首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Familial Mediterranean fever (FMF) is characterized by recurrent attacks of fever and serositis; in some cases, ensuing amyloidosis results in kidney damage. Treatment with colchicine reduces the frequency and severity of FMF attacks and prevents amyloidosis, although the mechanisms behind these effects are unknown. Pyrin, the protein product of the MEFV gene, interacts with ASC, a key molecule in apoptotic and inflammatory processes. ASC forms intracellular speck-like aggregates that presage cell death. Here we show that cell death after ASC speck formation is much slower in nonmyeloid cells than in myeloid cells. Additionally, we demonstrate that colchicine prevents speck formation and show that specks can survive in the extracellular space after cell death. Because we also found that ASC is expressed in renal glomeruli of patients with FMF but not in those of control patients, we posit that high local ASC expression may result in speck formation and that specks from dying cells may persist in the extracellular space where they have the potential (perhaps in association with pyrin) to nucleate amyloid. The fact that speck formation requires an intact microtubule network as shown here could potentially account for the ability of prophylactic colchicine to prevent or reverse amyloidosis in patients with FMF.  相似文献   

2.
Cerebrovascular amyloidosis belongs to the pathological hallmarks of Alzheimer's disease brains. Although definite proof is still lacking, it is very well possible that the amyloid and its associated proteins are produced locally in the brain. In this paper we describe the development of a model system of cultured human brain pericytes to study the mechanisms of microvascular amyloid formation in vitro. These cultured cells may serve to study several aspects of cerebrovascular amyloidosis, which include the production of the amyloid precursor protein and of amyloid beta-protein-associated proteins as well as cytotoxic effects of amyloid beta-protein on perivascular cells. We demonstrated that pericytes produce and metabolize the amyloid precursor protein, and that they produce amyloid beta-protein-associated proteins, such as heparan sulfate proteoglycans, apolipoprotein E, and complement factor C1q. They are also prone to cellular degeneration after treatment with amyloid beta-protein, which is accompanied by increased expression of a number of amyloid beta-protein-associated proteins. This may be an important mechanism to explain the cell death observed in vivo. Our data indicate that this cell culture model of human brain pericytes provides a useful and pathophysiologically relevant tool to study cerebrovascular amyloidosis.  相似文献   

3.
Transthyretin (TTR) is a transport protein for thyroid hormones and vitamin A and might have an important role in the nervous system. However, TTR can undergo a conformational change and form amyloid fibrils, in both acquired and hereditary forms of systemic amyloidosis. More than 80 TTR mutations have been associated with autosomal dominant amyloidosis, usually presenting with peripheral and autonomic neuropathy and/or cardiomyopathy. Major areas of research in TTR amyloidosis include: molecular mechanisms leading to fibril formation; mechanisms of fibril-induced cell death; modulators of phenotypic expression of the disease; and therapeutic strategies.  相似文献   

4.
Familial Mediterranean Fever (F. M. F.) is an autosomal recessive disorder occurring most commonly in Sepharadi Jews and Armenians. Two phenotypic features characterize the disease: brief episodic febrile attacks of peritonitis, pleuritis or synovitis recurring from childhood or adolescence and the development of systemic amyloidosis. Attacks are accompanied by striking elevations of acute phase proteins, including serum amyloid A protein. The amyloidosis of Familial Mediterranean Fever is of the AA type, and manifest clinically as a nephropathy that passes through proteinuria, nephrotic and uremic stages to renal death. Although there is ethnic variation in the incidence of amyloidosis of F. M. F. in our patient population--predominantly Sepharadi Jews of North African extraction--an amyloidotic death at an early age is their genetic destiny. Since the introduction in 1972 of colchicine to prevent the febrile attacks, the drug has been proven and become the main stay of therapy. Today, colchicine has been shown to be effective in preventing amyloidosis as well as the febrile attacks in Familial Mediterranean Fever. End stage renal disease is not the end of the road for patients with F.M.F. because of improving outlook for dialysis and renal transplantation in these patients.  相似文献   

5.
6.
The mechanism of amyloid peptide formation in normally functioning neuron and upon the development of amyloidosis resulting in neuronal death is described. Amyloid peptides are formed by enzymatic processing of a large protein precursor and participate in intermolecular interactions after conformational rearrangements resulting in the formation of pathogenic structures. They enter into the cascade of molecular and cellular events leading to amyloidosis and death of neuronal cells. These molecular events clarify the relation between the conformation and function of neuropathogenic peptides and the role of this relation in the development of pathology of differentiated neurons.  相似文献   

7.
Amyloidogenesis is a characteristic feature of the 40 or so known protein deposition diseases, and accumulating evidence strongly suggests that self-association of misfolded proteins into either fibrils, protofibrils, or soluble oligomeric species is cytotoxic. The most likely mechanism for toxicity is through perturbation of membrane structure, leading to increased membrane permeability and eventual cell death. There have been a rather limited number of investigations of the interactions of amyloidogenic polypeptides and their aggregated states with membranes; these are briefly reviewed here. Amyloidogenic proteins discussed include A-beta from Alzheimer's disease, the prion protein, α-synuclein from Parkinson's disease, transthyretin (FAP, SSA amyloidosis), immunoglobulin light chains (primary (AL) amyloidosis), serum amyloid A (secondary (AA) amyloidosis), amylin or IAPP (Type 2 diabetes) and apolipoproteins. This review highlights the significant role played by fluorescence techniques in unraveling the nature of amyloid fibrils and their interactions and effects on membranes. Fluorescence spectroscopy is a valuable and versatile method for studying the complex mechanisms of protein aggregation, amyloid fibril formation and the interactions of amyloidogenic proteins with membranes. Commonly used fluorescent techniques include intrinsic and extrinsic fluorophores, fluorescent probes incorporated in the membrane, steady-state and lifetime measurements of fluorescence emission, fluorescence correlation spectroscopy, fluorescence anisotropy and polarization, fluorescence resonance energy transfer (FRET), fluorescence quenching, and fluorescence microscopy.  相似文献   

8.
Amyloidogenesis is a characteristic feature of the 40 or so known protein deposition diseases, and accumulating evidence strongly suggests that self-association of misfolded proteins into either fibrils, protofibrils, or soluble oligomeric species is cytotoxic. The most likely mechanism for toxicity is through perturbation of membrane structure, leading to increased membrane permeability and eventual cell death. There have been a rather limited number of investigations of the interactions of amyloidogenic polypeptides and their aggregated states with membranes; these are briefly reviewed here. Amyloidogenic proteins discussed include A-beta from Alzheimer's disease, the prion protein, alpha-synuclein from Parkinson's disease, transthyretin (FAP, SSA amyloidosis), immunoglobulin light chains (primary (AL) amyloidosis), serum amyloid A (secondary (AA) amyloidosis), amylin or IAPP (Type 2 diabetes) and apolipoproteins. This review highlights the significant role played by fluorescence techniques in unraveling the nature of amyloid fibrils and their interactions and effects on membranes. Fluorescence spectroscopy is a valuable and versatile method for studying the complex mechanisms of protein aggregation, amyloid fibril formation and the interactions of amyloidogenic proteins with membranes. Commonly used fluorescent techniques include intrinsic and extrinsic fluorophores, fluorescent probes incorporated in the membrane, steady-state and lifetime measurements of fluorescence emission, fluorescence correlation spectroscopy, fluorescence anisotropy and polarization, fluorescence resonance energy transfer (FRET), fluorescence quenching, and fluorescence microscopy.  相似文献   

9.
The formation mechanism of amyloid peptides in normally functioning neuron and upon the development of amyloidosis resulting in neuron death is described. Amyloid peptides are formed by enzymatic processing of a large protein precursor and participate in intermolecular interactions after conformational rearrangements resulting in the formation of pathogenic structures. They enter into the cascade of molecular and cellular events leading to amyloidosis and death of nervous cells. These molecular events clarify the relation between the conformation and function of neuropathogenic peptides and the role of this relation in the development of pathology of differentiated neurons. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2006, vol. 32, no. 3; see also http://www.maik.ru.  相似文献   

10.
11.
Evidence is presented that T cell impairment appears to be specifically related to the pathogenesis of experimental amyloidosis. This conclusion is based on the finding that thymosin administration improves T cell function as measured by mitogen stimulation of spleen cell suspension and at the same time reduces the incidence and severity of amyloid disease in casein-treated mice.  相似文献   

12.
Chemotaxis of cultivated fibroblasts, obtained from patients with amyloidosis, chronic glomerulonephritis and healthy volunteers, was investigated. Fibroblast migration toward donor serum and serum from patients with amyloidosis was measured using Boyden chamber's technique. As "zero" chemoattractant Hank's solution was used. It was shown, that chemotactic index (CI) was independent from cell density. Significant CI depression of fibroblasts from patients with amyloidosis toward donor serum in contrast to fibroblasts from patients with chronic glomerulonephritis and healthy volunteers was shown. The depression of chemotactic function was the same with fibroblasts from patients with different variants of amyloidosis and different stages of amyloid nephropathy and was stable in several cell generations. The results obtained suggest the existence of primary hereditary variant (variants) of chemotactic function, which may lead to the development of amyloidosis in certain conditions.  相似文献   

13.
Renal involvement is a frequent consequence of plasma cell dyscrasias. The most common entities are light chain amyloidosis, monoclonal immunoglobulin deposition disease and myeloma cast nephropathy. Despite a common origin, each condition has its own unique histologic and pathophysiologic characteristic which requires a renal biopsy to distinguish. Recent studies have shown urinary exosomes containing kidney-derived membrane and cytosolic proteins that can be used to probe the proteomics of the entire urinary system from the glomerulus to the bladder. In this study, we analyzed urine exosomes to determine the differences between exosomes from patients with light chain amyloidosis, multiple myeloma, monoclonal gammopathy of undetermined significance, and non-paraproteinemia related kidney disease controls. In patients with light chain amyloidosis, multiple myeloma and monoclonal gammopathy of undetermined significance, immunoreactive proteins corresponding to monomeric light chains were found in exosomes by western blot. In all of the amyloidosis samples with active disease, high molecular weight immunoreactive species corresponding to a decamer were found which were not found in exosomes from the other diseases or in amyloidosis exosomes from patients in remission. Few or no light chains monomeric bands were found in non-paraproteinemia related kidney disease controls. Our results showed that urinary exosomes may have tremendous potential in furthering our understanding of the pathophysiology and diagnosis of plasma cell dyscrasia related kidney diseases.  相似文献   

14.
《朊病毒》2013,7(4):223-227
Proteins are a major constituent of cells with specific biological functions. Besides the primary structure that is simply the sequence of amino acids that comprise a protein, the secondary structure represents the first step of folding defining its general conformation. The biological functions of proteins are directly dependent on the acquisition of their conformation. The same protein can have different stable states, which may participate with different functions in the cell. The amyloid diseases comprise Alzheimer’s and Parkinson’s diseases, type II diabetes mellitus and systemic amyloidosis. Amyloid fibers are insoluble, resistant to proteolysis and show an extremely high content of β-sheet, in a very similar structure to the one observed among prion rods, associated to the transmissible spongiform encephalopathies. All these diseases are “infectious” in the sense that misfolded β-sheeted conformers formed in a nucleation process in which preformed metastable oligomer acts as a seed to convert a normal isoform into an abnormal protein with a misfolded conformation. Only prion infections have a proven infectivity in a microbiological sense; some recent observations, however, detected the transmissibility of systemic amyloidosis by a prion-like mechanism among mice. Prions diseases and amyloidosis present many similar aspects of the so-called conformational diseases; according to this interpretation the prion infections could be considered as a form of transmissible cerebral amyloidosis.  相似文献   

15.
Light chain (AL) amyloidosis is the most common form of systemic amyloid disease, and cardiomyopathy is a dire consequence, resulting in an extremely poor prognosis. AL is characterized by the production of monoclonal free light chains that deposit as amyloid fibrils principally in the heart, liver, and kidneys causing organ dysfunction. We have studied the effects of amyloid fibrils, produced from recombinant λ6 light chain variable domains, on metabolic activity of human cardiomyocytes. The data indicate that fibrils at 0.1 μM, but not monomer, significantly decrease the enzymatic activity of cellular NAD(P)H-dependent oxidoreductase, without causing significant cell death. The presence of amyloid fibrils did not affect ATP levels; however, oxygen consumption was increased and reactive oxygen species were detected. Confocal fluorescence microscopy showed that fibrils bound to and remained at the cell surface with little fibril internalization. These data indicate that AL amyloid fibrils severely impair cardiomyocyte metabolism in a dose dependent manner. These data suggest that effective therapeutic intervention for these patients should include methods for removing potentially toxic amyloid fibrils.  相似文献   

16.
Serum amyloid A1 (SAA1) is an apolipoprotein that binds to the high‐density lipoprotein (HDL) fraction of the serum and constitutes the fibril precursor protein in systemic AA amyloidosis. We here show that HDL binding blocks fibril formation from soluble SAA1 protein, whereas internalization into mononuclear phagocytes leads to the formation of amyloid. SAA1 aggregation in the cell model disturbs the integrity of vesicular membranes and leads to lysosomal leakage and apoptotic death. The formed amyloid becomes deposited outside the cell where it can seed the fibrillation of extracellular SAA1. Our data imply that cells are transiently required in the amyloidogenic cascade and promote the initial nucleation of the deposits. This mechanism reconciles previous evidence for the extracellular location of deposits and amyloid precursor protein with observations the cells are crucial for the formation of amyloid.  相似文献   

17.
Recent studies clearly demonstrated that several types of pathogenic amyloid proteins acted as agents that could transmit amyloidosis by means of a prion-like mechanism. Systemic AA amyloidosis is one of the most severe complications of chronic inflammatory disorders, particularly rheumatoid arthritis. It is well known that, similar to an infectious prion protein, amyloid-enhancing factor (AEF) acts as a transmissible agent in AA amyloidosis. However, how AEF transmits AA amyloidosis in vivo remained to be fully elucidated. In the present study, we focused on finding cell-free forms of AEF and its carriers in circulation by using the murine transfer model of AA amyloidosis. We first determined that circulating cell-free AEF existed in blood and plasma in mice with systemic AA amyloidosis. Second, we established that plasma exosomes containing AA amyloid oligomers derived from serum amyloid A had AEF activity and could transmit systemic AA amyloidosis via a prion-like mechanism. These novel findings should provide insights into the transmission mechanism of systemic amyloidoses.  相似文献   

18.
Light-chain amyloidosis (AL) is a devastating protein-misfolding disease characterized by abnormal proliferation of plasma cells in the bone marrow that secrete monoclonal immunoglobulin light chains that misfold and form amyloid fibrils, thus causing organ failure and death. Numerous reports on different protein-misfolding diseases show that soluble oligomeric species populated by amyloidogenic proteins can be quite toxic to cells. However, it is not well established whether the soluble immunoglobulin light-chain species found in circulation in patients with AL are toxic to cells in target organs. We determined the cellular toxicity of two well-characterized light-chain variable domain proteins from cardiac AL patients and their corresponding germline protein, devoid of somatic mutations. Our results show that the soluble form of the AL proteins we characterized are toxic to cardiomyocytes, and that the species found in cell culture correspond, for the most part, to the species present in circulation in these patients.  相似文献   

19.
Aberrant proteins or peptide aggregates form soluble oligomers or nanofibrils that can cause a wide range of amyloidosis diseases, including Alzheimer''s disease (AD). The mechanisms of their cytotoxicity, however, remain controversial and poorly understood, greatly hindering the development of AD drugs. Here we report a comprehensive evaluation of the cytotoxicity of the aggregates by meta-analysis. The analysis indicates that the cytotoxicity of the aggregates converges in a narrower range in the mass concentrations than in the molar concentrations, suggesting that it is the weight of the aggregates rather than the number of the molecules that dictates the cytotoxicity. This new perspective implies that these aggregates are likely to have non-specific interactions with cells to cause cell death. The comparison of several existing theories regarding cellular volumes supports that the aggregates may result in crowding effect and increase the free energy, thus resulting in instability of the cells.  相似文献   

20.
Transthyretin (TTR) is normally a stable plasma protein. However, in cases of familial TTR-related amyloidosis and senile systemic amyloidosis (SSA), TTR is deposited as amyloid fibrils, leading to organ dysfunction and possibly death. The mechanism by which TTR undergoes the transition from stable, soluble precursor to insoluble amyloid fibril and the factors that promote this process are largely undetermined. Most models involve the dissociation of the native TTR tetramer as the initial step. It is largely accepted that the TTR gene mutations associated with TTR-related amyloidosis lead to the expression of variant proteins that are intrinsically unstable and prone to aggregation. It has been suggested that amyloidogenicity may be conferred to wild-type TTR (the form deposited in SSA) by chemical modification of the lone cysteine residue (Cys(10)) through mixed disulfide bonds. S-Sulfonation and S-cysteinylation are prevalent TTR modifications physiologically, and studies have suggested their ability to modulate the structure of TTR under denaturing conditions. In the present study, we have used fluorescence-detected sedimentation velocity to determine the effect of S-sulfonate and S-cysteine on the quaternary structural stability of fluorophore-conjugated recombinant TTR under nondenaturing conditions. We determined that S-sulfonation stabilized TTR tetramer stability by a factor of 7, whereas S-cysteinylation enhanced dissociation by 2-fold with respect to the unmodified form. In addition, we report the direct observation of tetramer stabilization by the potential therapeutic compound diflunisal. Finally, as proof of concept, we report the sedimentation of TTR in serum and the qualitative assessment of the resulting data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号