首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Xu L  Li Y  Li L  Zhou S  Hou T 《Molecular bioSystems》2012,8(9):2260-2273
Macrophage migration inhibitory factor (MIF), an immunoregulatory protein, is a potential target for a number of inflammatory diseases. In the current work, the interactions between MIF and a series of phenolic hydrazones were studied by molecular docking, molecular dynamics (MD) simulations, binding free energy calculations, and binding energy decomposition analysis to determine the structural requirement for achieving favorable biological activity of phenolic hydrazones. First, molecular docking was used to predict the binding modes of inhibitors in the binding site of MIF. The good correlation between the predicted docking scores and the experimental activities shows that the binding conformations of the inhibitors in the active site of MIF are well predicted. Moreover, our results suggest that the flexibility of MIF is essential in ligand binding process. Then, MD simulations and MM/GBSA free energy calculations were employed to determine the dynamic binding process and compare the binding modes of the inhibitors with different activities. The predicted binding free energies given by MM/GBSA are not well correlated with the experimental activities for the two subsets of the inhibitors; however, for each subset, a good correlation between the predicted binding free energies and the experimental activities is achieved. The MM/GBSA free energy decomposition analysis highlights the importance of hydrophobic residues for the MIF binding of the studied inhibitors. Based on the essential factors for MIF-inhibitor interactions derived from the theoretical predictions, some derivatives were designed and the higher inhibitory activities of several candidates were confirmed by molecular docking studies. The structural insights obtained from our study are useful for designing potent inhibitors of MIF.  相似文献   

2.
CAPRI is a communitywide experiment to assess the capacity of protein-docking methods to predict protein-protein interactions. Nineteen groups participated in rounds 1 and 2 of CAPRI and submitted blind structure predictions for seven protein-protein complexes based on the known structure of the component proteins. The predictions were compared to the unpublished X-ray structures of the complexes. We describe here the motivations for launching CAPRI, the rules that we applied to select targets and run the experiment, and some conclusions that can already be drawn. The results stress the need for new scoring functions and for methods handling the conformation changes that were observed in some of the target systems. CAPRI has already been a powerful drive for the community of computational biologists who development docking algorithms. We hope that this issue of Proteins will also be of interest to the community of structural biologists, which we call upon to provide new targets for future rounds of CAPRI, and to all molecular biologists who view protein-protein recognition as an essential process.  相似文献   

3.
A model of the carbohydrate recognition domain of the serum form of mannose-binding protein (MBP) from rat complexed with methyl 3,6-di-O-(alpha-D-mannopyranosyl)-alpha-D-mannopyranoside is presented. Allowed conformations for the bound sugar were derived from simulated annealing protocols incorporating distance restraints computed from transferred NOESY spectra. The resulting sugar conformations were then modeled into the MBP binding site, and these models of the complex were refined using molecular dynamics (MD) simulations in the presence of solvent water. These studies indicate that only one of the two major conformations of the alpha(1-->6) linkage found in solution is significantly populated in the bound state (omega = 60 degrees ), whereas the alpha(1-->3) linkage samples at least two states, similar to its behavior in free solution. The bound conformation allows direct hydrogen bonds to form between the sugar and K182 of MBP, in addition to other water-mediated hydrogen bonds. Estimates of binding constants of candidate complexes based on changes in solvent-accessible surface areas upon binding support the NMR and MD results. These estimates further suggest that the enthalpic gains of the additional sugar-MBP interactions in a trisaccharide as opposed to a monosaccharide are offset by entropic penalties, offering an explanation for previous binding data.  相似文献   

4.
In CAPRI rounds 6-12, RosettaDock successfully predicted 2 of 5 unbound-unbound targets to medium accuracy. Improvement over the previous method was achieved with computational mutagenesis to select decoys that match the energetics of experimentally determined hot spots. In the case of Target 21, Orc1/Sir1, this resulted in a successful docking prediction where RosettaDock alone or with simple site constraints failed. Experimental information also helped limit the interacting region of TolB/Pal, producing a successful prediction of Target 26. In addition, we docked multiple loop conformations for Target 20, and we developed a novel flexible docking algorithm to simultaneously optimize backbone conformation and rigid-body orientation to generate a wide diversity of conformations for Target 24. Continued challenges included docking of homology targets that differ substantially from their template (sequence identity <50%) and accounting for large conformational changes upon binding. Despite a larger number of unbound-unbound and homology model binding targets, Rounds 6-12 reinforced that RosettaDock is a powerful algorithm for predicting bound complex structures, especially when combined with experimental data.  相似文献   

5.
FireDock: fast interaction refinement in molecular docking   总被引:3,自引:0,他引:3  
Here, we present FireDock, an efficient method for the refinement and rescoring of rigid-body docking solutions. The refinement process consists of two main steps: (1) rearrangement of the interface side-chains and (2) adjustment of the relative orientation of the molecules. Our method accounts for the observation that most interface residues that are important in recognition and binding do not change their conformation significantly upon complexation. Allowing full side-chain flexibility, a common procedure in refinement methods, often causes excessive conformational changes. These changes may distort preformed structural signatures, which have been shown to be important for binding recognition. Here, we restrict side-chain movements, and thus manage to reduce the false-positive rate noticeably. In the later stages of our procedure (orientation adjustments and scoring), we smooth the atomic radii. This allows for the minor backbone and side-chain movements and increases the sensitivity of our algorithm. FireDock succeeds in ranking a near-native structure within the top 15 predictions for 83% of the 30 enzyme-inhibitor test cases, and for 78% of the 18 semiunbound antibody-antigen complexes. Our refinement procedure significantly improves the ranking of the rigid-body PatchDock algorithm for these cases. The FireDock program is fully automated. In particular, to our knowledge, FireDock's prediction results are comparable to current state-of-the-art refinement methods while its running time is significantly lower. The method is available at http://bioinfo3d.cs.tau.ac.il/FireDock/.  相似文献   

6.
采用分子对接,分子动力学(MD)模拟和分子力学/泊松-波尔兹曼溶剂可有面积方法与分子力学/广义伯恩溶剂可及面积方法(MM-PBSA/MM-GBSA),预测两种N-取代吡咯衍生物与HIV-1 跨膜蛋白gp41疏水口袋的结合模式与作用机理.分子对接采用多种受体构象,并从结果中选取几种可能的结合模式进行MD 模拟,然后通过MM-PBSA计算结合能的方法识别最优的结合模式. MM-PBSA计算结果表明,范德华相互作用是结合的主要驱动力,而极性相互作用决定了配体在结合过程中的取向.进一步的结合能分解显示,配体的羧基与gp41残基Arg579的静电相互作用对结合有重要贡献.上述工作为进一步优化N-取代吡咯衍生物类的HIV-1融合抑制剂建立了良好的理论基础.  相似文献   

7.
Binding‐site water molecules play a crucial role in protein‐ligand recognition, either being displaced upon ligand binding or forming water bridges to stabilize the complex. However, rigorously treating explicit binding‐site waters is challenging in molecular docking, which requires to fully sample ensembles of waters and to consider the free energy cost of replacing waters. Here, we describe a method to incorporate structural and energetic properties of binding‐site waters into molecular docking. We first developed a solvent property analysis (SPA) program to compute the replacement free energies of binding‐site water molecules by post‐processing molecular dynamics trajectories obtained from ligand‐free protein structure simulation in explicit water. Next, we implemented a distance‐dependent scoring term into DOCK scoring function to take account of the water replacement free energy cost upon ligand binding. We assessed this approach in protein targets containing important binding‐site waters, and we demonstrated that our approach is reliable in reproducing the crystal binding geometries of protein‐ligand‐water complexes, as well as moderately improving the ligand docking enrichment performance. In addition, SPA program (free available to academic users upon request) may be applied in identifying hot‐spot binding‐site residues and structure‐based lead optimization. Proteins 2014; 82:1765–1776. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
Comeau SR  Vajda S  Camacho CJ 《Proteins》2005,60(2):239-244
To evaluate the current status of the protein-protein docking field, the CAPRI experiment came to life. Researchers are given the receptor and ligand 3-dimensional (3D) coordinates before the cocrystallized complex is published. Human predictions of the complex structure are supposed to be submitted within 3 weeks, whereas the server ClusPro has only 24 h and does not make use of any biochemical information. From the 10 targets analyzed in the second evaluation meeting of CAPRI, ClusPro was able to predict meaningful models for 5 targets using only empirical free energy estimates. For two of the targets, the server predictions were assessed to be among the best in the field. Namely, for Targets 8 and 12, ClusPro predicted the model with the most accurate binding-site interface and the model with the highest percentage of nativelike contacts, among 180 and 230 submissions, respectively. After CAPRI, the server has been further developed to predict oligomeric assemblies, and new tools now allow the user to restrict the search for the complex to specific regions on the protein surface, significantly enhancing the predictive capabilities of the server. The performance of ClusPro in CAPRI Rounds 3-5 suggests that clustering the low free energy (i.e., desolvation and electrostatic energy) conformations of a homogeneous conformational sampling of the binding interface is a fast and reliable procedure to detect protein-protein interactions and eliminate false positives. Not including targets that had a significant structural rearrangement upon binding, the success rate of ClusPro was found to be around 71%.  相似文献   

9.
Camacho CJ  Ma H  Champ PC 《Proteins》2006,63(4):868-877
Predicting protein-protein interactions involves sampling and scoring docked conformations. Barring some large structural rearrangement, rapidly sampling the space of docked conformations is now a real possibility, and the limiting step for the successful prediction of protein interactions is the scoring function used to reduce the space of conformations from billions to a few, and eventually one high affinity complex. An atomic level free-energy scoring function that estimates in units of kcal/mol both electrostatic and desolvation interactions (plus van der Waals if appropriate) of protein-protein docked conformations is used to rerank the blind predictions (860 in total) submitted for six targets to the community-wide Critical Assessment of PRediction of Interactions (CAPRI; http://capri.ebi.ac.uk). We found that native-like models often have varying intermolecular contacts and atom clashes, making unlikely that one can construct a universal function that would rank all these models as native-like. Nevertheless, our scoring function is able to consistently identify the native-like complexes as those with the lowest free energy for the individual models of 16 (out of 17) human predictors for five of the targets, while at the same time the modelers failed to do so in more than half of the cases. The scoring of high-quality models developed by a wide variety of methods and force fields confirms that electrostatic and desolvation forces are the dominant interactions determining the bound structure. The CAPRI experiment has shown that modelers can predict valuable models of protein-protein complexes, and improvements in scoring functions should soon solve the docking problem for complexes whose backbones do not change much upon binding. A scoring server and programs are available at http://structure.pitt.edu.  相似文献   

10.
We present a computational approach for predicting structures of ligand-protein complexes and analyzing binding energy landscapes that combines Monte Carlo simulated annealing technique to determine the ligand bound conformation with the dead-end elimination algorithm for side-chain optimization of the protein active site residues. Flexible ligand docking and optimization of mobile protein side-chains have been performed to predict structural effects in the V32I/I47V/V82I HIV-1 protease mutant bound with the SB203386 ligand and in the V82A HIV-1 protease mutant bound with the A77003 ligand. The computational structure predictions are consistent with the crystal structures of these ligand-protein complexes. The emerging relationships between ligand docking and side-chain optimization of the active site residues are rationalized based on the analysis of the ligand-protein binding energy landscape. Proteins 33:295–310, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
The growth mechanism of β-amyloid (Aβ) peptide fibrils was studied by a physics-based coarse-grained united-residue model and molecular dynamics (MD) simulations. To identify the mechanism of monomer addition to an Aβ1-40 fibril, we placed an unstructured monomer at a distance of 20 Å from a fibril template and allowed it to interact freely with the latter. The monomer was not biased towards fibril conformation by either the force field or the MD algorithm. With the use of a coarse-grained model with replica-exchange molecular dynamics, a longer timescale was accessible, making it possible to observe how the monomers probe different binding modes during their search for the fibril conformation. Although different assembly pathways were seen, they all follow a dock-lock mechanism with two distinct locking stages, consistent with experimental data on fibril elongation. Whereas these experiments have not been able to characterize the conformations populating the different stages, we have been able to describe these different stages explicitly by following free monomers as they dock onto a fibril template and to adopt the fibril conformation (i.e., we describe fibril elongation step by step at the molecular level). During the first stage of the assembly (“docking”), the monomer tries different conformations. After docking, the monomer is locked into the fibril through two different locking stages. In the first stage, the monomer forms hydrogen bonds with the fibril template along one of the strands in a two-stranded β-hairpin; in the second stage, hydrogen bonds are formed along the second strand, locking the monomer into the fibril structure. The data reveal a free-energy barrier separating the two locking stages. The importance of hydrophobic interactions and hydrogen bonds in the stability of the Aβ fibril structure was examined by carrying out additional canonical MD simulations of oligomers with different numbers of chains (4-16 chains), with the fibril structure as the initial conformation. The data confirm that the structures are stabilized largely by hydrophobic interactions and show that intermolecular hydrogen bonds are highly stable and contribute to the stability of the oligomers as well.  相似文献   

12.
Alzheimer’s disease (AD) is a most common form of dementia caused due to aggregation of amyloid beta (Aβ) peptides in brain. The AD brain exhibits extracellular deposition of Aβ-peptides which triggers neuronal death. Thus, degradation of Aβ peptides has evaluated a promising therapeutic target in AD. Human endothelin converting enzyme (hECE-1) has been implicated in Aβ-peptide degradation. In this study, we have performed molecular docking between three different conformations of Aβ peptides and hECE-1 coupled with molecular dynamics to investigate subsite recognition and cleavage mechanism. Molecular docking and MD simulation studies show that β-sheet conformation with particular orientation of Aβ-peptide residues selectively entrap in substrate binding cavity of hECE-1. However, unusual orientation of Aβ-peptide residues and helical conformation undergoes substantial fluctuations resulted in the reduction of enzyme-substrate interactions. Zn ion coordinates with Aβ-peptide near the scissile peptide bond. Based on this information we have proposed catalytic mechanism of hECE-1 for Aβ-peptide degradation in which residue E 608 of hECE-1 plays an important role as a proton shuttle. The molecular basis of Aβ peptide cleavage by hECE-1 could aid in designing enzyme based therapies to control Aβ concentration in AD.  相似文献   

13.
T Hou  J Wang  L Chen  X Xu 《Protein engineering》1999,12(8):639-648
A genetic algorithm (GA) combined with a tabu search (TA) has been applied as a minimization method to rake the appropriate associated sites for some biomolecular systems. In our docking procedure, surface complementarity and energetic complementarity of a ligand with its receptor have been considered separately in a two-stage docking method. The first stage was to find a set of potential associated sites mainly based on surface complementarity using a genetic algorithm combined with a tabu search. This step corresponds with the process of finding the potential binding sites where pharmacophores will bind. In the second stage, several hundreds of GA minimization steps were performed for each associated site derived from the first stage mainly based on the energetic complementarity. After calculations for both of the two stages, we can offer several solutions of associated sites for every complex. In this paper, seven biomolecular systems, including five bound complexes and two unbound complexes, were chosen from the Protein Data Bank (PDB) to test our method. The calculated results were very encouraging-the hybrid minimization algorithm successfully reaches the correct solutions near the best binded modes for these protein complexes. The docking results not only predict the bound complexes very well, but also get a relatively accurate complexed conformation for unbound systems. For the five bound complexes, the results show that surface complementarity is enough to find the precise binding modes, the top solution from the tabu list generally corresponds to the correct binding mode. For the two unbound complexes, due to the conformational changes upon binding, it seems more difficult to get their correct binding conformations. The predicted results show that the correct binding mode also corresponds to a relatively large surface complementarity score. In these two test cases, the correct solution can be found in the top several solutions from the tabu list. For unbound complexes, the interaction energy from energetic complementarity is very important, it can be used to filter these solutions from the surface complementarity. After the evaluation of the energetic complementarity, the conformations and orientations close to the crystallographically determined structures are resolved. In most cases, the smallest root mean square distance (r.m.s.d.) from the GA combined with TA solutions is in a relatively small region. Our program of automatic docking is really a universal one among the procedures used for the theoretical study of molecular recognition.  相似文献   

14.
Breast cancer is one of the most known cancer types caused to the women around the world. Dioxins on the other hand are a wide range of chemical compounds known to cause the effects on human health. Among them, 6-Methyl-1,3,8-trichlorodibenzofuran (MCDF) is a relatively non toxic prototypical alkyl polychlorinated dibenzofuran known to act as a highly effective agent for inhibiting hormone-responsive breast cancer growth in animal models. In this study, we have developed a multi-level computational approach to identify possible new breast cancer targets for MCDF. We used PharmMapper Server to predict breast cancer target proteins for MCDF. Search results showed crystal Structure of the Antagonist Form of Glucocorticoid Receptor with highest fit score and AutoLigand analysis showed two potential binding sites, site-A and site-B for MCDF. A molecular docking was performed on these two sites and based on binding energy site-B was selected. MD simulation studies on Glucocorticoid receptor-MCDF complex revealed that MCDF conformation was stable at site-B and the intermolecular interactions were maintained during the course of simulation. In conclusion, our approach couples reverse pharmacophore analysis, molecular docking and molecular dynamics simulations to identify possible new breast cancer targets for MCDF.  相似文献   

15.
MOTIVATION: Predicting protein interactions is one of the most challenging problems in functional genomics. Given two proteins known to interact, current docking methods evaluate billions of docked conformations by simple scoring functions, and in addition to near-native structures yield many false positives, i.e. structures with good surface complementarity but far from the native. RESULTS: We have developed a fast algorithm for filtering docked conformations with good surface complementarity, and ranking them based on their clustering properties. The free energy filters select complexes with lowest desolvation and electrostatic energies. Clustering is then used to smooth the local minima and to select the ones with the broadest energy wells-a property associated with the free energy at the binding site. The robustness of the method was tested on sets of 2000 docked conformations generated for 48 pairs of interacting proteins. In 31 of these cases, the top 10 predictions include at least one near-native complex, with an average RMSD of 5 A from the native structure. The docking and discrimination method also provides good results for a number of complexes that were used as targets in the Critical Assessment of PRedictions of Interactions experiment. AVAILABILITY: The fully automated docking and discrimination server ClusPro can be found at http://structure.bu.edu  相似文献   

16.
Steroidogenic acute regulatory protein-related lipid transfer (StART) domains are ubiquitously involved in intracellular lipid transport and metabolism and other cell-signaling events. In this work, we use a flexible docking algorithm, comparative modeling, and molecular dynamics (MD) simulations to generate plausible three-dimensional atomic models of the StART domains of human metastatic lymph node 64 (MLN64) and steroidogenic acute regulatory protein (StAR) proteins in complex with cholesterol. Our results show that cholesterol can adopt a similar conformation in the binding cavity in both cases and that the main contribution to the protein-ligand interaction energy derives from hydrophobic contacts. However, hydrogen-bonding and water-mediated interactions appear to be important in the fine-tuning of the binding affinity and the position of the ligand. To gain insights into the mechanism of binding, we carried out steered MD simulations in which cholesterol was gradually extracted from within the StAR model. These simulations indicate that a transient opening of loop Omega1 may be sufficient for uptake and release, and they also reveal a pathway of intermediate states involving residues known to be crucial for StAR activity. Based on these observations, we suggest specific mutagenesis targets for binding studies of cholesterol and its derivatives that could improve our understanding of the structural determinants for ligand binding by sterol carrier proteins.  相似文献   

17.
RosettaDock uses real-space Monte Carlo minimization (MCM) on both rigid-body and side-chain degrees of freedom to identify the lowest free energy docked arrangement of 2 protein structures. An improved version of the method that uses gradient-based minimization for off-rotamer side-chain optimization and includes information from unbound structures was used to create predictions for Rounds 4 and 5 of CAPRI. First, large numbers of independent MCM trajectories were carried out and the lowest free energy docked configurations identified. Second, new trajectories were started from these lowest energy structures to thoroughly sample the surrounding conformation space, and the lowest energy configurations were submitted as predictions. For all cases in which there were no significant backbone conformational changes, a small number of very low-energy configurations were identified in the first, global search and subsequently found to be close to the center of the basin of attraction in the free energy landscape in the second, local search. Following the release of the experimental coordinates, it was found that the centers of these free energy minima were remarkably close to the native structures in not only the rigid-body orientation but also the detailed conformations of the side-chains. Out of 8 targets, the lowest energy models had interface root-mean-square deviations (RMSDs) less than 1.1 A from the correct structures for 6 targets, and interface RMSDs less than 0.4 A for 3 targets. The predictions were top submissions to CAPRI for Targets 11, 12, 14, 15, and 19. The close correspondence of the lowest free energy structures found in our searches to the experimental structures suggests that our free energy function is a reasonable representation of the physical chemistry, and that the real space search with full side-chain flexibility to some extent solves the protein-protein docking problem in the absence of significant backbone conformational changes. On the other hand, the approach fails when there are significant backbone conformational changes as the steric complementarity of the 2 proteins cannot be modeled without incorporating backbone flexibility, and this is the major goal of our current work.  相似文献   

18.
Carter P  Lesk VI  Islam SA  Sternberg MJ 《Proteins》2005,60(2):281-288
In rounds 3-5 of CAPRI, the community-wide experiment on the comparative evaluation of protein-protein docking for structure prediction, we applied the 3D-Dock software package to predict the atomic structures of nine biophysical interactions. This approach starts with an initial grid-based shape complementarity search. The product of this is a large number of potential interacting conformations that are subsequently ranked by interface residue propensities and interaction energies. Refinement through detailed energetics and optimization of side-chain positions using a rotamer library is also performed. For rounds 3, 4, and 5 of the CAPRI evaluation, where possible, we clustered functional residues on the surfaces of the monomers as an indication of binding sites, using sequence based evolutionary conservations. In certain targets this provided a very useful tool for identifying the areas of interaction. During round 5, we also applied the techniques of side-chain trimming and geometrical clustering described in the literature. Of the nine target complexes in rounds 3-5, we predicted conformations that contained at least some correct contact residues for seven of these systems. For two of the targets, we submitted predictions that were considered as medium-quality. These were a nidogen-laminin complex for target 8 (T08) and a serine-threonine phosphatase bound to a targeting subunit (T14). For a further three target systems, we produced models that were rated as acceptable predictions.  相似文献   

19.
Methyltransferases possess a homologous domain that requires both a divalent metal cation and S-adenosyl-L-methionine (SAM) to catalyze its reactions. The kinetics of several methyltransferases has been well characterized; however, the details regarding their structural mechanisms have remained unclear to date. Using catechol O-methyltransferase (COMT) as a model, we perform discrete molecular dynamics and computational docking simulations to elucidate the initial stages of cofactor binding. We find that COMT binds SAM via an induced-fit mechanism, where SAM adopts a different docking pose in the absence of metal and substrate in comparison to the holoenzyme. Flexible modeling of the active site side-chains is essential for observing the lowest energy state in the apoenzyme; rigid docking tools are unable to recapitulate the pose unless the appropriate side-chain conformations are given a priori. From our docking results, we hypothesize that the metal reorients SAM in a conformation suitable for donating its methyl substituent to the recipient ligand. The proposed mechanism enables a general understanding of how divalent metal cations contribute to methyltransferase function.  相似文献   

20.
We employ ensemble docking simulations to characterize the interactions of two enantiomeric forms of a Ru-complex compound (1-R and 1-S) with three protein kinases, namely PIM1, GSK-3β, and CDK2/cyclin A. We show that our ensemble docking computational protocol adequately models the structural features of these interactions and discriminates between competing conformational clusters of ligand-bound protein structures. Using the determined X-ray crystal structure of PIM1 complexed to the compound 1-R as a control, we discuss the importance of including the protein flexibility inherent in the ensemble docking protocol, for the accuracy of the structure prediction of the bound state. A comparison of our ensemble docking results suggests that PIM1 and GSK-3β bind the two enantiomers in similar fashion, through two primary binding modes: conformation I, which is very similar to the conformation presented in the existing PIM1/compound 1-R crystal structure; conformation II, which represents a 180° flip about an axis through the NH group of the pyridocarbazole moiety, relative to conformation I. In contrast, the binding of the enantiomers to CDK2 is found to have a different structural profile including a suggested bound conformation, which lacks the conserved hydrogen bond between the kinase and the ligand (i.e., ATP, staurosporine, Ru-complex compound). The top scoring conformation of the inhibitor bound to CDK2 is not present among the top-scoring conformations of the inhibitor bound to either PIM1 or GSK-3β and vice-versa. Collectively, our results help provide atomic-level insights into inhibitor selectivity among the three kinases.
Figure
Top cluster of predicted conformations based on ensemble docking simulations of a Ruthenium based compound to protein kinases  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号