首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Serotonin and the NO donors were shown to induce excitation in all serotoninergic neurones under study and to activate synchronous synaptic input in the Helix brain. The serotonin effects may be blocked by 5,7-DOT and N-monomethyl-L-arginine. The 5,7-DOT blocked activation of the NO-induced synchronous bursts but did not affect their activating effect. The data obtained suggest that serotonin and NO equally regulate the serotoninergic system's function in the snail brain. The effects of serotonin and NO are interconnected and interdependent. A possible role of the NO as a second messenger during serotonin activation and as a serotonin co-transmitter in presynaptic neurones, is discussed.  相似文献   

2.
In previous study on the terrestrial snail Helix pomatia, it has been shown that responsiveness of certain neurons to glutamate is controlled by NO; specifically, the donors of NO produced transformation of inhibitory responses to excitatory ones. Here, we extend this study to buccal neurons related to feeding behavior of the pond snail L. stagnalis. Glutamate is known to operate in the standard three-phase feeding pattern as a phase transmitter which mediates the effects of the second phase interneuron N2v. In isolated CNS, we recorded motor neuron B4 that was inhibited during firing of glutamatergic N2v, but expressed excitatory glutamate receptors as well. In some preparations (n = 17), bath application of 0.1 mM glutamate resulted in profound hyperpolarization of, and cessation of synaptic inputs to, the B4. Following treatment for 10-15 min with the NO donor sodium nitroprusside (n = 9), glutamate effect on B4 became excitatory, and a peculiar, sustained two-phase rhythmic activity of the pattern-generating network appeared. In other non-treated preparations (n = 12), 0.1 mM glutamate produced depolarization and excitation of B4, supplemented, in 8 cases, with emergence of the above mentioned two-phase rhythmic activity. Pretreatment for 10-20 min with the NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (n = 7) abolished these effects of glutamate. Our results suggest that 1) glutamate role in buccal rhythm generation depends on NO level, and 2) this mechanism is involved in modification of the feeding behavior in Lymnaea.  相似文献   

3.
A possible participation of receptors of the NMDA type in regulation by glutamate of the Lymnaea stagnalis alimentary program was studied in electrophysiological experiments. The specific antagonist of receptors of the N-methyl-D-aspartate (NMDA) type MK-801 has been shown to turn off the endogenous generation of the standard three-phase rhythm or the two-phase rhythm. Stimulation of receptors of this type by their specific agonist, NMDA, on the contrary, increased frequency of the alimentary rhythm and transformed it to the two-phase one. All NMDA effects are eliminated by MK-801. Apart from action on generation of central alimentary rhythms, ligands of receptors of the NMDA type change the tonical level of depolarization and activity of the alimentary circuit motoneurons. MK-801 decreased the initial level of the motoneuron B4 activity and inhibited the excitatory effect both of NMDA and of glutamate itself. There are also obtained data in favor of that earlier reported effect of transformation of the inhibitory response of neurons B4 to glutamate to the excitatory one at action of nitric oxide (NO) donors can be mediated by the specific NO effect on the activity of receptors of the NMDA type. The blocker of NMDA receptors MK-801 has been shown to inhibit the effect of transformation of the response to glutamate. The NO donor nitroprusside enhanced essentially the NMDA excitatory action, while the NO acceptor PTlO decreased it. The results obtained with use of ODQ, the blocker of NO-sensitive guanylyl cyclase (GC), allow thinking that effect of NO on activity of the NMDA receptors of the pond snail alimentary program can be realized through the metabolic pathway GC-cGMP. On the whole, the obtained results show the pond snail receptors of the NMDA type to participate in generation and rearrangements of rhythmical alimentary programs in the tonical excitatory effect on the alimentary program motoneurons in the NO-dependent transformation of the glutamate response.  相似文献   

4.
The work studies role of different receptor types of serotonin (5-hydroxytryptamine; 5-HT) in the process of synaptic activity modulation with 5-HT of rat dorsolateral amygdala projection neurons. The selective antagonist of 5-HT1,2 receptors methylsergid maleate was shown to suppress the 5-HT inhibitory action on amplitude of the postsynaptic currents evoked by glutamate and GABA, whereas the antagonist of 5-HT3,4 receptors SDZ202-557 produced no effect on the above-mentioned 5-HT action. The obtained action indicates that the 5-HT modulatory effect on the projectional neuron synaptic inputs is mediated by 5-HT receptors of the 1 and 2 types.  相似文献   

5.
Pickford  J.  Apps  R.  Bashir  Z. I. 《Neurochemical research》2019,44(3):627-635

How the cerebellum carries out its functions is not clear, even for its established roles in motor control. In particular, little is known about how the cerebellar nuclei (CN) integrate their synaptic and neuromodulatory inputs to generate cerebellar output. CN neurons receive inhibitory inputs from Purkinje cells, excitatory inputs from mossy fibre and climbing fibre collaterals, as well as a variety of neuromodulatory inputs, including cholinergic inputs. In this study we tested how activation of acetylcholine receptors modulated firing rate, intrinsic properties and synaptic transmission in the CN. Using in vitro whole-cell patch clamp recordings from neurons in the interpositus nucleus, the acetylcholine receptor agonist carbachol was shown to induce a short-term increase in firing rate, increase holding current and decrease input resistance of interpositus CN neurons. Carbachol also induced long-term depression of evoked inhibitory postsynaptic currents and a short-term depression of evoked excitatory postsynaptic currents. All effects were shown to be dependent upon muscarinic acetylcholine receptor activation. Overall, the present study has identified muscarinic receptor activation as a modulator of CN activity.

  相似文献   

6.
Consequences of synaptic plasticity in the lamprey spinal CPG are analyzed by means of simulations. This is motivated by the effects substance P (a tachykinin) and serotonin (5-hydroxytryptamin; 5-HT) have on synaptic transmission in the locomotor network. Activity-dependent synaptic depression and potentiation have recently been shown experimentally using paired intracellular recordings. Although normally activity-dependent plasticity presumably does not contribute to the patterning of network activity, this changes in the presence of the neuromodulators substance P and 5-HT, which evoke significant plasticity. Substance P can induce a faster and larger depression of inhibitory connections but potentiation of excitatory inputs, whereas 5-HT induces facilitation of both inhibitory and excitatory inputs. Changes in the amplitude of the first postsynaptic potential are also seen. These changes could thus be a potential mechanism underlying the modulatory role these substances have on the rhythmic network activity.The aim of the present study has been to implement the activity dependent synaptic depression and facilitation induced by substance P and 5-HT into two alternative models of the lamprey spinal locomotor network, one relying on reciprocal inhibition for bursting and one in which each hemicord is capable of oscillations. The consequences of the plasticity of inhibitory and excitatory connections are then explored on the network level.In the intact spinal cord, tachykinins and 5-HT, which can be endogenously released, increase and decrease the frequency of the alternating left-right burst pattern, respectively. The frequency decreasing effect of 5-HT has previously been explained based on its conductance decreasing effect on K Ca underlying the postspike afterhyperpolarization (AHP). The present simulations show that short-term synaptic plasticity may have strong effects on frequency regulation in the lamprey spinal CPG. In the network model relying on reciprocal inhibition, the observed effects substance P and 5-HT have on network behavior (i.e., a frequency increase and decrease respectively) can to a substantial part be explained by their effects on the total extent and time dynamics of synaptic depression and facilitation. The cellular effects of these substances will in the 5-HT case further contribute to its network effect.  相似文献   

7.
Neostriatal neurons may undergo events of spontaneous synchronization as those observed in recurrent networks of excitatory neurons, even when cortical afferents are transected. It is necessary to explain these events because the neostriatum is a recurrent network of inhibitory neurons. Synchronization of neuronal activity may be caused by plateau-like depolarizations. Plateau-like orthodromic depolarizations that resemble up-states in medium spiny neostriatal neurons (MSNs) may be induced by a single corticostriatal suprathreshold stimulus. Slow synaptic depolarizations may last hundreds of milliseconds, decay slower than the monosynaptic glutamatergic synaptic potentials that induce them, and sustain repetitive firing. Because inhibitory inputs impinging onto MSNs have a reversal potential above the resting membrane potential but below the threshold for firing, they conform a type of “shunting inhibition”. This work asks if shunting GABAergic inputs onto MSNs arrive asynchronously enough as to help in sustaining the plateau-like corticostriatal response after a single cortical stimulus. This may help to begin explaining autonomous processing in the striatal micro-circuitry in the presence of a tonic excitatory drive and independently of spatio-temporally organized inputs. It is shown here that besides synaptic currents from AMPA/KA- and NMDA-receptors, as well as L-type intrinsic Ca2+- currents, inhibitory synapses help in maintaining the slow depolarization, although they accomplish the role of depressing firing at the beginning of the response. We then used a NEURON model of spiny cells to show that inhibitory synapses arriving asynchronously on the dendrites can help to simulate a plateau potential similar to that observed experimentally. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Nitric oxide (NO) is involved in many physiological functions, but its role in pain signaling remains uncertain. Surprisingly, little is known about how endogenous NO affects excitatory and inhibitory synaptic transmission at the spinal level. Here we determined how NO affects excitatory and inhibitory synaptic inputs to dorsal horn neurons using whole-cell recordings in rat spinal cord slices. The NO precursor L-arginine or the NO donor SNAP significantly increased the frequency of glycinergic spontaneous and miniature inhibitory postsynaptic currents (IPSCs) of lamina II neurons. However, neither L-arginine nor SNAP had any effect on GABAergic IPSCs. L-arginine and SNAP significantly reduced the amplitude of monosynaptic excitatory postsynaptic currents (EPSCs) evoked from the dorsal root with an increase in paired-pulse ratio. Inhibition of the soluble guanylyl cyclase abolished the effect of L-arginine on glycinergic IPSCs but not on evoked monosynaptic EPSCs. Also, inhibition of protein kinase G blocked the increase in glycinergic sIPSCs by the cGMP analog 8-bromo-cGMP. The inhibitory effects of L-arginine on evoked EPSCs and high voltage-activated Ca(2+) channels expressed in HEK293 cells and dorsal root ganglion neurons were abolished by blocking the S-nitrosylation reaction with N-ethylmaleimide. Intrathecal injection of L-arginine and SNAP significantly increased mechanical nociceptive thresholds. Our findings suggest that spinal endogenous NO enhances inhibitory glycinergic input to dorsal horn neurons through sGC-cGMP-protein kinase G. Furthermore, NO reduces glutamate release from primary afferent terminals through S-nitrosylation of voltage-activated Ca(2+) channels. Both of these actions probably contribute to inhibition of nociceptive transmission by NO at the spinal level.  相似文献   

9.
Administration of the dopamine receptor agonists apomorphine, piribedil and bromocryptine caused an increase in adrenal tyrosine hydroxylase (TH; tyrosine-3-monooxygenase, EC 1.14.16.2) which could be partially abolished by prior injection of the dopamine blocker haloperidol. Injection of L-dihydroxyphenylalanine, along with the decarboxylase inhibitor carbidopa, also led to a highly significant increase in adrenal TH activity. Intraventricular injection of 5,7-dihydroxytryptamine (DHT), which destroys serotonin neurons, doubled adrenal TH activity in both normal and hypophysectomized rats. Splanchnicotomy abolished this effect of DHT. The increase in enzyme activity mediated by DHT could be partially prevented by peripheral administration of L-5-hydroxytryptophan together with carbidopa. Blockade of serotoninergic functions with the antagonist methiothepin also increased adrenal TH activity. The interrelationship between the dopamine and the presumed serotonin system was investigated. Intraventricular injection of 6-hydroxydopamine partially prevented the DHT-induced increase in adrenal TH activity. Administration of haloperidol to DHT-treated rats had the same effect. This suggests that an intact dopaminergic system is required. When DHT and either apomorphine or piribedil were adminstered simultancously the dopamine agonist-induced increase was potentiated. An intact serotoninergic system is therefore not required for dopamine function. Thus, the increase in adrenal TH activity is associated with either stimulation of central dopamine receptors or destruction of serotonin neurons. It is suggested that dopaminergic and serotoninergic systems are involved in the regulation of adrenal TH and that these systems have net excitatory and inhibitory roles, respectively. Furthermore, the present evidence favors the view that the interaction between the two systems is sequential, with the serotonin system preceding the dopamine one.  相似文献   

10.
What cellular and network properties allow reliable neuronal rhythm generation or firing that can be started and stopped by brief synaptic inputs? We investigate rhythmic activity in an electrically-coupled population of brainstem neurons driving swimming locomotion in young frog tadpoles, and how activity is switched on and off by brief sensory stimulation. We build a computational model of 30 electrically-coupled conditional pacemaker neurons on one side of the tadpole hindbrain and spinal cord. Based on experimental estimates for neuron properties, population sizes, synapse strengths and connections, we show that: long-lasting, mutual, glutamatergic excitation between the neurons allows the network to sustain rhythmic pacemaker firing at swimming frequencies following brief synaptic excitation; activity persists but rhythm breaks down without electrical coupling; NMDA voltage-dependency doubles the range of synaptic feedback strengths generating sustained rhythm. The network can be switched on and off at short latency by brief synaptic excitation and inhibition. We demonstrate that a population of generic Hodgkin-Huxley type neurons coupled by glutamatergic excitatory feedback can generate sustained asynchronous firing switched on and off synaptically. We conclude that networks of neurons with NMDAR mediated feedback excitation can generate self-sustained activity following brief synaptic excitation. The frequency of activity is limited by the kinetics of the neuron membrane channels and can be stopped by brief inhibitory input. Network activity can be rhythmic at lower frequencies if the neurons are electrically coupled. Our key finding is that excitatory synaptic feedback within a population of neurons can produce switchable, stable, sustained firing without synaptic inhibition.  相似文献   

11.
Magnocellular neurons of the supraoptic nucleus (SON) and paraventricular nucleus (PVN) display bursting activity that is synchronized under certain conditions. They receive excitatory synaptic inputs from intrahypothalamic glutamate circuits, some of which are activated by norepinephrine. Ascending noradrenergic afferents and intrahypothalamic glutamate circuits may be responsible for the generation of synchronous bursting among oxytocin neurons and/or asynchronous bursting among vasopressin neurons located in the bilateral supraoptic and paraventricular nuclei. Here, we tested whether magnocellular neurons of the PVN receive excitatory synaptic input from the contralateral PVN and the region of the retrochiasmatic SON (SONrx) via norepinephrine-sensitive internuclear glutamate circuits. Whole cell patch-clamp recordings were performed in PVN magnocellular neurons in coronal hypothalamic slices from male rats, and the ipsilateral SONrx region and contralateral PVN were stimulated using electrical and chemical stimulation. Electrical and glutamate microdrop stimulation of the ipsilateral SONrx region or contralateral PVN elicited excitatory postsynaptic potentials/currents (EPSP/Cs) in PVN magnocellular neurons mediated by glutamate release, revealing internuclear glutamatergic circuits. Microdrop application of norepinephrine also elicited EPSP/Cs, suggesting that these circuits could be activated by activation of noradrenergic receptors. Repetitive electrical stimulation and drop application of norepinephrine, in some cases, elicited bursts of action potentials. Our data reveal glutamatergic synaptic circuits that interconnect the magnocellular nuclei and that can be activated by norepinephrine. These internuclear glutamatergic circuits may provide the functional architecture to support burst generation and/or burst synchronization in hypothalamic magnocellular neurons under conditions of activation.  相似文献   

12.
The unitary postsynaptic mechanism underlying the influence of diverse neuromodulators on modification of excitatory and inhibitory inputs to granule, pyramidal and inhibitory hippocampal cells is suggested. According to this mechanism, the effect of dopamine, adenosine, acetylcholine, noradrenaline, serotonin, somatostatin, galanin, opioids, cannabinoids, neuropeptide Y on postsynaptic receptors, bound to Gi/0 proteins, should promote LTD of excitatory inputs and LTP of inhibitory inputs. The effect of dopamine, adenosine, acetylcholine, noradrenaline, serotonin, vasopressin, tachykinin, histamine on postsynaptic receptors, bound to Gs and Gq/11 proteins, should oppositively modulate the same inputs. Only synaptically activated excitatory and inhibitory inputs can by influenced by neuromodulators. The character of neuromodulatory influence on modification of hippocampal synaptic efficacy, implying from the suggested mechanism is in accordance with known experimental data.  相似文献   

13.
The quantal release of glutamate depends on its transport into synaptic vesicles. Recent work has shown that a protein previously implicated in the uptake of inorganic phosphate across the plasma membrane catalyzes glutamate uptake by synaptic vesicles. However, only a subset of glutamate neurons expresses this vesicular glutamate transporter (VGLUT1). We now report that excitatory neurons lacking VGLUT1 express a closely related protein that has also been implicated in phosphate transport. Like VGLUT1, this protein localizes to synaptic vesicles and functions as a vesicular glutamate transporter (VGLUT2). The complementary expression of VGLUT1 and 2 defines two distinct classes of excitatory synapse.  相似文献   

14.
Retrograde staining of the Lymnaeae stagnalis retina with neurobiotin has shown that most photoreceptor cells send axons to optic nerve without intermediate contacts. A part of these photoreceptors have immunireactivity to glutamate that possibly provides synaptic transmission of visual signal to central neurons. Other photoreceptors stained through optic nerve seem to have different transmitter systems. In some retina cell, but not in optic nerve fibers, immunoreactivity to pigment-dispersing hormone has been revealed. In tissues surrounding the eye cup numerous serotonin-containing fibers are present, a part of them penetrating the retina basal layer. Some of them belong to central neurons responsible for efferent innervation of the pond snail eye. It is suggested that the serotoninergic innervation as well as the cell containing the pigment-dispersing hormone are included in the mechanism of regulation of light sensitivity of the mollusc eye.  相似文献   

15.
Effects of antibody against serotonin-modulated protein SMP-69 on defence behavior command neurons L-RP11 were studied in semi-intact preparation of snail Helix lucorum. An increase in membrane excitability as well as selective facilitation of neural responses evoked with chemical sensory stimulation of the snail head (0.25-0.5% quinine solution) were determined 1-1.5 hours after antibody application to the neurons. The antibody did not change neural responses evoked with tactile stimulation of the snail head. These effects were similar to those found in L-RP11 neurons after serotonin or cAMP applications as well as after nociceptive sensitization of the snail. It was suggested that protein homologically related the SMP-69 in mammalians was involved in mechanisms of excitability as well as long-term specific plasticity regulation of L-RP11 neurons synaptic inputs from the head chemoreceptors in snail Helix lucorum.  相似文献   

16.
We have simulated a network of 10,000 two-compartment cells, spatially distributed on a two-dimensional sheet; 15% of the cells were inhibitory. The input to the network was spatially delimited. Global oscillations frequently were achieved with a simple set of connectivity rules. The inhibitory neurons paced the network, whereas the excitatory neurons amplified the input, permitting oscillations at low-input intensities. Inhibitory neurons were active over a greater area than excitatory ones, forming a ring of inhibition. The oscillation frequency was modulated to some extent by the input intensity, as has been shown experimentally in the striate cortex, but predominantly by the properties of the inhibitory neurons and their connections: the membrane and synaptic time constants and the distribution of delays. In networks that showed oscillations and in those that did not, widely distributed inputs could lead to the specific recruitment of the inhibitory neurons and to near zero activity of the excitatory cells. Hence the spatial distribution of excitatory inputs could provide a means of selectively exciting or inhibiting a target network. Finally, neither the presence of oscillations nor the global spike activity provided any reliable indication of the level of excitatory output from the network.  相似文献   

17.
Tao HW  Poo MM 《Neuron》2005,45(6):829-836
The receptive field (RF) of single visual neurons undergoes progressive refinement during development. It remains largely unknown how the excitatory and inhibitory inputs on single developing neurons are refined in a coordinated manner to allow the formation of functionally correct circuits. Using whole-cell voltage-clamp recording from Xenopus tectal neurons, we found that RFs determined by excitatory and inhibitory inputs in more mature tectal neurons are spatially matched, with each spot stimulus evoking balanced synaptic excitation and inhibition. This emerges during development through a gradual reduction in the RF size and a transition from disparate to matched topography of excitatory and inhibitory inputs to the tectal neurons. Altering normal spiking activity of tectal neurons by either blocking or elevating GABA(A) receptor activity significantly impeded the developmental reduction and topographic matching of RFs. Thus, appropriate inhibitory activity is essential for the coordinated refinement of excitatory and inhibitory connections.  相似文献   

18.
The procerebrum (PC) of the terrestrial mollusk Limax is a highly developed second‐order olfactory center consisting of two electrophysiologically distinct populations of neurons: nonbursting (NB) and bursting (B). NB neurons are by far the more numerous of the two cell types. They receive direct synaptic inputs from afferent fibers from the tentacle ganglion, the primary olfactory center, and also receive periodic inhibitory postsynaptic potentials (IPSPs) from B neurons. Odor‐evoked activity in the NB neurons was examined using perforated patch recordings. Stimulation of the superior tentacle with odorants resulted in inhibitory responses in 45% of NB neurons, while 11% of NB neurons showed an excitatory response. The specific response was reproducible in each neuron to the same odorant, suggesting the possibility that activity of NB neurons may encode odor identity. Analysis of the cycle‐averaged membrane potential of NB neurons revealed a correlation between the firing rate and the membrane potential at the plateau phase between IPSPs. Also, the firing rate of NB neurons was affected by the frequency of the IPSPs. These results indicate the existence of two distinct mechanisms for the regulation of NB neuron activity. © 2003 Wiley Periodicals, Inc. J Neurobiol 58: 369–378, 2004  相似文献   

19.
We have simulated a network of 10,000 two-compartment cells, spatially distributed on a two-dimensional sheet; 15% of the cells were inhibitory. The input to the network was spatially delimited. Global oscillations frequently were achieved with a simple set of connectivity rules. The inhibitory neurons paced the network, whereas the excitatory neurons amplified the input, permitting oscillations at low-input intensities. Inhibitory neurons were active over a greater area than excitatory ones, forming a ring of inhibition. The oscillation frequency was modulated to some extent by the input intensity, as has been shown experimentally in the striate cortex, but predominantly by the properties of the inhibitory neurons and their connections: the membrane and synaptic time constants and the distribution of delays.In networks that showed oscillations and in those that did not, widely distributed inputs could lead to the specific recruitment of the inhibitory neurons and to near zero activity of the excitatory cells. Hence the spatial distribution of excitatory inputs could provide a means of selectively exciting or inhibiting a target network. Finally, neither the presence of oscillations nor the global spike activity provided any reliable indication of the level of excitatory output from the network.  相似文献   

20.
The release of vasopressin and oxytocin from the supraoptic nucleus (SON) neurons is tonically regulated by excitatory glutamatergic and inhibitory GABAergic synaptic inputs. Acetylcholine is known to excite SON neurons and to elicit vasopressin release. Cholinergic receptors are located pre- and postsynaptically in the SON, but their functional significance in the regulation of SON neurons is not fully understood. In this study, we determined the role of presynaptic cholinergic receptors in regulation of the excitatory glutamatergic inputs to the SON neurons. The magnocellular neurons in the rat hypothalamic slices were identified microscopically, and the spontaneous miniature excitatory postsynaptic currents (mEPSCs) were recorded using the whole cell voltage-clamp technique. The mEPSCs were abolished by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (20 microM). Acetylcholine (100 microM) significantly increased the frequency of mEPSCs of 38 SON neurons from 1.87 +/- 0.36 to 3.42 +/- 0.54 Hz but did not alter the amplitude (from 19.61 +/- 0.90 to 19.34 +/- 0.84 pA) and the decay time constant of mEPSCs. Furthermore, the nicotinic receptor antagonist mecamylamine (10 microM, n = 16), but not the muscarinic receptor antagonist atropine (100 microM, n = 12), abolished the excitatory effect of acetylcholine on the frequency of mEPSCs. These data provide new information that the excitatory effect of acetylcholine on the SON neurons is mediated, at least in part, by its effect on presynaptic glutamate release. Activation of presynaptic nicotinic, but not muscarinic, receptors located in the glutamatergic terminals increases the excitatory synaptic input to the SON neurons of the hypothalamus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号