首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.

Introduction  

Adiponectin is an adipokine that regulates energy metabolism and insulin sensitivity, but recent studies have pointed also to a role in inflammation and arthritis. The purpose of the present study was to investigate the association and effects of adiponectin on inflammation and cartilage destruction in osteoarthritis (OA).  相似文献   

2.
3.
The vesicular stomatitis virus (VSV) matrix (M) protein plays a major role in the virus-induced inhibition of host gene expression. It has been proposed that the inhibition of host gene expression by M protein is responsible for suppressing activation of host interferon gene expression. Most wild-type (wt) strains of VSV induce little if any interferon gene expression. Interferon-inducing mutants of VSV have been isolated previously, many of which contain mutations in their M proteins. However, it was not known whether these M protein mutations were responsible for the interferon-inducing phenotype of these viruses. Alternatively, mutations in other genes besides the M gene may enhance the ability of VSV to induce interferons. These hypotheses were tested by transfecting cells with mRNA expressing wt and mutant M proteins in the absence of other viral components and determining their ability to inhibit interferon gene expression. The M protein mutations were the M51R mutation originally found in the tsO82 and T1026R1 mutant viruses, the double substitution V221F and S226R found in the TP3 mutant virus, and the triple substitution E213A, V221F, and S226R found in the TP2 mutant virus. wt M proteins suppressed expression of luciferase from the simian virus 40 promoter and from the beta interferon (IFN-beta) promoter, while M proteins of interferon-inducing viruses were unable to inhibit luciferase expression from either promoter. The M genes of the interferon-inducing mutants of VSV were incorporated into the wt background of a recombinant VSV infectious cDNA clone. The resulting recombinant viruses were tested for their ability to activate interferon gene expression and for their ability to inhibit host RNA and protein synthesis. Each of the recombinant viruses containing M protein mutations induced expression of a luciferase reporter gene driven by the IFN-beta promoter and induced production of interferon bioactivity more effectively than viruses containing wt M proteins. Furthermore, the M protein mutant viruses were defective in their ability to inhibit both host RNA synthesis and host protein synthesis. These data support the idea that wt M protein suppresses interferon gene expression through the general inhibition of host RNA and protein synthesis.  相似文献   

4.
The exact physiological role of metallothionein (MT) is not clear. It has been suggested that these low-molecular-weight, highly inducible, heavy-metal-binding proteins serve in the regulation of intracellular Zn metabolism. Among the Zn-requiring systems are several enzymes involved in DNA replication and repair. Therefore, during periods of active DNA synthesis there is likely to be an increased demand for Zn, which could be met by elevated MT synthesis. For that reason, we examined whether stimulation of cellular proliferation leads to increased expression of MT. We report here that treatment of cultured mammalian cells with serum growth factors and activators of protein kinase C, all of which are known to have growth stimulatory activity, led to induction of MT mRNA. One of the required steps in the signal transduction pathways triggered by these agents, ending in MT induction, appears to be the activation of protein kinase C.  相似文献   

5.
6.
The function of articular cartilage as an avascular tissue is mainly served by collagen type II and proteoglycan molecules. Within this matrix homeostasis between production and breakdown of the matrix is exceptionally sensitive.The current study was conducted to identify regional differences in specific alterations in cartilage composition during the osteoarthritic process of the human knee joint. Therefor the changes in the expression of the key molecules of the extracellular matrix were measured in dependence of the anatomical side (femoral vs tibial) and associated with immunohistochemistry and quantitative measurement.60 serial osteochondral femoral condyle and the tibial plateau samples of patients undergoing implantation of total knee endoprosthesis of areas showing mild (Group A, macroscopically ICRS grade 1b) respectively advanced (Group B, macroscopically ICRS grade 3a/3b) (30 each) osteoarthritis according to the histological-histochemical grading system (HHGS) were compared with 20 healthy biopsies with immunohistochemistry and histology. We quantified our results on the gene expression of collagen type I and II and aggrecan with the help of real-time (RT)-PCR. Proteoglycan content was measured colorometrically.In group A slightly increased colour intensity was found for collagen II in deeper layers, suggesting a persisting but initially still intact repair process. But especially on the medial tibia plateau the initial Col II increase in gene expression is followed by a decrease leading to the lowest over all Col II expression on the medial plateau, here especially in the central part. There in late stage diseases the collagen type I expression was also more pronounced. Markedly decreased safranin O staining intensity was observed in the radial zone and less reduced intensity in the transitional zone with loss of zonal anatomy in 40% of the specimens in group A and all specimens in group B. Correlation between colorometrically analysed proteoglycan GAG content and aggrecan Real Time PCR is mainly weak.Tibial and femoral cartilage in contrast to patellar cartilage both are preferential exposed to compressive stresses, but presence of menisci affects the load distribution at the tibial side, which creates varying conditions for the different cartilage surfaces in the knee.As directly measured Poissońs ratio in tibial cartilage is higher but Youn?s modulus is lower than in femoral cartilage, different resulting feedback amplification loops interact with proceeding cartilage damage. The initial loss of aggrecan may support Matrix metalloproteinases (Mmps) in the access to the collagen network and the considerably differing mechanical properties at both joint surfaces result in varying increased synthesis and release of matrix degrading enzymes.The present study has identified a selection of events which reflect the response of cartilage structure and composite, chondrocytes itself and their productivity to changes in mechanical stress depending on the anatomical site.  相似文献   

7.
8.
主要外膜蛋白在鹦鹉热衣原体感染过程中起主要作用。扩增了主要外膜蛋白基因,克隆入pGEM-T和pET32a( ),经PCR筛选和酶切鉴定,进行诱导表达和重组蛋白的纯化与复性研究,为进一步进行鹦鹉热衣原体的诊断试剂和疫苗研究创造了条件。  相似文献   

9.
Punj V  Matta H  Chaudhary PM 《PloS one》2012,7(5):e37498
Infection with Kaposi's sarcoma associated herpesvirus (KSHV) has been linked to the development of primary effusion lymphoma (PEL), a rare lymphoproliferative disorder that is characterized by loss of expression of most B cell markers and effusions in the body cavities. This unique clinical presentation of PEL has been attributed to their distinctive plasmablastic gene expression profile that shows overexpression of genes involved in inflammation, adhesion and invasion. KSHV-encoded latent protein vFLIP K13 has been previously shown to promote the survival and proliferation of PEL cells. In this study, we employed gene array analysis to characterize the effect of K13 on global gene expression in PEL-derived BCBL1 cells, which express negligible K13 endogenously. We demonstrate that K13 upregulates the expression of a number of NF-κB responsive genes involved in cytokine signaling, cell death, adhesion, inflammation and immune response, including two NF-κB subunits involved in the alternate NF-κB pathway, RELB and NFKB2. In contrast, CD19, a B cell marker, was one of the genes downregulated by K13. A comparison with K13-induced genes in human vascular endothelial cells revealed that although there was a considerable overlap among the genes induced by K13 in the two cell types, chemokines genes were preferentially induced in HUVEC with few exceptions, such as RANTES/CCL5, which was induced in both cell types. Functional studies confirmed that K13 activated the RANTES/CCL5 promoter through the NF-κB pathway. Taken collectively, our results suggest that K13 may contribute to the unique gene expression profile, immunophenotype and clinical presentation that are characteristics of KSHV-associated PEL.  相似文献   

10.
11.
DNA sequence analysis of part of the human herpesvirus 6 (HHV-6) genome led to the identification of an open reading frame with amino acid sequence homology to the major capsid proteins (MCP) of other HHVs. DIAGON analysis showed that the closest homology was with human cytomegalovirus. Plasmids were constructed which were shown to express the HHV-6 MCP as either the entire open reading frame or as portions of it, and the recombinant-produced proteins were used to raise antisera. The antisera were shown by immunofluorescence to react with HHV-6-infected lymphoblastoid cells and in Western blots with a 135-kilodalton protein specific to HHV-6-infected cells. The recombinant protein expressed from the entire HHV-6 MCP gene was detected only weakly in Western blot assays with normal HHV-6-positive human sera as a probe.  相似文献   

12.
13.
14.
15.
16.
17.
Herein we describe the methods for selective and reversible regulation of gene expression using antisense oligodeoxynucleotides (ODNs) in a cell-free protein synthesis system programmed with multiple DNAs. Either a complete shut down or controlled level of gene expression was attained through the antisense ODN-mediated regulation of mRNA stability in the reaction mixture. In addition to the primary control of gene expression, we also demonstrate that the inhibition of protein synthesis can be reversed by using an anti-antisense ODN sequence that strips the antisense ODN off the target sequence of mRNA. As a result, sequential additions of the antisense and anti-antisense ODNs enabled the stop-and-go expression of protein molecules. Through the on-demand regulation of gene expression, presented results will provide a versatile platform for the analysis and understanding of the complicated networks of biological components.  相似文献   

18.
The balance between matrix metalloproteinases (MMPs) and their inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), is pivotal in the remodeling of extracellular matrix. TGF-beta has profound effects on extracellular matrix homeostasis, in part via its ability to alter this balance at the level of gene expression. The intracellular signaling pathways by which TGF-beta mediates its actions include the Smad pathway, specific to the TGF-beta superfamily, but also, for example, mitogen-activated protein kinase pathways; furthermore, cross-talk between the Smads and other signaling pathways modifies the TGF-beta response. The reciprocal effect of TGF-beta on the expression of Timp-1 and MMP-1 supports its role in matrix anabolism, yet the mechanisms by which TGF-beta induces Timp-1 and represses induced MMP-1 have remained opaque. Here, we (i) investigate the mechanism(s) by which TGF-beta1 induces expression of the Timp-1 gene and (ii) compare this with TGF-beta1 repression of phorbol ester-induced MMP-1 expression. We report that the promoter-proximal activator protein 1 (AP1) site is essential for the response of both Timp-1 and MMP-1 to TGF-beta (induction and repression, respectively). c-Fos, JunD, and c-Jun are essential for the induction of Timp-1 gene expression by TGF-beta1, but these AP1 factors transactivate equally well from both Timp-1 and MMP-1 AP1 sites. Smad-containing complexes do not interact with the Timp-1 AP1 site, and overexpression of Smads does not substitute or potentiate the induction of the gene by TGF-beta1; furthermore, Timp-1 is still induced by TGF-beta1 in Smad knockout cell lines, although to varying extents. In contrast, Smads do interact with the MMP-1 AP1 site and mediate repression of induced MMP-1 gene expression by TGF-beta1.  相似文献   

19.
A cold-sensitive, G1-defective variant of CHO cells, clone cs4-D3, exhibits a reversible, cell-cycle-dependent change in morphology at the non-permissive temperature (33 °C). We have investigated the role of fibronectin in mediating shape change in these cells, and found them to be defective in synthesis and expression of this molecule and in cell surface/fibronectin interactions at 33 °C. Our results suggest that clone cs4-D3 will provide a valuable in vitro model for investigating the role of cell adhesion in growth control.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号