled EGFP secretion from cell cultures, and potentiators of glucose-induced insulin secretion enhanced EGFP release. Thus this targeted EGFP is useful for population measurements of secretion. However, less than ~4% of total cell EGFP was released after 1.5 h of stimulation. Consequently, when analyzed in single cells, fluorescence of the targeted EGFP acts as an indicator of pH within secretory granules. Glucose elicited a decrease in granule pH, whereas inhibitors of the V-type H(+)-ATPase increased pH and blocked the glucose effect. Granule pH also was modified by effectors of the protein kinase A pathway, with activation eliciting granule alkalinization, suggesting that potentiation of peptide release by cAMP may involve regulated changes in secretory granule pH.  相似文献   

16.
To address the biological function of the scarcely studied intracellular proteoglycans, we targeted the gene for serglycin (SG), the only known committed intracellular proteoglycan. SG-/- mice developed normally and were fertile, but their mast cells (MCs) were severely affected. In peritoneum there was a complete absence of normal granulated MCs. Furthermore, peritoneal cells and ear tissue from SG-/- animals were devoid of the various MC-specific proteases. However, mRNA for the proteases was present in SG+/+, SG+/-, and SG-/- tissues, indicating that SG is essential for the storage, but not expression, of the MC proteases. Experiments, in which the differentiation of bone marrow stem cells into mature MCs was followed, showed that secretory granule maturation was compromised in SG-/- cells. Moreover, SG+/+ and SG+/- cells, but not SG-/- cells, synthesized proteoglycans of high anionic charge density. Taken together, we demonstrate a key role for SG proteoglycan in MC function.  相似文献   

17.
The two major proteins of secretory granules of secretory cells, chromogranins A (CGA) and B (CGB), have previously been proposed to play key roles in secretory granule biogenesis. Recently, CGA was reported to play an on/off switch role for secretory granule biogenesis. In the present study we found CGB being more effective than CGA in inducing secretory granule formation in non-neuroendocrine NIH3T3 and COS-7 cells. The mean number of dense core granules formed/cell of CGA-transfected NIH3T3 cells was 2.51, whereas that of CGB-transfected cells was 4.02, indicating the formation of 60% more granules in the CGB-transfected cells. Similarly, there were 55% more dense core granules formed in the CGB-transfected COS-7 cells than in the CGA-transfected cells. Moreover, transfection of CGA- and CGB-short interfering RNA (siRNA) into neuroendocrine PC12 cells not only decreased the amount of CGA and CGB expressed but also reduced the number of secretory granules by 41 and 78%, respectively, further suggesting the importance of CGB expression in secretory granule formation.  相似文献   

18.
Summary Chromogranins A and B are glycoproteins originally detected in the adrenal medulla. These proteins are also present in a variety of neuroendocrine cells. The subcellular distribution of the chromogranins, and particularly their intra-granular topology are of special interest with respect to their putative functions.Endocrine cells of the guinea pig adrenal medulla, pancreas and gastric mucosa were investigated immunoelectron microscopically for the subcellular distribution of both chromogranins. Out of 13 established endocrine cell types in all locations, only two endocrine cell types showed immunoreactivity for both chromogranin A and B, and eight endocrine cell types showed immunoreactivities only for chromogranin A. These immunoreactivities varied inter-cellularly. Three endocrine cell types were unreactive for the chromogranins. Moreover, some hormonally non-identified endocrine cells in the pancreas and the gastric mucosa also contained chromogranin A immunoreactivities.Subcellularly, chromogranin A or B were confined to secretory granules. In most endocrine cells, the secretory granules showed chromogranin immunoreactivities of varying densities. Furthermore, the intra-granular topology of chromogranin A or B in the secretory granules varied considerably: in some endocrine cell types, i.e. chromaffin-, gastrin- and enterochromaffin-like-cells, chromogranin A immunoreactivity was localized in the perigranular and/or dense core region of the secretory granules; in others, i.e. insulin-, pancreatic polypeptide-and bovine adrenal medulla dodecapeptide-cells, it was present preferentially in the electron-opaque centre of the secretory granules; chromogranin B immunoreactivity was localized preferentially in the perigranular region of the secretory granules of chromaffin cells and gastrin-cells. The inter-cellular and inter-granular variations of chromogranin A and B immunoreactivities point to differences in biosynthesis or processing of the chromogranins among endocrine cells and their secretory granules.  相似文献   

19.
Kim T  Tao-Cheng JH  Eiden LE  Loh YP 《Cell》2001,105(4):499-509
How pre-ribosomes temporally and spatially mature during intranuclear biogenesis is not known. Here, we report three nucleolar proteins, Noc1p to Noc3p, that are required for ribosome maturation and transport. They can be isolated in two distinct complexes: Noc1p/Noc2p associates with 90S and 66S pre-ribosomes and is enriched in the nucleolus, and Noc2p/Noc3p associates with 66S pre-ribosomes and is mainly nucleoplasmic. Mutation of each Noc protein impairs intranuclear transport of 60S subunits at different stages and inhibits pre-rRNA processing. Overexpression of a conserved domain common to Noc1p and Noc3p is dominant-negative for cell growth, with a defect in nuclear 60S subunit transport, but no inhibition of pre-rRNA processing. We propose that the dynamic interaction of Noc proteins is crucial for intranuclear movement of ribosomal precursor particles, and, thereby represent a prerequisite for proper maturation.  相似文献   

20.
The release of polypeptides in response to extracellular cues is a notable feature of endocrine, exocrine and neuronal cells, and is based on regulated exocytosis via dense-core secretory granules. There is interest in this mode of secretion because of its importance in human physiology and also because regulated exocytosis reflects a complex pathway of membrane traffic that includes compartment-specific reversible macromolecular assembly, coat-independent vesicle budding, maturation/remodeling of both lumenal and membrane constituents, and stimulus-dependent membrane fusion. Secretory granules are absent in most unicellular model organisms but are highly developed in the Ciliates, which therefore offer attractive systems to study these phenomena. In Tetrahymena thermophila , biochemical and genetic approaches have begun yielding insights into issues ranging from control of granule core assembly, based on reverse genetic analysis of granule cargo, to questions about factors involved in granule biogenesis, based on random mutational approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号