首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Huntington''s disease (HD) is an inherited progressive neurodegenerative disorder caused by a CAG repeat expansion in the ubiquitously expressed HD gene resulting in an abnormally long polyglutamine repeat in the huntingtin protein. Polyglutamine inclusions are a hallmark of the neuropathology of HD. We have previously shown that inclusion pathology is also present in the peripheral tissues of the R6/2 mouse model of HD which expresses a small N-terminal fragment of mutant huntingtin. To determine whether this peripheral pathology is a consequence of the aberrant expression of this N-terminal fragment, we extend this analysis to the genetically precise knock-in mouse model of HD, HdhQ150, which expresses mutant mouse huntingtin.

Methodology/Principal Findings

We have previously standardized the CAG repeat size and strain background of the R6/2 and HdhQ150 knock-in mouse models and found that they develop a comparable and widespread neuropathology. To determine whether HdhQ150 knock-in mice also develop peripheral inclusion pathology, homozygous Hdh Q150/Q150 mice were perfusion fixed at 22 months of age, and tissues were processed for histology and immunohistochemistry with the anti-huntingtin antibody S830. The peripheral inclusion pathology was almost identical to that found in R6/2 mice at 12 weeks of age with minor differences in inclusion abundance.

Conclusions/Significance

The highly comparable peripheral inclusion pathology that is present in both the R6/2 and HdhQ150 knock-in models of HD indicates that the presence of peripheral inclusions in R6/2 mice is not a consequence of the aberrant expression of an N-terminal huntingtin protein. It remains to be determined whether peripheral inclusions are a pathological feature of the human disease. Both mouse models carry CAG repeats that cause childhood disease in humans, and therefore, inclusion pathology may be a feature of the childhood rather than the adult forms of HD. It is important to establish the extent to which peripheral pathology causes the peripheral symptoms of HD from the perspective of a mechanistic understanding and future treatment options.  相似文献   

2.

Background  

Huntington's disease (HD) is an inherited neurodegenerative disorder characterized by cortico-striatal dysfunction and loss of glutamate uptake. At 7 weeks of age, R6/2 mice, which model an aggressive form of juvenile HD, show a glutamate-uptake deficit in striatum that can be reversed by treatment with ceftriaxone, a β-lactam antibiotic that increases GLT1 expression. Only at advanced ages (> 11 weeks), however, do R6/2 mice show an actual loss of striatal GLT1. Here, we tested whether ceftriaxone can reverse the decline in GLT1 expression that occurs in older R6/2s.  相似文献   

3.

Background  

Huntingtin, the HD gene encoded protein mutated by polyglutamine expansion in Huntington's disease, is required in extraembryonic tissues for proper gastrulation, implicating its activities in nutrition or patterning of the developing embryo. To test these possibilities, we have used whole mount in situ hybridization to examine embryonic patterning and morphogenesis in homozygous Hdh ex4/5huntingtin deficient embryos.  相似文献   

4.

Background

Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion within the huntingtin gene. Mutant huntingtin protein misfolds and accumulates within neurons where it mediates its toxic effects. Promoting mutant huntingtin clearance by activating macroautophagy is one approach for treating Huntington's disease (HD). In this study, we evaluated the mTOR kinase inhibitor and macroautophagy promoting drug everolimus in the R6/2 mouse model of HD.

Results

Everolimus decreased phosphorylation of the mTOR target protein S6 kinase indicating brain penetration. However, everolimus did not activate brain macroautophagy as measured by LC3B Western blot analysis. Everolimus protected against early declines in motor performance; however, we found no evidence for neuroprotection as determined by brain pathology. In muscle but not brain, everolimus significantly decreased soluble mutant huntingtin levels.

Conclusions

Our data suggests that beneficial behavioral effects of everolimus in R6/2 mice result primarily from effects on muscle. Even though everolimus significantly modulated its target brain S6 kinase, this did not decrease mutant huntingtin levels or provide neuroprotection.
  相似文献   

5.
6.

Background

In the recent years, a role of the immune system in Huntington’s disease (HD) is increasingly recognized. Here we investigate the presence of T cell activating auto-antibodies against angiotensin II type 1 receptors (AT1R) in all stages of the disease as compared to healthy controls and patients suffering from multiple sclerosis (MS) as a prototype neurologic autoimmune disease.

Results

As compared to controls, MS patients show higher titers of anti-AT1R antibodies, especially in individuals with active disease. In HD, anti-AT1R antibodies are more frequent than in healthy controls or even MS and occur in 37.9% of patients with relevant titers?≥?20 U/ml. In a correlation analysis with clinical parameters, the presence of AT1R antibodies in the sera of HD individuals inversely correlated with the age of onset and positively with the disease burden score as well as with smoking and infection.

Conclusions

These data suggest a dysfunction of the adaptive immune system in HD which may be triggered by different stimuli including autoimmune responses, infection and possibly also smoking.
  相似文献   

7.
Huntington disease (HD) is a neurodegenerative disorder for which new treatments are urgently needed. Pridopidine is a new dopaminergic stabilizer, recently developed for the treatment of motor symptoms associated with HD. The therapeutic effect of pridopidine in patients with HD has been determined in two double‐blind randomized clinical trials, however, whether pridopidine exerts neuroprotection remains to be addressed. The main goal of this study was to define the potential neuroprotective effect of pridopidine, in HD in vivo and in vitro models, thus providing evidence that might support a potential disease‐modifying action of the drug and possibly clarifying other aspects of pridopidine mode‐of‐action. Our data corroborated the hypothesis of neuroprotective action of pridopidine in HD experimental models. Administration of pridopidine protected cells from apoptosis, and resulted in highly improved motor performance in R6/2 mice. The anti‐apoptotic effect observed in the in vitro system highlighted neuroprotective properties of the drug, and advanced the idea of sigma‐1‐receptor as an additional molecular target implicated in the mechanism of action of pridopidine. Coherent with protective effects, pridopidine‐mediated beneficial effects in R6/2 mice were associated with an increased expression of pro‐survival and neurostimulatory molecules, such as brain derived neurotrophic factor and DARPP32, and with a reduction in the size of mHtt aggregates in striatal tissues. Taken together, these findings support the theory of pridopidine as molecule with disease‐modifying properties in HD and advance the idea of a valuable therapeutic strategy for effectively treating the disease.  相似文献   

8.

Background

In Huntington’s disease (HD), motor symptoms develop prior to the widespread loss of neurons in striatum and cerebral cortex. The aim of this study was to examine dysfunctional patterns of corticostriatal communication during spontaneously occurring behaviors in a transgenic mouse model of HD.

Methodology/Principal Findings

Local field potentials (LFPs) were recorded from two closely interconnected areas, motor cortex and dorsal striatum, in wild-type controls (WT, n = 14) and a widely used transgenic HD model (R6/2 mice, n = 12). All mice were between the ages of 7–9 weeks, a critical period of motor symptom development in R6/2s. Recordings were obtained while the mice were behaving freely in an open field. Specific LFP activity was extracted using timestamps for three increasingly demanding motor behaviors: 1) resting; 2) grooming; and 3) active exploration. Power spectral densities (PSD) were obtained for the cortical and striatal LFPs as well as coherence levels and relative phase across the frequency spectrum. In both brain regions, only R6/2s showed high frequency LFP oscillations during rest and grooming. As behavior increased from resting to exploring, corticostriatal synchrony at high frequencies declined in R6/2s, completely opposite to the WT pattern. R6/2s also exhibited nearly in-phase corticostriatal activity (cortex phase leads of ∼5°), while the WTs consistently showed cortical phase lags of ∼20° across all assessed behaviors, indicating a lead role for striatum.

Conclusions/Significance

Our results add to growing evidence for altered communication between cortex and striatum in HD and suggest more generally that increasingly demanding motor behaviors differentially modulate corticostriatal communication. Our data also suggest conduction delays in R6/2 corticostriatal transmission, leading to compensatory speeding of LFP activity, as evidenced by the presence of high frequency LFP oscillations.  相似文献   

9.
Hong SL  Barton SJ  Rebec GV 《PloS one》2012,7(1):e30879

Background

Huntington''s disease (HD) is an inherited condition that results in neurodegeneration of the striatum, the forebrain structure that processes cortical information for behavioral output. In the R6/2 transgenic mouse model of HD, striatal neurons exhibit aberrant firing patterns that are coupled with reduced flexibility in the motor system. The aim of this study was to test the patterns of unpredictability in brain and behavior in wild-type (WT) and R6/2 mice.

Methodology/Principal Findings

Striatal local field potentials (LFP) were recorded from 18 WT and 17 R6/2 mice (aged 8–11 weeks) while the mice were exploring a plus-shaped maze. We targeted LFP activity for up to 2 s before and 2 s after each choice-point entry. Approximate Entropy (ApEn) was calculated for LFPs and Shannon Entropy was used to measure the probability of arm choice, as well as the likelihood of making consecutive 90-degree turns in the maze. We found that although the total number of choice-point crossings and entropy of arm-choice probability was similar in both groups, R6/2 mice had more predictable behavioral responses (i.e., were less likely to make 90-degree turns and perform them in alternation with running straight down the same arm), while exhibiting more unpredictable striatal activity, as indicated by higher ApEn values. In both WT and R6/2 mice, however, behavioral unpredictability was negatively correlated with LFP ApEn.

Conclusions/Significance

HD results in a perseverative exploration of the environment, occurring in concert with more unpredictable brain activity. Our results support the entropy conservation hypothesis in which unpredictable behavioral patterns are coupled with more predictable brain activation patterns, suggesting that this may be a fundamental process unaffected by HD.  相似文献   

10.

Background

Huntington''s disease (HD) is a neurodegenerative disease caused by a CAG trinucleotide expansion in the Huntingtin (Htt) gene. The expanded CAG repeats are translated into polyglutamine (polyQ), causing aberrant functions as well as aggregate formation of mutant Htt. Effective treatments for HD are yet to be developed.

Methodology/Principal Findings

Here, we report a novel dual-function compound, N 6-(4-hydroxybenzyl)adenine riboside (designated T1-11) which activates the A2AR and a major adenosine transporter (ENT1). T1-11 was originally isolated from a Chinese medicinal herb. Molecular modeling analyses showed that T1-11 binds to the adenosine pockets of the A2AR and ENT1. Introduction of T1-11 into the striatum significantly enhanced the level of striatal adenosine as determined by a microdialysis technique, demonstrating that T1-11 inhibited adenosine uptake in vivo. A single intraperitoneal injection of T1-11 in wildtype mice, but not in A2AR knockout mice, increased cAMP level in the brain. Thus, T1-11 enters the brain and elevates cAMP via activation of the A2AR in vivo. Most importantly, addition of T1-11 (0.05 mg/ml) to the drinking water of a transgenic mouse model of HD (R6/2) ameliorated the progressive deterioration in motor coordination, reduced the formation of striatal Htt aggregates, elevated proteasome activity, and increased the level of an important neurotrophic factor (brain derived neurotrophic factor) in the brain. These results demonstrate the therapeutic potential of T1-11 for treating HD.

Conclusions/Significance

The dual functions of T1-11 enable T1-11 to effectively activate the adenosinergic system and subsequently delay the progression of HD. This is a novel therapeutic strategy for HD. Similar dual-function drugs aimed at a particular neurotransmitter system as proposed herein may be applicable to other neurotransmitter systems (e.g., the dopamine receptor/dopamine transporter and the serotonin receptor/serotonin transporter) and may facilitate the development of new drugs for other neurodegenerative diseases.  相似文献   

11.

Background  

Tetrabenazine (TBZ) selectively depletes central monoamines by reversibly binding to the type-2 vesicular monoamine transporter. A previous double blind study in Huntington disease (HD) demonstrated that TBZ effectively suppressed chorea, with a favorable short-term safety profile (Neurology 2006;66:366-372). The objective of this study was to assess the long-term safety and effectiveness of TBZ for chorea in HD.  相似文献   

12.
13.

Background

The R6/1 mouse line is one of the most widely employed models of Huntington Disease (HD), a complex syndrome characterized by motor and non-motor deficits. Surprisingly, its behavioral phenotype during the early phases of the pathology when the motor impairments are not manifest yet has been poorly investigated. It is also not clear whether the expression of HD-like symptoms at the pre-motor stage in this mouse model differs between the two sexes.

Methods

Male and female 12 weeks-old R6/1 mice and their wild-type littermates were tested on a battery of tests modeling some of the major neuropsychiatric non-motor symptoms of HD: alterations in social interest, social interaction and communication, as well as disturbances in prepulse inhibition of the acoustic startle response (PPI) and circadian patterns of activity. The lack of motor symptoms was confirmed during the entire experimental period by means of the tail test for clasping.

Results

R6/1 mice displayed marked alterations in all social behaviors which were mainly observed in males. Male R6/1 animals were also the only ones showing reduced body weight. Both male and female transgenic mice displayed mild alterations in the circadian activity patterns, but no deficits in PPI.

Conclusions

These results demonstrate the validity of the R6/1 mouse in mimicking selected neuropsychiatric symptoms of HD, the social deficits being the clearest markers of the pre-motor phase of the pathology. Furthermore, our data suggest that male R6/1 mice are more suitable for future studies on the early stages of HD.  相似文献   

14.

The R6/2 transgenic mouse model of Huntington’s disease (HD) carries several copies of exon1 of the huntingtin gene that contains a highly pathogenic 120 CAG-repeat expansion. We used kinome analysis to screen for kinase activity patterns in neural tissues from wildtype (WT) and R6/2 mice at a pre-symptomatic (e.g., embryonic) and symptomatic (e.g., between 3 and 10 weeks postnatal) time points. We identified changes in several signaling cascades, for example, the Akt/FoxO3/CDK2, mTOR/ULK1, and RAF/MEK/CREB pathways. We also identified the Rho-Rac GTPase cascade that contributes to cytoskeleton organization through modulation of the actin-binding proteins, cofilin and profilin. Immunoblotting revealed higher levels of phosphoSer138-profilin in embryonic R6/2 mouse samples (cf. WT mice) that diminish progressively and significantly over the postnatal, symptomatic course of the disease. We detected sex- and genotype-dependent patterns in the phosphorylation of actin-regulators such a ROCK2, PAK, LIMK1, cofilin, and SSH1L, yet none of these aligned consistently with the changing levels of phosphoSer138-profilin. This could be reflecting an imbalance in the sequential influences these regulators are known to exert on actin signaling. The translational potential of these observations was inferred from preliminary observations of changes in LIMK-cofilin signaling and loss of neurite integrity in neural stem cells derived from an HD patient (versus a healthy control). Our observations suggest that a pre-symptomatic, neurodevelopmental onset of change in the phosphorylation of Ser138-profilin, potentially downstream of distinct signaling changes in male and female mice, could be contributing to cytoskeletal phenotypes in the R6/2 mouse model of HD pathology.

  相似文献   

15.
Human α-defensin 6 (HD6), a small cysteine-rich cationic peptide specially expressed in epithelial cells of digestive tract, may play a crucial role in mucosal immunity. This is the first report on efficient production of bioactive HD6 through a gene-engineering approach in Escherichia coli. The recombinant plasmid pET32a-omHD6 was primarily constructed by inserting a PCR fragment encoding mature HD6 peptide (mHD6) preceded by an enterokinase recognition sequence into the expression vector pET32a(+), in frame with the upstream thioredoxin (TrxA) gene. Under optimized expression conditions, a high percentage (>60%) of soluble TrxA-omHD6 fusion protein was obtained with a yield of about 1.69 g/l, and the theoretical productivity of recombinant mHD6 (rmHD6) reached 0.38 g/l. A feasible three-step purification strategy involving nickel-sepharose chromatography, enterokinase-cleavage and cation exchange chromatography was developed to purify rmHD6, followed by characteristic identifications by Western blot, mass spectrometry and sequencing. About 102 mg/l of rmHD6 with its intact N-terminal amino acid sequence was finally achieved. The in vitro experiments showed that rmHD6 possesses high potency to inhibit herpes simplex virus-2 infection. This work settles substantial foundation for further functional study of HD6.  相似文献   

16.

Study objectives

To search for early abnormalities in electroencephalogram (EEG) during sleep which may precede motor symptoms in a transgenic mouse model of hereditary neurodegenerative Huntington’s disease (HD).

Design

In the R6/1 transgenic mouse model of HD, rhythmic brain activity in EEG recordings was monitored longitudinally and across vigilance states through the onset and progression of disease.

Measurements and results

Mice with chronic electrode implants were recorded monthly over wake-sleep cycles (4 hours), beginning at 9–11 weeks (presymptomatic period) through 6–7 months (symptomatic period). Recording data revealed a unique β rhythm (20–35 Hz), present only in R6/1 transgenic mice, which evolves in close parallel with the disease. In addition, there was an unusual relationship between this β oscillation and vigilance states: while nearly absent during the active waking state, the β oscillation appeared with drowsiness and during slow wave sleep (SWS) and, interestingly, strengthened rather than dissipating when the brain returned to an activated state during rapid eye movement (REM) sleep.

Conclusions

In addition to providing a new in vivo biomarker and insight into Huntington''s disease pathophysiology, this serendipitous observation opens a window onto the rarely explored neurophysiology of the cortico-basal ganglia circuit during SWS and REM sleep.  相似文献   

17.
Huntington’s disease (HD) is caused by a CAG repeat expansion in the HD gene, but how this mutation causes neuronal dysfunction and degeneration is unclear. Inhibition of glutamate uptake, which could cause excessive stimulation of glutamate receptors, has been found in animals carrying very long CAG repeats in the HD gene. In seven HD patients with moderate CAG expansions (40–52), repeat expansion and HD grade at autopsy were strongly correlated (r = 0.88, p = 0.0002). Uptake of [3H]glutamate was reduced by 43% in prefrontal cortex, but the level of synaptic (synaptophysin, AMPA receptors) and astrocytic markers (GFAP, glutamate transporter EAAT1) were unchanged. Glutamate uptake correlated inversely with CAG repeat expansion (r = −0.82, p = 0.015). The reducing agent dithiothreitol improved glutamate uptake in controls, but not in HD brains, suggesting irreversible oxidation of glutamate transporters in HD. We conclude that impairment of glutamate uptake may contribute to neuronal dysfunction and degeneration in HD. Special issue article in honor of Dr. Frode Fonnum.  相似文献   

18.

Background

Environmental enrichment (EE) in laboratory animals improves neurological function and motor/cognitive performance, and is proposed as a strategy for treating neurodegenerative diseases. EE has been investigated in the R6/2 mouse model of Huntington''s disease (HD), where increased social interaction, sensory stimulation, exploration, and physical activity improved survival. We have also shown previously that HD patients and R6/2 mice have disrupted circadian rhythms, treatment of which may improve cognition, general health, and survival.

Methodology/Principal Findings

We examined the effects of EE on the behavioral phenotype and circadian activity of R6/2 mice. Our mice are typically housed in an “enriched” environment, so the EE that the mice received was in addition to these enhanced housing conditions. Mice were either kept in their home cages or exposed daily to the EE (a large playground box containing running wheels and other toys). The “home cage” and “playground” groups were subdivided into “handling” (stimulated throughout the experimental period) and “no-handling” groups. All mice were assessed for survival, body weight, and cognitive performance in the Morris water maze (MWM). Mice in the playground groups were more active throughout the enrichment period than home cage mice. Furthermore, R6/2 mice in the EE/no-handling groups had better survival than those in the home cage/no-handling groups. Sex differences were seen in response to EE. Handling was detrimental to R6/2 female mice, but EE increased the body weight of male R6/2 and WT mice in the handling group. EE combined with handling significantly improved MWM performance in female, but not male, R6/2 mice.

Conclusions/Significance

We show that even when mice are living in an enriched home cage, further EE had beneficial effects. However, the improvements in cognition and survival vary with sex and genotype. These results indicate that EE may improve the quality of life of HD patients, but we suggest that EE as a therapy should be tailored to individuals.  相似文献   

19.
The Huntington's disease (HD) CAG repeat, encoding a polymorphic glutamine tract in huntingtin, is inversely correlated with cellular energy level, with alleles over ~37 repeats leading to the loss of striatal neurons. This early HD neuronal specificity can be modeled by respiratory chain inhibitor 3-nitropropionic acid (3-NP) and, like 3-NP, mutant huntingtin has been proposed to directly influence the mitochondrion, via interaction or decreased PGC-1α expression. We have tested this hypothesis by comparing the gene expression changes due to mutant huntingtin accurately expressed in STHdhQ111/Q111 cells with the changes produced by 3-NP treatment of wild-type striatal cells. In general, the HD mutation did not mimic 3-NP, although both produced a state of energy collapse that was mildly alleviated by the PGC-1α-coregulated nuclear respiratory factor 1 (Nrf-1). Moreover, unlike 3-NP, the HD CAG repeat did not significantly alter mitochondrial pathways in STHdhQ111/Q111 cells, despite decreased Ppargc1a expression. Instead, the HD mutation enriched for processes linked to huntingtin normal function and Nf-κB signaling. Thus, rather than a direct impact on the mitochondrion, the polyglutamine tract may modulate some aspect of huntingtin's activity in extra-mitochondrial energy metabolism. Elucidation of this HD CAG-dependent pathway would spur efforts to achieve energy-based therapeutics in HD.  相似文献   

20.
Genetic linkage studies have mapped Huntington's disease (HD) to the distal portion of the short arm of chromosome 4 (4p16.3), 4 cM distal to D4S10 (G8). To date, no definite flanking marker has been identified. A new DNA marker, D4S90 (D5), which maps to the distal region of 4p16.3, is described. The marker was used in a genetic linkage study in the CEPH reference families with seven other markers at 4p16. The study, together with knowledge of the physical map of the region, places D4S90 as the most distal marker, 6 cM from D4S10. A provisional linkage study with HD gave a maximum lod score of 2.14 at a θ of 0.00 and no evidence of linkage disequilibrium. As D4S90 appears to be located terminally, it should play an important role in the accurate mapping and cloning of the HD gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号