首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A challenge in protein-protein docking is to account for the conformational changes in the monomers that occur upon binding. The RosettaDock method, which incorporates sidechain flexibility but keeps the backbone fixed, was found in previous CAPRI rounds (4 and 5) to generate docking models with atomic accuracy, provided that conformational changes were mainly restricted to protein sidechains. In the recent rounds of CAPRI (6-12), large backbone conformational changes occur upon binding for several target complexes. To address these challenges, we explicitly introduced backbone flexibility in our modeling procedures by combining rigid-body docking with protein structure prediction techniques such as modeling variable loops and building homology models. Encouragingly, using this approach we were able to correctly predict a significant backbone conformational change of an interface loop for Target 20 (12 A rmsd between those in the unbound monomer and complex structures), but accounting for backbone flexibility in protein-protein docking is still very challenging because of the significantly larger conformational space, which must be surveyed. Motivated by these CAPRI challenges, we have made progress in reformulating RosettaDock using a "fold-tree" representation, which provides a general framework for treating a wide variety of flexible-backbone docking problems.  相似文献   

3.
RosettaDock uses real-space Monte Carlo minimization (MCM) on both rigid-body and side-chain degrees of freedom to identify the lowest free energy docked arrangement of 2 protein structures. An improved version of the method that uses gradient-based minimization for off-rotamer side-chain optimization and includes information from unbound structures was used to create predictions for Rounds 4 and 5 of CAPRI. First, large numbers of independent MCM trajectories were carried out and the lowest free energy docked configurations identified. Second, new trajectories were started from these lowest energy structures to thoroughly sample the surrounding conformation space, and the lowest energy configurations were submitted as predictions. For all cases in which there were no significant backbone conformational changes, a small number of very low-energy configurations were identified in the first, global search and subsequently found to be close to the center of the basin of attraction in the free energy landscape in the second, local search. Following the release of the experimental coordinates, it was found that the centers of these free energy minima were remarkably close to the native structures in not only the rigid-body orientation but also the detailed conformations of the side-chains. Out of 8 targets, the lowest energy models had interface root-mean-square deviations (RMSDs) less than 1.1 A from the correct structures for 6 targets, and interface RMSDs less than 0.4 A for 3 targets. The predictions were top submissions to CAPRI for Targets 11, 12, 14, 15, and 19. The close correspondence of the lowest free energy structures found in our searches to the experimental structures suggests that our free energy function is a reasonable representation of the physical chemistry, and that the real space search with full side-chain flexibility to some extent solves the protein-protein docking problem in the absence of significant backbone conformational changes. On the other hand, the approach fails when there are significant backbone conformational changes as the steric complementarity of the 2 proteins cannot be modeled without incorporating backbone flexibility, and this is the major goal of our current work.  相似文献   

4.
In CAPRI rounds 6-12, RosettaDock successfully predicted 2 of 5 unbound-unbound targets to medium accuracy. Improvement over the previous method was achieved with computational mutagenesis to select decoys that match the energetics of experimentally determined hot spots. In the case of Target 21, Orc1/Sir1, this resulted in a successful docking prediction where RosettaDock alone or with simple site constraints failed. Experimental information also helped limit the interacting region of TolB/Pal, producing a successful prediction of Target 26. In addition, we docked multiple loop conformations for Target 20, and we developed a novel flexible docking algorithm to simultaneously optimize backbone conformation and rigid-body orientation to generate a wide diversity of conformations for Target 24. Continued challenges included docking of homology targets that differ substantially from their template (sequence identity <50%) and accounting for large conformational changes upon binding. Despite a larger number of unbound-unbound and homology model binding targets, Rounds 6-12 reinforced that RosettaDock is a powerful algorithm for predicting bound complex structures, especially when combined with experimental data.  相似文献   

5.
6.
In previous CAPRI rounds (3-5) we showed that using MD-generated ensembles, as inputs for a rigid-body docking algorithm, increased our success rate, especially for targets exhibiting substantial amounts of induced fit. In recent rounds (6-11), our cross-docking was followed by a short MD-based local refinement for the subset of solutions with the lowest interaction energies after minimization. The above approach showed promising results for target 20, where we were able to recover 30% of native contacts for one of our submitted models. Further tests, performed a posteriori, revealed that cross-docking approach produces more near-native (NN) solutions but only for targets with large conformational changes upon binding. However, at the time of the blind docking experiment, these improved solutions were not chosen for the subsequent refinement, as their interaction energies after minimization ranked poorly compared with other solutions. This indicates deficiencies in the present scoring schemes that are based on interaction energies of minimized structures. Refinement MD simulations substantially increase the fraction of native contacts for NN docked solutions, but generally worsen interface and ligand RMSD. Further analysis shows that although MD simulations are able to improve sidechain packing across the interface, which results in an increased fraction of native contacts, they are not capable of improving interface and ligand backbone RMSD for NN structures beyond 1.5 and 3.5 A, respectively, even if explicit solvent is used.  相似文献   

7.
CAPRI is a communitywide experiment to assess the capacity of protein-docking methods to predict protein-protein interactions. Nineteen groups participated in rounds 1 and 2 of CAPRI and submitted blind structure predictions for seven protein-protein complexes based on the known structure of the component proteins. The predictions were compared to the unpublished X-ray structures of the complexes. We describe here the motivations for launching CAPRI, the rules that we applied to select targets and run the experiment, and some conclusions that can already be drawn. The results stress the need for new scoring functions and for methods handling the conformation changes that were observed in some of the target systems. CAPRI has already been a powerful drive for the community of computational biologists who development docking algorithms. We hope that this issue of Proteins will also be of interest to the community of structural biologists, which we call upon to provide new targets for future rounds of CAPRI, and to all molecular biologists who view protein-protein recognition as an essential process.  相似文献   

8.
Janin J 《Proteins》2007,69(4):699-703
Six protein-protein complexes and two homodimeric proteins involved in a variety of biological processes were offered as targets to CAPRI by crystallographers in Rounds 6-12. CAPRI predictor groups had to predict their structure by docking the free proteins, which they did with a degree of success that depended largely on the amplitude of the conformation changes. In one case at least, the prediction pointed to alternative possibilities of interactions in the crystal of a complex, showing that docking methods have value even when there is an experimental structure.  相似文献   

9.
Mustard D  Ritchie DW 《Proteins》2005,60(2):269-274
This article describes our attempts to dock the targets in CAPRI Rounds 3-5 using Hex 4.2, and it introduces a novel essential dynamics approach to generate multiple feasible conformations for docking. In the blind trial, the basic Hex algorithm found 1 high-accuracy solution for CAPRI Target 12, and several further medium- and low-accuracy solutions for Targets 11, 12, 13, and 14. Subsequent a posteriori docking of the targets using essential dynamics "eigenstructures" was found to give consistently better predictions than rigidly docking only the unbound or model-built starting structures. Some suggestions to improve this promising new approach are presented.  相似文献   

10.
11.
Symmetric protein complexes are abundant in the living cell. Predicting their atomic structure can shed light on the mechanism of many important biological processes. Symmetric docking methods aim to predict the structure of these complexes given the unbound structure of a single monomer, or its model. Symmetry constraints reduce the search-space of these methods and make the prediction easier compared to asymmetric protein-protein docking. However, the challenge of modeling the conformational changes that the monomer might undergo is a major obstacle. In this article, we present SymmRef, a novel method for refinement and reranking of symmetric docking solutions. The method models backbone and side-chain movements and optimizes the rigid-body orientations of the monomers. The backbone movements are modeled by normal modes minimization and the conformations of the side-chains are modeled by selecting optimal rotamers. Since solved structures of symmetric multimers show asymmetric side-chain conformations, we do not use symmetry constraints in the side-chain optimization procedure. The refined models are re-ranked according to an energy score. We tested the method on a benchmark of unbound docking challenges. The results show that the method significantly improves the accuracy and the ranking of symmetric rigid docking solutions. SymmRef is available for download at http:// bioinfo3d.cs.tau.ac.il/SymmRef/download.html.  相似文献   

12.
Development and testing of an automated approach to protein docking   总被引:2,自引:0,他引:2  
A new version of GRAMM was applied to Targets 14, 18, and 19 in CAPRI Round 5. The predictions were generated without manual intervention. Ten top-ranked matches for each target were submitted. The docking was performed by a rigid-body procedure with a smoothed potential function to accommodate conformational changes. The first stage was a global search on a fine grid with a projection of a smoothed Lennard-Jones potential. The top predictions from the first stage were subjected to the conjugate gradient minimization with the same smoothed potential. The resulting local minima were reranked according to the weighted sum of Lennard-Jones potential, pairwise residue-residue statistical preferences, cluster occupancy, and the degree of the evolutionary conservation of the predicted interface. For Targets 14 and 18, the conformation of the complex was predicted with root-mean-square deviation (RMSD) of the ligand interface atoms 0.68 A and 1.88 A correspondingly. For Target 19, the interface areas on both proteins were correctly predicted. The performance of the procedure was also analyzed on the benchmark of bound-unbound protein complexes. The results show that, on average, conformations of only 3 side-chains need to be optimized during docking of unbound structures before the backbone changes become a limiting factor. The GRAMM-X docking server is available for public use at http://www.bioinformatics.ku.edu.  相似文献   

13.
Ma XH  Li CH  Shen LZ  Gong XQ  Chen WZ  Wang CX 《Proteins》2005,60(2):319-323
An efficient biologically enhanced sampling geometric docking method is presented based on the FTDock algorithm to predict the protein-protein binding modes. The active site data from different sources, such as biochemical and biophysical experiments or theoretical analyses of sequence data, can be incorporated in the rotation-translation scan. When discretizing a protein onto a 3-dimensional (3D) grid, a zero value is given to grid points outside a sphere centered on the geometric center of specified residues. In this way, docking solutions are biased toward modes where the interface region is inside the sphere. We also adopt a multiconformational superposition scheme to represent backbone flexibility in the proteins. When these procedures were applied to the targets of CAPRI, a larger number of hits and smaller ligand root-mean-square deviations (RMSDs) were obtained at the conformational search stage in all cases, and especially Target 19. With Target 18, only 1 near-native structure was retained by the biologically enhanced sampling geometric docking method, but this number increased to 53 and the least ligand RMSD decreased from 8.1 A to 2.9 A after performing multiconformational superposition. These results were obtained after the CAPRI prediction deadlines.  相似文献   

14.
Ritchie DW 《Proteins》2003,52(1):98-106
This article describes and reviews our efforts using Hex 3.1 to predict the docking modes of the seven target protein-protein complexes presented in the CAPRI (Critical Assessment of Predicted Interactions) blind docking trial. For each target, the structure of at least one of the docking partners was given in its unbound form, and several of the targets involved large multimeric structures (e.g., Lactobacillus HPr kinase, hemagglutinin, bovine rotavirus VP6). Here we describe several enhancements to our original spherical polar Fourier docking correlation algorithm. For example, a novel surface sphere smothering algorithm is introduced to generate multiple local coordinate systems around the surface of a large receptor molecule, which may be used to define a small number of initial ligand-docking orientations distributed over the receptor surface. High-resolution spherical polar docking correlations are performed over the resulting receptor surface patches, and candidate docking solutions are refined by using a novel soft molecular mechanics energy minimization procedure. Overall, this approach identified two good solutions at rank 5 or less for two of the seven CAPRI complexes. Subsequent analysis of our results shows that Hex 3.1 is able to place good solutions within a list of 相似文献   

15.
We present an evaluation of the results of our ZDOCK and RDOCK algorithms in Rounds 3, 4, and 5 of the protein docking challenge CAPRI. ZDOCK is a Fast Fourier Transform (FFT)-based, initial-stage rigid-body docking algorithm, and RDOCK is an energy minimization algorithm for refining and reranking ZDOCK results. Of the 9 targets for which we submitted predictions, we attained at least acceptable accuracy for 7, at least medium accuracy for 6, and high accuracy for 3. These results are evidence that ZDOCK in combination with RDOCK is capable of making accurate predictions on a diverse set of protein complexes.  相似文献   

16.
Molecular docking is the method of choice for investigating the molecular basis of recognition in a large number of functional protein complexes. However, correctly scoring the obtained docking solutions (decoys) to rank native‐like (NL) conformations in the top positions is still an open problem. Herein we present CONSRANK, a simple and effective tool to rank multiple docking solutions, which relies on the conservation of inter‐residue contacts in the analyzed decoys ensemble. First it calculates a conservation rate for each inter‐residue contact, then it ranks decoys according to their ability to match the more frequently observed contacts. We applied CONSRANK to 102 targets from three different benchmarks, RosettaDock, DOCKGROUND, and Critical Assessment of PRedicted Interactions (CAPRI). The method performs consistently well, both in terms of NL solutions ranked in the top positions and of values of the area under the receiver operating characteristic curve. Its ideal application is to solutions coming from different docking programs and procedures, as in the case of CAPRI targets. For all the analyzed CAPRI targets where a comparison is feasible, CONSRANK outperforms the CAPRI scorers. The fraction of NL solutions in the top ten positions in the RosettaDock, DOCKGROUND, and CAPRI benchmarks is enriched on average by a factor of 3.0, 1.9, and 9.9, respectively. Interestingly, CONSRANK is also able to specifically single out the high/medium quality (HMQ) solutions from the docking decoys ensemble: it ranks 46.2 and 70.8% of the total HMQ solutions available for the RosettaDock and CAPRI targets, respectively, within the top 20 positions. Proteins 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
We report docking performance on the six targets of Critical Assessment of PRedicted Interactions (CAPRI) rounds 39-45 that involved heteromeric protein-protein interactions and had the solved structures released since the rounds were held. Our general strategy involved protein-protein docking using ZDOCK, reranking using IRAD, and structural refinement using Rosetta. In addition, we made extensive use of experimental data to guide our docking runs. All the experimental information at the amino-acid level proved correct. However, for two targets, we also used protein-complex structures as templates for modeling interfaces. These resulted in incorrect predictions, presumably due to the low sequence identity between the targets and templates. Albeit a small number of targets, the performance described here compared somewhat less favorably with our previous CAPRI reports, which may be due to the CAPRI targets being increasingly challenging.  相似文献   

18.
The seventh CAPRI edition imposed new challenges to the modeling of protein-protein complexes, such as multimeric oligomerization, protein-peptide, and protein-oligosaccharide interactions. Many of the proposed targets needed the efficient integration of rigid-body docking, template-based modeling, flexible optimization, multiparametric scoring, and experimental restraints. This was especially relevant for the multimolecular assemblies proposed in the CASP12-CAPRI37 and CASP13-CAPRI46 joint rounds, which were described and evaluated elsewhere. Focusing on the purely CAPRI targets of this edition (rounds 38-45), we have participated in all 17 assessed targets (considering heteromeric and homomeric interfaces in T125 as two separate targets) both as predictors and as scorers, by using integrative modeling based on our docking and scoring approaches: pyDock, IRaPPA, and LightDock. In the protein-protein and protein-peptide targets, we have also participated with our webserver (pyDockWeb). On these 17 CAPRI targets, we submitted acceptable models (or better) within our top 10 models for 10 targets as predictors, 13 targets as scorers, and 4 targets as servers. In summary, our participation in this CAPRI edition confirmed the capabilities of pyDock for the scoring of docking models, increasingly used within the context of integrative modeling of protein interactions and multimeric assemblies.  相似文献   

19.
We submitted predictions for all seven targets in the CAPRI experiment. For four targets, our submitted models included acceptable, medium accuracy predictions of the structures of the complexes, and for a fifth target we identified the location of the binding site of one of the molecules. We used a weighted-geometric docking algorithm in which contacts involving specified parts of the surfaces of either one or both molecules were up-weighted or down-weighted. The weights were based on available structural and biochemical data or on sequence analyses. The weighted-geometric docking proved very useful for five targets, improving the complementarity scores and the ranks of the nearly correct solutions, as well as their statistical significance. In addition, the weighted-geometric docking promoted formation of clusters of similar solutions, which include more accurate predictions.  相似文献   

20.
The two previous CAPRI experiments showed the success of our rigid-body and refinement approach. For this third edition of CAPRI, we have used a new faster protocol called pyDock, which uses electrostatics and desolvation energy to score docking poses generated with FFT-based algorithms. In target T24 (unbound/model), our best prediction had the highest value of fraction of native contacts (40%) among all participants, although it was not considered as acceptable by the CAPRI criteria. In target T25 (unbound/bound), we submitted a model with medium quality. In target T26 (unbound/unbound), we did not submit any acceptable model (but we would have submitted acceptable predictions if we had included available mutational information about the binding site). For targets T27 (unbound/unbound) and T28 (homo-dimer using model), nobody (including us) submitted any acceptable model. Intriguingly, the crystal structure of target T27 shows an alternative interface that correlates with available biological data (we would have submitted acceptable predictions if we had included this). We also participated in all targets of the SCORERS experiment, with at least acceptable accuracy in all valid cases. We submitted two medium and four acceptable scoring models of T25. Using additional distance restraints (from mutational data), we had two medium and two acceptable scoring models of T26. For target T27, we submitted two acceptable scoring models of the alternative interface in the crystal structure. In summary, CAPRI showed the excellent capabilities of pyDock in identifying near-native docking poses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号