首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adventitious shoots were successfully regenerated from leaf explants of Gypsophila paniculata L. The efficiency of shoot regeneration for cv. Arbel was tested on 18 media based on Murashige and Skoog basal medium containing different concentrations of thidiazuron or 6-benzylaminopurine in combination with naphthaleneacetic acid. Both explant age and that of the cuttings used as leaf donors affected the regeneration efficiency. The highest efficiency of adventitious shoot regeneration was obtained with the oldest leaves originating from the youngest cutting analyzed; on thidiazuron-containing medium, shoots regenerated on average from 67% of the leaves, with an average of seven shoots per explant. This regeneration procedure was suitable for all six commercial cultivars studied. Regenerated shoots elongated, rooted and successfully acclimatized to the greenhouse where they were grown to flowering. Received: 25 July 1998 / Revision received: 11 November 1996 / Accepted: 30 November 1996  相似文献   

2.
High frequency shoot regeneration from leaf explants of muskmelon   总被引:2,自引:0,他引:2  
Efficient in vitro plant regeneration systems are critical for many purposes including plant transformation. Current regeneration systems for melon (Cucumis melo L.) plants generally utilize cotyledon explants; regeneration from melon leaves has received limited attention. We investigated several factors that influence regeneration from melon leaves including: genotype growth conditions and age of the source plant, leaf age, explant orientation, gelling agent, and the addition of silver nitrate and sulfonylurea herbicide to the culture media. Critical factors that influenced regeneration were preculture conditions of the donor plants, leaf size, and the use of silver nitrate and Phytagel in the medium. The best results were obtained with 3–4 cm diam leaves excised from pot grown greenhouse or growth chamber plants cultured on MS medium with 5 M IAA, 5 M BA, 1 M ABA, 30 M silver nitrate and 2.6 g l-1 Phytagel. Low concentratons of sulfonylurea herbicide (0.25 mg l-1 DPX-M 6316) also enhanced regeneration. Under optimized conditions 80–100% of the explants regenerated, with 10–100 shoots per explantAbbreviations ABA abscisic acid - BA benzyladenine - IAA indole-3-acetic acid - MS Murashige and Skoog medium - NAA naphthalene acetic acid  相似文献   

3.
An efficient protocol for the micropropagation of Drosera anglica, D. binata and D. cuneifolia is described. Proliferation was obtained from leaf segments and shoot tips, which served as initial explants. The regeneration capacity of explants was influenced by factors such as nutrient media, concentrations of growth regulators and the type of medium (liquid or solid). The highest number of plants regenerating from D. binata explants was obtained on the growth regulator-free Vacin and Went medium. In the case of D. anglica the highest proliferation rate was obtained on the Fast medium supplemented with 0.05 M 6-benzyladenine (BA) and 0.005 M -naphthaleneacetic acid (NAA), whereas for D. cuneifolia the optimal regeneration medium proved to be 1/2 MS with the growth regulator supplementation estimated at 0.2 M BA and 0.2 M NAA. Liquid media significantly increased the regeneration potential of D. anglica and D. binata explants.  相似文献   

4.
Murashige and Skoog (1962) medium supplemented with 1.0 to 4.5 M of BA and 1.0 M of NAA induced adventitious bud formation and shoot development in leaf explants of Roman Chamomile. A higher number of adventitious buds was observed at the proximal end of the explants. Plantlets were replicated and multiplied on MS medium supplemented with 2.25 M of BA and 0.6 M of IAA. Plantlets were rooted on MS medium supplemented with 0.5 M of IBA and successfully weaned in vivo. The plants grew to maturity with high uniformity and no morphological signs of somaclonal variation.  相似文献   

5.
 Segments taken from young leaves of an orchid (Oncidium Gower Ramsey) produced clusters of somatic embryos directly from epidermal and mesophyll cells of leaf tips and wound surfaces without an intervening callus within 1 month when cultured on a GelriteTM-gelled 1/2-MS basal medium supplemented with a low dosage (0.3–1 mg/l) of thidiazuron. Subculturing of these embryo clusters produced more embryos and subsequent plantlet formation on the same medium. The high-frequency embryogenesis of these leaf cells in this orchid is strong evidence of their totipotency, and further modification of the protocol for plant formation could be useful for the mass propagation and transformation of selected elite lines. Received: 16 September 1998 / Revision received: 16 February 1999 / Accepted: 26 February 1999  相似文献   

6.
The morphogenic capacity of Digitalis obscura leaf explants cultured in vitro has been studied, noting factors promoting the differentiation of roots, buds and shoots as well as those promoting callus proliferation. Complete plant regeneration was obtained only by first culturing the leaf explants in a medium with NAA and BA to induce formation of buds, and subsequently transferring them to a medium without growth regulators to achieve the further development of shoots.Abbreviations BA benzyladenine - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indoleacetic acid - NAA naphthaleneacetic acid  相似文献   

7.
Although the heritable nature of plant tissue culture responses is now well documented in many species, only a few studies have been conducted to elucidate complete inheritance patterns. Genetic control of in vitro shoot regeneration from leaf explants was investigated inSolanum chacoense using parental, F1 and F2 generations. Broad-sense heritability estimates were high for frequency (percentage) of responsive leaf explants (61–83%) and number of shoots regenerated per responsive explant (53–75%). Consistent with high heritability estimates, a hypothesis involving three genes could be formulated to explain the variability in the response observed in this study. This model implies that homozygous recessive alleles at any two (out of three) loci are required for the highest response, i.e., more than two shoots per explant in more than 40% of the explants. The presence of homozygous recessive alleles at any one of the three loci produces an intermediate response, i.e., fewer than 40% of the explants regenerating fewer than two shoots per explant, and a dominant allele at all the three loci results in non-responsiveness. Additional minor modifier genes, each with a small effect, would also be required to account for the variable intensity of regeneration within groups. Such a relatively simple genetic control of in vitro regenerability suggests that incorporation of this trait should be easy in potato improvement programmes.  相似文献   

8.
Summary A two-step procedure was used for plant regeneration from in vitro grown leaf strips (2–3 mm wide) of cv. Bintje. Step I medium was designed with 2,4-dichlorophenoxycetic acid (2,4-D) at 0.0 or 9.0 M, in combination with 2.28 M kinetin (K), benzyl adenine (BA), zeatin (Z) or zeatin riboside (ZR). Step II media were 2,4-D-free media containing 5.78 M gibberellic acid (GA3) and growth regulators similar to those of step I media. Leaf explants cultured in medium I containing zeatin riboside or zeatin for 6 days and then subcultured in medium II containing zeatin riboside produced numerous shoots without callus formation. Zeatin riboside containing step I and II media caused shoot regeneration in a high number (97.5±2.2) of explants. Approximately, 33.7±8.4 shoots were regenerated from each leaf explant.Abbreviations BA benzyladenine - Z zeatin - ZR zeatin riboside (trans isomer) - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

9.
Apple (Malus domestica) rootstock G.41 is an excellent member of the Geneva series because it has traits for resistance to abiotic and biotic stresses. A simple and efficient protocol for obtaining shoots from leaf explants was established by optimizing the combinations of plant growth regulators, mode of wounding, and explant orientation on the culture medium. The best shoot multiplication index (2.58) was obtained from successful subculture medium that was the standard Murashige and Skoog (MS) medium supplemented with 7.5 g L?1 agar, 3.55 μM N 6-benzyladenine, 0.16 μM indole-3-butyric acid, and 30 g L?1 sucrose. Regeneration rates were highest (99%) when MS medium was supplemented with 2.7 μM thidiazuron and 0.9 μM 1-naphthaleneacetic acid, and cut-wounding explants before placing the abaxial surface in contact with the medium. The best rooting percentage (80%) was obtained on MS medium supplemented with 4.92 μM indole-3-butyric acid. Plantlets were rooted in vitro and survived acclimatization in the laboratory and greenhouse.  相似文献   

10.
研究了离体培养条件下影响沙田柚叶片愈伤组织诱导和分化的一些因素。结果表明 ,2 ,4 D可以诱导愈伤组织的形成 ,高浓度的蔗糖 (6% )显著提高叶片愈伤诱导率与愈伤组织重量 ,且在 2 ,4 D和蔗糖之间存在着相互作用。外源GA3处理抑制愈伤组织的诱导和生长 ,而CCC与ABA处理显著提高叶片的愈伤诱导率和愈伤组织生长量。愈伤组织转移到附加 3 .0mg/LBA的MS分化培养基上可以分化出芽 ,0 .2 5mg/LGA3的加入可以进一步提高愈伤组织的分化率和每块愈伤组织的再生芽数。  相似文献   

11.
Summary Cotyledon explants of Panax ginseng at various developmental stages were cultured on Murashige and Skoog (MS) medium with 0.5 μM indole butyric acid and 8.8 μM N6-benzyladenine. Upon culturing of cotyledon explants from mature zygotic embryos, 34% of the explants formed somatic embryos, and 46% formed adventitious shoots. In the cotyledon explants from 1-wk-old seedlings, embryo axis-like shoots and roots developed at a high frequency (79%) near the excised portion of the cotyledon base. The developmental pattern of embryo axis-like organ formation was structurally different from that of somatic embryos and adventitious shoots but similar to that of parts of the embryo axis of zygotic embryos. In the early stages of embryo axis-like organ formation, epicotyl-like shoot primordia were developed directly from the cotyledon base after 2 wk of culture; subsequently roots developed near the base of the epicotyl-like shoots and eventually regenerated into plantlets with both shoots and roots. The frequency of embryo axis-like organ formation declined as the growth of seedlings proceeded. In addition, the frequency of somatic embryo and adventitious bud formation rapidly declined with the age of the cotyledons. Plant regeneration via embryo axis-like organ formation might be a new pattern of morphogenesis in P. ginseng cotyledon culture.  相似文献   

12.
Shoot regeneration was obtained from isolated leaves of Drosera rotundifolia L. cultured on MS media with various concentrations of 6-benzyladenine (BA) and -naphthaleneacetic acid (NAA). The best direct shoot organogenesis was obtained on growth regulator-free medium or medium supplemented with 10-8 M NAA. Liquid culture medium significantly increased regeneration capacity of leaf tissue. Histological and scanning electron microscopy investigations verify direct plant regeneration without intermediate callus formation. Leaf epidermal cells showed the highest regeneration potential leading to the regeneration of buds. Young shoots with three to seven leaflets rooted spontaneously on the growth regulator-free medium within 38 days of culture and isolated mature plants produced fertile seeds.Abbreviations BA 6-benzyladenine - FAA 40% formalin (5%) +90% acetic acid (5%) +70% ethanol (90%) - ME Murashige and Skoog's (1962) medium - NAA -naphthaleneacetic acid - plumbagin 5-hydroxy-2-methyl-1,4-naphthoquinone - 7-methyljuglone 7-methyl-5-hydroxy-1,4-naphthoquinone - SEM scanning electron microscopy - TEM transmission electron microscopy - PPF photosynthetic photon flux  相似文献   

13.
Rapid adventitious shoot regeneration from leaf explants of European birch   总被引:2,自引:0,他引:2  
The goal of this research was to develop a rapid and efficient system for regenerating shoots from leaf explants of European birch, Betula pendula Roth. Single-node stem explants were established in culture, and microshoots were subcultured every 4 weeks through 12 subcultures. Leaves from glasshouse plants or subcultured shoots were excised from stems, cut into approximately 35-mm2 pieces, and placed on Woody Plant Medium (WPM) containing different combinations of naphthaleneacetic acid (NAA) (0, 3, 6 or 9 M) and benzyladenine (BA) (0, 7.5, 15 or 22.5 M) in a 4×4 factorial design. The percentage of leaf pieces forming shoots and the number of shoots regenerated per explant were recorded after 4 weeks. Only media containing BA without NAA stimulated shoot formation on leaf explants. Fifteen micromolar BA induced the most shoots to form on leaf explants compared to 30, 45 or 60 M of this cytokinin. In addition, shoot regeneration was enhanced up to four-fold between the first and eleventh subculture. Over 90% of the leaf explants regenerated shoots with an average of 18 buds formed per explant for the eleventh subculture. Almost twice as many explants formed shoots if their adaxial side was in contact with the medium rather than oriented away from it. The ability to regenerate shoots from leaves varied among plants, regardless of stock plant age. This reliable shoot regeneration system can be used for rapid shoot proliferation and potentially for genetic engineering of European birch.  相似文献   

14.
 Stem segments of seedlings from two Alstroemeria breeding lines, cultured on media supplemented with 4 mg/l 2,4-dichlorophenoxyacetic acid and 0.5–1.0 mg/l 6-benzylaminopurine (BA), initiated soft callus, which became compact after subculture on a medium with only 0.5 mg/l BA. Friable embryogenic calli were initiated from compact callus on a medium supplemented with 10 mg/l picloram. Proembryos developed from friable embryogenic calli via embryos into plants after subculture on medium supplemented with 0.1 mg/l BA. The proembryos formed friable embryogenic calli again after culture on medium supplemented with 10 mg/l picloram. The total time needed to regenerate a complete plantlet from friable callus was approximately 6 months. This system for the production of embryogenic material is considered to have valuable applications for genetic transformation in Alstroemeria. Received: 22 April 1999 / Revision received: 16 July 1999 · Accepted: 20 July 1999  相似文献   

15.
The objective of this research was to develop an efficient protocol for shoot regeneration from leaf segments of the Chrysanthemum cv. Vivid Scarlet by examining the effects of plant growth regulators, dark incubation period, gelling agents, and silver nitrate. The highest number of shoots per explant (12.3) was regenerated from leaf explants cultured on Murashige and Skoog (MS) medium supplemented with a combination of 1 mg L−1 of 6-benzyladenine (BA) and 2 mg L−1 of α-naphthaleneacetic acid (NAA) under light conditions without any initial dark period. Gelrite was the most effective gelling agent for shoot regeneration among those tested, whereas the presence of silver nitrate distinctly inhibited shoot regeneration. Superior plant growth and rooting was observed on a hormone-free MS medium solidified with Gelrite. Flow cytometry analysis revealed no ploidy variation between the regenerated plants and the mother plant grown under greenhouse conditions. The established protocol was applicable to shoot regeneration for four out of six cultivars tested. This research will facilitate the genetic transformation and micropropagation of Chrysanthemum cultivars.  相似文献   

16.
An efficient and reproducible procedure is described for the large-scale propagation of an epiphytic orchid,Acampe praemorsa (Roxb.) B latter and McCann using foliar explants. Shoot buds were induced in basal parts of foliar explants on Murashige and Skoog medium supplemented with N6-benzyladenine (BA), kinetin (Kn) or thidiazuron (TDZ), the latter being most effective at 1.0 mg/1. Shoots formed to a TDZ-containing medium elongated following transfer to a substrate supplemented with 2.0 mg/l 1-naphthaleneacetic acid (NAA) and 0.5 mg/1 BA. NAA at lower concentrations had no beneficial effects on shoot regeneration, whether added to the medium along with BA, Kn or TDZ. However, it promoted shoot elongation and leaf expansion. Higher concentrations of NAA suppressed shoot regeneration. The frequency of shoot regeneration was greatly influenced by the developmental stage and orientation of the leaf. Shoots regenerated from the foliar explants were rooted successfully on MS medium containing 1.0 mg/l indole-3-butyric acid. The plantlets were acclimated and eventually transferred to a garden.Abbreviations BA N6-Benzyladenine - IAA Indole-3-acetic acid - IBA Indole-3-butyric acid - Kn Kinetin - MS Murashige and Skoog (1962) medium - NAA 1-Naphthaleneacetic acid - TDZ Thidiazuron (N-phenyl-N-1,2,3-thiadiazol-5-ylurea)  相似文献   

17.
Genetic analysis of shoot regeneration from cotyledonary explants of Brassica napus was carried out by 7×7 diallel crosses using cultivars showing a different ability for regeneration. Both additive and dominant effects were significant, with the additive effect being more important than the dominant one. Dominant genes had a positive effect on shoot regeneration. Non-allelic interaction and average maternal effects were not detected, while specific the maternal one was significant. In the 5×5 sub-diallel table, the maternal effect became nonsignificant. The mean degree of dominance was 0.759. Broad- and narrow-sense heritabilities were 0.973 and 0.819, respectively, indicating that shoot regenera- tion ability can be easily transferred into economically important cultivars showing a low or an unresponsive ability. Received: 5 July 1999 / Accepted: 14 September 1999  相似文献   

18.
We have established a detailed framework for the process of shoot regeneration from Arabidopsis root and hypocotyl explants grown in vitro . Using transgenic plant lines in which the GUS or GFP genes were fused to promoters of developmental genes ( WUS , CLV1 , CLV3 , STM , CUC1 , PLT1 , RCH1 , QC25 ), or to promoters of genes encoding indicators of the auxin response ( DR5 ) or transport ( PIN1 ), cytokinin (CK) response ( ARR5 ) or synthesis ( IPT5 ), or mitotic activity ( CYCB1 ), we showed that regenerated shoots originated directly or indirectly from the pericycle cells adjacent to xylem poles. In addition, shoot regeneration appeared to be partly similar to the formation of lateral root meristems (LRMs). During pre-culture on a 2, 4-dichlorophenoxyacetic acid (2, 4-D)-rich callus-inducing medium (CIM), xylem pericycle reactivation established outgrowths that were not true calli but had many characteristics of LRMs. Transfer to a CK-rich shoot-inducing medium (SIM) resulted in early LRM-like primordia changing to shoot meristems. Direct origin of shoots from the xylem pericycle occurred upon direct culture on CK-containing media without prior growth on CIM. Thus, it appeared that the xylem pericycle is more pluripotent than previously thought. This pluripotency was accompanied by the ability of pericycle derivatives to retain diploidy, even after several rounds of cell division. In contrast, the phloem pericycle did not display such developmental plasticity, and responded to CKs with only periclinal divisions. Such observations reinforce the view that the pericycle is an 'extended meristem' that comprises two types of cell populations. They also suggest that the founder cells for LRM initiation are not initially fully specified for this developmental pathway.  相似文献   

19.
Five different genotypes from in vitro as well as greenhouse grown melon plants were shown to be highly responsive for in vitro shoot formation from leaf explants when placed on basic MS medium supplemented with 1 mg/l 6-benzylaminopurine. In addition, a very suitable regeneration system was obtained when cotyledon pieces of mature seeds were incubated on the same culture medium. In this case, the first shoots already appeared after 10 days of incubation, and hundreds of shoots were formed on the cut surface 3 to 4 weeks later. Explants from mature cotyledons derived from seedlings did not lead to any shoot formation.Abbreviations MS Murashige and Skoog - IAA 3-indoleacetic acid - BA 6-benzylaminopurine  相似文献   

20.
Physiology and Molecular Biology of Plants - Bixa orellana L. (Bixaceae) is a multipurpose tree grown for the production of commercially important dyes. In the present study, an efficient,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号