首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Kringles 1 and 4 from human plasminogen are polypeptide domains of Mr approximately equal to 10000 each of which can be isolated by proteolysis of the zymogen. They have been studied by 1H-NMR spectroscopy at 300 MHz and 600 MHz. The spectra, characteristic of globular structures, show striking analogies that point to a close conformational relatedness among the two kringles, consistent with their high degree of amino acid conservancy and homology. The interaction of both kringles with p-benzylaminesulfonic acid (BASA), an antifibrinolytic drug that binds to a lysine-binding site, results in better resolved, narrower lines for both spectra. Aromatic and methyl-region spectra of BASA complexes of kringles 1 and 4 were compared and the latter was studied by two-dimensional NMR spectroscopy. Analysis of the CH3 multiplets in terms of their resonance patterns, and the amino acid compositions and sequences of the two kringles, leads to the identification of most signals and to some assignments. In particular, a doublet at -1 ppm, exhibited by both kringles and also found in reported proton spectra of homologous bovine prothrombin fragments, has been assigned to Leu46, a residue that is conserved in all of the kringles studied to date by 1H-NMR. Since this resonance is somewhat more sensitive to BASA than other methyl signals, it is likely that Leu46 is proximal to the lysine-binding site. Nuclear Overhauser experiments reveal that Leu46 is surrounded by a cluster of closely interacting hydrophobic and aromatic side chains. Kringle 4 was also compared with a derivative chemically modified at Trp72 with dimethyl(2-hydroxy-5-nitrobenzyl)sulfonium bromide. As judged from the proton spectra, the modified kringle 4 retains globularity and is perturbed mainly in the aromatic region, in analogy to that which is observed for the unmodified kringle upon BASA binding. Furthermore, although previous studies have indicated no retention of the modified kringle by lysine-Sepharose, the NMR studies point to a definite interaction between BASA and the kringle derivative. The spectroscopic data also suggest that the His31 imidazole is not significantly affected by the ligand and that the lysine-binding site is structured mostly by hydrophobic side chains, including Trp72 in the case of kringle 4, and probably Tyr72 in kringle 1.  相似文献   

2.
Plasminogen activator inhibitor 1 (PAI-1) is the primary physiological inhibitor of plasminogen activation in vivo, and thus it is one of the main regulators of the fibrinolytic system. In this regard, individuals with elevated PAI-1 seem to have an increased risk for thrombotic disease, whereas those lacking the inhibitor develop a lifelong bleeding diathesis. Unexpectedly, recent observations demonstrate that cancer patients with high PAI-1 levels have a poor prognosis for survival. This correlation with metastatic disease may be related to the observation that high PAI-1 levels decrease the adhesive strength of cells for their substratum, and that this de-adhesive activity of PAI-1 is not related to its role as a protease inhibitor. Initial insights into potential mechanisms by which PAI-1 regulates the attachment, detachment, and migration of cells are addressed in this review.  相似文献   

3.
Plasminogen activator inhibitor-1 (PAI-1) is a serpin protease inhibitor that binds plasminogen activators (uPA and tPA) at a reactive center loop located at the carboxyl-terminal amino acid residues 320-351. The loop is stretched across the top of the active PAI-1 protein maintaining the molecule in a rigid conformation. In the latent PAI-1 conformation, the reactive center loop is inserted into one of the beta sheets, thus making the reactive center loop unavailable for interaction with the plasminogen activators. We truncated porcine PAI-1 at the amino and carboxyl termini to eliminate the reactive center loop, part of a heparin binding site, and a vitronectin binding site. The region we maintained corresponds to amino acids 80-265 of mature human PAI-1 containing binding sites for vitronectin, heparin (partial), uPA, tPA, fibrin, thrombin, and the helix F region. The interaction of "inactive" PAI-1, rPAI-1(23), with plasminogen and uPA induces the formation of a proteolytic protein with angiostatin properties. Increasing amounts of rPAI-1(23) inhibit the proteolytic angiostatin fragment. Endothelial cells exposed to exogenous rPAI-1(23) exhibit reduced proliferation, reduced tube formation, and 47% apoptotic cells within 48 h. Transfected endothelial cells secreting rPAI-1(23) have a 30% reduction in proliferation, vastly reduced tube formation, and a 50% reduction in cell migration in the presence of VEGF. These two studies show that rPAI-1(23) interactions with uPA and plasminogen can inhibit plasmin by two mechanisms. In one mechanism, rPAI-1(23) cleaves plasmin to form a proteolytic angiostatin-like protein. In a second mechanism, rPAI-1(23) can bind uPA and/or plasminogen to reduce the number of uPA and plasminogen interactions, hence reducing the amount of plasmin that is produced.  相似文献   

4.
Ahn JH  Lee HJ  Lee EK  Yu HK  Lee TH  Yoon Y  Kim SJ  Kim JS 《Biological chemistry》2011,392(4):347-356
Many proteins in the fibrinolysis pathway contain antiangiogenic kringle domains. Owing to the high degree of homology between kringle domains, there has been a safety concern that antiangiogenic kringles could interact with common kringle proteins during fibrinolysis leading to adverse effects in vivo. To address this issue, we investigated the effects of several antiangiogenic kringle proteins including angiostatin, apolipoprotein(a) kringles IV(9)-IV(10)-V (LK68), apolipoprotein(a) kringle V (rhLK8) and a derivative of rhLK8 mutated to produce a functional lysine-binding site (Lys-rhLK8) on the entire fibrinolytic process in vitro and analyzed the role of lysine binding. Angiostatin, LK68 and Lys-rhLK8 increased clot lysis time in a dose-dependent manner, inhibited tissue-type plasminogen activator-mediated plasminogen activation on a thrombin-modified fibrinogen (TMF) surface, showed binding to TMF and significantly decreased the amount of plasminogen bound to TMF. The inhibition of fibrinolysis by these proteins appears to be dependent on their functional lysine-binding sites. However, rhLK8 had no effect on these processes owing to an inability to bind lysine. Collectively, these results indicate that antiangiogenic kringles without lysine binding sites might be safer with respect to physiological fibrinolysis than lysine-binding antiangiogenic kringles. However, the clinical significance of these findings will require further validation in vivo.  相似文献   

5.
BackgroundScabies, a highly contagious skin disease affecting more than 200 million people worldwide at any time, is caused by the parasitic mite Sarcoptes scabiei. In the absence of molecular markers, diagnosis requires experience making surveillance and control challenging. Superficial microthrombi in the absence of vasculitis in scabies-affected skin are a recognised, yet unexplained histopathological differential of scabies infection. This study demonstrates that a family of Scabies Mite Inactivated Cysteine Protease Paralogues (SMIPP-Cs) excreted by the mites plays a role in formation of scabies-induced superficial microthrombi.Methodology/Principal findingsA series of in vitro and ex vivo experiments involving two representative recombinant SMIPP-Cs was carried out. In the presence of SMIPP-Cs, the thrombin clotting time (TCT), fibrin formation and plasmin induced fibrinolysis were monitored in vitro. The ultrastructure of the SMIPP-C—modulated fibrin was analysed by Scanning Electron Microscopy (SEM). Immuno-histological analyses were performed ex vivo, to localise the SMIPP-C proteins within scabies infected skin biopsies. SMIPP-Cs displayed pro-coagulant properties. They bound calcium ions, reduced the thrombin clotting time, enhanced the fibrin formation rate and delayed plasmin-induced fibrinolysis. The SMIPP-Cs associated with fibrin clots during fibrinogen polymerisation and did not bind to preformed fibrin. Scanning electron microscopy revealed that the fibrin clots formed in the presence of SMIPP-Cs were aberrant and denser than normal fibrin clots. SMIPP-Cs were detected in microthrombi which are commonly seen in scabietic skin.Conclusions/SignificanceThe SMIPP-Cs are the first scabies mite proteins found in sub-epidermal skin layers and their pro-coagulant properties promote superficial microthrombi formation in scabetic skin. Further research is needed to evaluate their potential as diagnostic or therapeutic target.  相似文献   

6.
The expression of the ATP-binding cassette transporter ABCG1 is greatly increased in macrophages by cholesterol loading via the activation of the nuclear receptor LXR. Several recent studies demonstrated that ABCG1 expression is associated with increased cholesterol efflux from macrophages to high-density lipoprotein, suggesting an atheroprotective role for this protein. Our present study uncovers an as yet not described cellular function of ABCG1. Here we demonstrate that elevated expression of human ABCG1 is associated with apoptotic cell death in macrophages and also in other cell types. We found that overexpression of the wild type protein results in phosphatidyl serine (PS) translocation, caspase 3 activation, and subsequent cell death, whereas neither the inactive mutant variant of ABCG1 (ABCG1K124M) nor the ABCG2 multidrug transporter had such effect. Induction of ABCG1 expression by LXR activation in Thp1 cells and in human monocyte-derived macrophages was accompanied by a significant increase in the number of apoptotic cells. Thyroxin and benzamil, previously identified inhibitors of ABCG1 function, selectively prevented ABCG1-promoted apoptosis in transfected cells as well as in LXR-induced macrophages. Collectively, our results suggest a causative relationship between ABCG1 function and apoptotic cell death, and may offer new insights into the role of ABCG1 in atherogenesis.  相似文献   

7.
Tissue plasminogen activator (t-PA) is an extracellular serine protease that converts the proenzyme plasminogen into the broad-spectrum substrate serine protease, plasmin. Plasmin, one of the most potent pro-angiogenic factors, is a key element in fibrinolysis, cell migration, tissue remodeling and tumor invasion. In the present investigation, we assessed the impact of the truncated form of soluble melanotransferrin (sMTf) on plasminogen activation by t-PA and subsequent endothelial cell detachment. Co-treatment of human endothelial microvessel cells with plasminogen, t-PA and sMTf significantly increased plasmin formation and activity in the culture medium. Plasmin generated in the presence of sMTf also led to a 30% reduction in fibronectin detection within cell lysates and to a 9-fold increase within the corresponding cell medium. Moreover, the presence of sMTf increases EC detachment by 6-fold compared to cells treated only with plasminogen and t-PA. Although the addition of alpha(2)-antiplasmin completely prevented plasmin formation and EC detachment, epigallocatechin gallate, GM6001 and a specific antibody directed against MMP-2 prevented cellular detachment without interfering with plasminogen activation. Overall, these data suggest that the anti-angiogenic properties of sMTf may result from local overstimulation of plasminogen activation by t-PA, thus leading to subsequent degradation of the Fn matrix and EC detachment.  相似文献   

8.
Dahiya M  Rajamohan G  Dikshit KL 《FEBS letters》2005,579(7):1565-1572
Presence of isolated beta or betagamma domains of streptokinase (SK) increased the catalytic activity of staphylokinase (SAK)-plasmin (Pm) complex up to 60%. In contrast, fusion of SK beta or betagamma domains with the C-terminal end of SAK drastically reduced the catalytic activity of the activator complex. The enhancement effect mediated by beta or betagamma domain on Pg activator activity of SAK-Pm complex was reduced greatly (45%) in the presence of isolated kringles of Pg, whereas, kringles did not change cofactor activity of SAK fusion proteins (carrying beta or betagamma domains) significantly. When catalytic activity of SAK-microPm (catalytic domain of Pm lacking kringle domains) complex was examined in the presence of isolated beta and betagamma domains, no enhancement effect on Pg activation was observed, whereas, enzyme complex formed between microplasmin and SAK fusion proteins (SAKbeta and SAKbetagamma) displayed 50-70% reduction in their catalytic activity. The present study, thus, suggests that the exogenously present beta and betagamma interact with Pg/Pm via kringle domains and elevate catalytic activity of SAK-Pm activator complex resulting in enhanced substrate Pg activation. Fusion of beta or betagamma domains with SAK might alter these intermolecular interactions resulting in attenuated functional activity of SAK.  相似文献   

9.
BACKGROUND: Plasminogen activator inhibitor 1 (PAI-1) is a serpin that has a key role in the control of fibrinolysis through proteinase inhibition. PAI-1 also has a role in regulating cell adhesion processes relevant to tissue remodeling and metastasis; this role is mediated by its binding to the adhesive glycoprotein vitronectin rather than by proteinase inhibition. Active PAI-1 is metastable and spontaneously transforms to an inactive latent conformation. Previous attempts to crystallize the active conformation of PAI-1 have failed. RESULTS: The crystal structure of a stable quadruple mutant of PAI-1(Asn150-->His, Lys154-->Thr, Gln319-->Leu, Met354-->Ile) in its active conformation has been solved at a nominal 3 A resolution. In two of four independent molecules within the crystal, the flexible reactive center loop is unconstrained by crystal-packing contacts and is disordered. In the other two molecules, the reactive center loop forms intimate loop-sheet interactions with neighboring molecules, generating an infinite chain within the crystal. The overall conformation resembles that seen for other active inhibitory serpins. CONCLUSIONS: The structure clarifies the molecular basis of the stabilizing mutations and the reduced affinity of PAI-1, on cleavage or in the latent form, for vitronectin. The infinite chain of linked molecules also suggests a new mechanism for the serpin polymerization associated with certain diseases. The results support the concept that the reactive center loop of an active serpin is flexible and has no defined conformation in the absence of intermolecular contacts. The determination of the structure of the active form constitutes an essential step for the rational design of PAI-1 inhibitors.  相似文献   

10.
The increased levels of extracellular DNA found in a number of disorders involving dysregulation of the fibrinolytic system may affect interactions between fibrinolytic enzymes and inhibitors. Double-stranded (ds) DNA and oligonucleotides bind tissue-(tPA) and urokinase (uPA)-type plasminogen activators, plasmin, and plasminogen with submicromolar affinity. The binding of enzymes to DNA was detected by EMSA, steady-state, and stopped-flow fluorimetry. The interaction of dsDNA/oligonucleotides with tPA and uPA includes a fast bimolecular step, followed by two monomolecular steps, likely indicating slow conformational changes in the enzyme. DNA (0.1-5.0 μg/ml), but not RNA, potentiates the activation of Glu- and Lys-plasminogen by tPA and uPA by 480- and 70-fold and 10.7- and 17-fold, respectively, via a template mechanism similar to that known for fibrin. However, unlike fibrin, dsDNA/oligonucleotides moderately affect the reaction between plasmin and α(2)-antiplasmin and accelerate the inactivation of tPA and two chain uPA by plasminogen activator inhibitor-1 (PAI-1), which is potentiated by vitronectin. dsDNA (0.1-1.0 μg/ml) does not affect the rate of fibrinolysis by plasmin but increases by 4-5-fold the rate of fibrinolysis by Glu-plasminogen/plasminogen activator. The presence of α(2)-antiplasmin abolishes the potentiation of fibrinolysis by dsDNA. At higher concentrations (1.0-20 μg/ml), dsDNA competes for plasmin with fibrin and decreases the rate of fibrinolysis. dsDNA/oligonucleotides incorporated into a fibrin film also inhibit fibrinolysis. Thus, extracellular DNA at physiological concentrations may potentiate fibrinolysis by stimulating fibrin-independent plasminogen activation. Conversely, DNA could inhibit fibrinolysis by increasing the susceptibility of fibrinolytic enzymes to serpins.  相似文献   

11.
NY-ESO-1 and LAGE-1 represent highly homologous cancer-germline Ags frequently coexpressed by many human cancers, but not by normal tissues, except testis. In contrast to NY-ESO-1, little is known about spontaneous immune responses to LAGE-1. In the current study, we report on spontaneous LAGE-1-specific CD4(+) T cells isolated from PBLs of patients with advanced LAGE-1(+)/NY-ESO-1(+) melanoma and directed against three promiscuous and immunodominant epitopes. Strikingly, although the three LAGE-1-derived epitopes are highly homologous to NY-ESO-1-derived epitopes, LAGE-1-specific CD4(+) T cells did not cross-react with NY-ESO-1. LAGE-1-specific CD4(+) T cells produced Th1-type and/or Th2-type cytokines and did not exert inhibitory effects on allogenic T cells. We observed that most patients with spontaneous NY-ESO-1-specific responses exhibited spontaneous CD4(+) T cell responses to at least one of the three immunodominant LAGE-1 epitopes. Additionally, nearly half of the patients with spontaneous LAGE-1-specific CD4(+) T cell responses had circulating LAGE-1-specific Abs that recognized epitopes located in the C-terminal portion of LAGE-1, which is distinct from NY-ESO-1. Collectively, our findings define the hierarchy of immunodominance of spontaneous LAGE-1-specific CD4(+) T cell responses in patients with advanced melanoma. These findings demonstrate the capability of LAGE-1 to stimulate integrated cellular and humoral immune responses that do not cross-react with NY-ESO-1. Therefore, they provide a strong rationale for the inclusion of LAGE-1 peptides or protein in vaccine trials for patients with NY-ESO-1(+)/LAGE-1(+) tumors.  相似文献   

12.
Endostatin is a fragment of collagen XVIII that acts as an inhibitor of tumor angiogenesis and tumor growth. Anti-tumor effects have been described using both soluble and insoluble recombinant endostatin. However, differences in endostatin structure are likely to cause differences in bioactivity. In the present study, we have investigated the cellular effects of insoluble endostatin. We previously found that insoluble endostatin shows all the hallmarks of amyloid aggregates and potently stimulates tissue plasminogen activator-mediated formation of the serine protease plasmin. We here show that amyloid endostatin induces plasminogen activation by endothelial cells, resulting in vitronectin degradation and plasmin-dependent endothelial cell detachment. Endostatin-mediated stimulation of plasminogen activation, vitronectin degradation, and endothelial cell detachment is inhibited by carboxypeptidase B, indicating an essential role for carboxyl-terminal lysines. Our results suggest that amyloid endostatin may inhibit angiogenesis and tumor growth by stimulating the fibrinolytic system.  相似文献   

13.
Degradation of adhesive glycoproteins by plasmin is implicated in cell migration. In this study, we further explored the role of plasminogen activation in cell adhesion and survival and show that uncontrolled plasminogen activation at the cell surface may induce cell detachment and apoptosis. We hypothesized that this process could be prevented in adherent cells by expression of protease nexin-1, a potent serpin able to inhibit thrombin, plasmin, and plasminogen activators. Using two- and three-dimensional culture systems, we demonstrate that Chinese hamster ovary fibroblasts constitutively express tissue-type plasminogen activator and efficiently activate exogenously added plasminogen in a specific and saturable manner (K(m) = 46 nm). The formation of plasmin results in proteolysis of fibronectin and laminin, which is followed by cell detachment and apoptosis. Protease nexin-1 expressed by transfected cells significantly inhibited the activity of plasmin and tissue-type plasminogen activator via the formation of inhibitory complexes and prevented cell detachment and apoptosis. In conclusion, protease nexin-1 may be an important anti-apoptotic factor for adherent cells. This cell model could be a useful tool to evaluate therapeutic agents such as serpins in vascular pathologies involving pericellular protease-protease inhibitor imbalance.  相似文献   

14.
G kinase‐anchoring protein 1 (GKAP1) is a G kinase‐associated protein that is conserved in many eutherians and is mainly expressed in the testis, especially in spermatocytes and round spermatids. The function of GKAP1 in the testis is largely unknown. Here, we revealed that deletion of GKAP1 led to an increase in sperm production with swollen epididymis, and germ cell apoptosis was found to decrease in GKAP1 knock‐out mice. Further investigations showed that a deficiency of GKAP1 could partly change the cellular location of cGK‐Iα and increase the amount of active cAMP response element‐binding protein (CREB) in the nucleus. Therefore, the expression of a particular inhibitor of apoptosis proteins (IAPs) was upregulated because of the activation of CREB, and this increase in IAPs was associated with a decrease in the level of activated caspase‐3. These results suggest that a deficiency of GKAP1 in mouse testis could increase sperm production through a reduction of the spontaneous apoptosis of germ cells in the testis, possibly because of a change in the activity of the cGK‐Iα pathway.  相似文献   

15.
Functional role of caspases in heat-induced testicular germ cell apoptosis   总被引:3,自引:0,他引:3  
In the present study, we determined whether a pan caspase inhibitor could prevent or attenuate heat-induced germ cell apoptosis. Groups of five adult (8 wk old) C57BL/6 mice pretreated with vehicle (DMSO) or Quinoline-Val-Asp (Ome)-CH2-O-Ph (Q-VD-OPH), a new generation broad-spectrum caspase inhibitor, were exposed once to local testicular heating (43 degrees C for 15 min) and killed 6 h later. The inhibitor (40 mg/kg body weight) or vehicle was administered intraperitoneally (i.p.) 1 h before local testicular heating. Germ cell apoptosis was detected by TUNEL assay and quantitated as number of apoptotic germ cells per 100 Sertoli cells at stages XI-XII. Compared with controls (16.8 +/- 3.1), mild testicular hyperthermia within 6 h resulted in a marked activation (277.3 +/- 21.6) of germ cell apoptosis, as previously reported by us. Q-VD-OPH at this dose markedly inhibited caspase 3 activation and significantly prevented (by 67.0%) heat-induced germ cell apoptosis. Q-VD-OPH-mediated rescue of germ cells was independent of cytosolic translocation of mitochondrial cytochrome c and DIABLO. Electron microscopy further revealed normal appearance of these rescued cells. Similar protection from heat-induced germ cell apoptosis was also noted after pretreatment with minocycline, a second-generation tetracycline that effectively inhibits cytochrome c release and, in turn, caspase activation. Collectively, the present study emphasizes the role of caspases in heat-induced germ cell apoptosis.  相似文献   

16.
17.
Herpes simplex virus 1 (HSV-1) viral glycoproteins gD (carboxyl terminus), gE, gK, and gM, the membrane protein UL20, and membrane-associated protein UL11 play important roles in cytoplasmic virion envelopment and egress from infected cells. We showed previously that a recombinant virus carrying a deletion of the carboxyl-terminal 29 amino acids of gD (gDΔct) and the entire gE gene (ΔgE) did not exhibit substantial defects in cytoplasmic virion envelopment and egress (H. C. Lee et al., J. Virol. 83:6115-6124, 2009). The recombinant virus ΔgM2, engineered not to express gM, produced a 3- to 4-fold decrease in viral titers and a 50% reduction in average plaque sizes in comparison to the HSV-1(F) parental virus. The recombinant virus containing all three mutations, gDΔct-ΔgM2-ΔgE, replicated approximately 1 log unit less efficiently than the HSV-1(F) parental virus and produced viral plaques which were on average one-third the size of those of HSV-1(F). The recombinant virus ΔUL11-ΔgM2, engineered not to express either UL11 or gM, replicated more than 1 log unit less efficiently and produced significantly smaller plaques than UL11-null or gM-null viruses alone, in agreement with the results of Leege et al. (T. Leege et al., J. Virol. 83:896-907, 2009). Analyses of particle-to-PFU ratios, relative plaque size, and kinetics of virus growth and ultrastructural visualization of glycoprotein-deficient mutant and wild-type virions indicate that gDΔct, gE, and gM function in a cooperative but not redundant manner in infectious virion morphogenesis. Overall, comparisons of single, double, and triple mutant viruses generated in the same HSV-1(F) genetic background indicated that lack of either UL20 or gK expression caused the most severe defects in cytoplasmic envelopment, egress, and infectious virus production, followed by the double deletion of UL11 and gM.  相似文献   

18.
19.
Plasminogen activator inhibitor type 1 (PAI-1), the fast-acting inhibitor of tissue-type plasminogen activator (t-PA) and urokinase (u-PA), is a member of the serpin superfamily of proteins. Both in plasma and in the growth substratum of cultured endothelial cells, PAI-1 is associated with its binding protein vitronectin, resulting in a stabilization of active PAI-1. Recently, it has been demonstrated that the PAI-1-binding site on vitronectin is adjacent to a heparin-binding site (Preissner et al., 1990). Furthermore, it can be deduced that the amino acid residues, proposed to mediate heparin binding in the serpins antithrombin III and heparin cofactor II, are conserved in PAI-1. Consequently, here we have investigated whether PAI-1 also interacts with heparin. At pH 7.4, PAI-1 quantitatively binds to heparin-Sepharose and can be eluted with increasing [NaCl]. Binding of PAI-1 to heparin-Sepharose can be efficiently competed with heparin in solution (IC50, 7 microM). In the presence of heparin, the protease specificity of PAI-1 toward thrombin is substantially increased. This is shown by (i) quenching of thrombin activity of PAI-1 in the presence of heparin and (ii) induction of the formation of SDS-stable complexes between thrombin and PAI-1 by heparin. In a dose response curve, both effects reached a maximum at approximately 1 unit/mL and then diminished again upon further increasing the heparin concentration, strongly suggesting a template mechanism as an explanation for the observed effect. In contrast to vitronectin, heparin does not stabilize the active conformation of PAI-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
In primary cultures of porcine proximal tubular kidney cells and LLC-PK1 cells cisplatin (5 - 50 microM) caused apoptosis and cell detachment; in both systems cell detachment occurred, preceded by a loss of cytoskeletal F-actin stress fibers within 4 - 6 h, and a reduction of mRNA encoding for fibronectin, collagen a2 type (IV) and laminin B2 within 17 - 41 h. Prevention of F-actin damage by phalloidin prevented nuclear fragmentation, suggesting a relation between F-actin damage and apoptosis. Overexpression of Bcl-2 also prevented apoptosis, but did not prevent damage to the F-actin skeleton or the reduction of mRNA expression of the matrix proteins. These results suggest that Bcl-2 overexpression interferes with apoptotic signals downstream of F-actin. The relevance of these results for cell detachment in kidney toxicity is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号