首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Point mutations of the active-site residues Trp168, Tyr171, Trp275, Trp397, Trp570 and Asp392 were introduced to Vibrio carchariae chitinase A. The modeled 3D structure of the enzyme illustrated that these residues fully occupied the substrate binding cleft and it was found that their mutation greatly reduced the hydrolyzing activity against pNP-[GlcNAc](2) and colloidal chitin. Mutant W397F was the only exception, as it instead enhanced the hydrolysis of the pNP substrate to 142% and gave no activity loss towards colloidal chitin. The kinetic study with the pNP substrate demonstrated that the mutations caused impaired K(m) and k(cat) values of the enzyme. A chitin binding assay showed that mutations of the aromatic residues did not change the binding equilibrium. Product analysis by thin layer chromatography showed higher efficiency of W275G and W397F in G4-G6 hydrolysis over the wild type enzyme. Though the time course of colloidal chitin hydrolysis displayed no difference in the cleavage behavior of the chitinase variants, the time course of G6 hydrolysis exhibited distinct hydrolytic patterns between wild-type and mutants W275G and W397F. Wild type initially hydrolyzed G6 to G4 and G2, and finally G2 was formed as the major end product. W275G primarily created G2-G5 intermediates, and later G2 and G3 were formed as stable products. In contrast, W397F initially produced G1-G5, and then the high-M(r) intermediates (G3-G5) were broken down to G1 and G2 end products. This modification of the cleavage patterns of chitooligomers suggested that residues Trp275 and Trp397 are involved in defining the binding selectivity of the enzyme to soluble substrates.  相似文献   

2.
Hevamine is a chitinase from the rubber tree Hevea brasiliensis. Its active site contains Asp125, Glu127, and Tyr183, which interact with the -1 sugar residue of the substrate. To investigate their role in catalysis, we have successfully expressed wild-type enzyme and mutants of these residues as inclusion bodies in Escherichia coli. After refolding and purification they were characterized by both structural and enzyme kinetic studies. Mutation of Tyr183 to phenylalanine produced an enzyme with a lower k(cat) and a slightly higher K(m) than the wild-type enzyme. Mutating Asp125 and Glu127 to alanine gave mutants with approximately 2% residual activity. In contrast, the Asp125Asn mutant retained substantial activity, with an approximately twofold lower k(cat) and an approximately twofold higher K(m) than the wild-type enzyme. More interestingly, it showed activity to higher pH values than the other variants. The X-ray structure of the Asp125Ala/Glu127Ala double mutant soaked with chitotetraose shows that, compared with wild-type hevamine, the carbonyl oxygen atom of the N-acetyl group of the -1 sugar residue has rotated away from the C1 atom of that residue. The combined structural and kinetic data show that Asp125 and Tyr183 contribute to catalysis by positioning the carbonyl oxygen of the N-acetyl group near to the C1 atom. This allows the stabilization of a positively charged transient intermediate, in agreement with a previous proposal that the enzyme makes use of substrate-assisted catalysis.  相似文献   

3.
Fourteen species of Vibrio were screened for chitin-induced chitinase activity in culture medium. V. carchariae, V. alginolyticus 283 and V. campbellii showed high levels of activity. Screening on agar plates containing swollen chitin showed high levels of chitinase activity by the same three species, and also by V. fischeri and V. alginolyticus 284. An affinity purification procedure was developed for the chitinase from V. carchariae. The purified chitinase was active as a monomer with M(r) 63,000-66,000, and displayed activity toward polymeric chitin from acetylated chitosan or from crab shells. N-terminal sequence analysis and immunological cross-reactivity confirmed that the enzyme belongs to the group A/chiA family of bacterial chitinases.  相似文献   

4.
The chymotrypsin-like (CT-L) activity of the proteasome is downregulated by substrates of the peptidyl-glutamyl peptide hydrolyzing (PGPH) activity. To investigate the nature of such interactions, we synthesized selective alpha',beta'-epoxyketone inhibitors of the PGPH activity. In cellular proliferation and protein degradation assays, these inhibitors revealed that selective PGPH inhibition was insufficient to inhibit protein degradation, indicating that the CT-L and PGPH sites function independently. We also demonstrated that CT-L inhibition by a PGPH substrate does not require the occupancy of the PGPH site or hydrolysis of the PGPH substrate. Thus, these results support a model in which a substrate of one subunit regulates the activity of another via binding to a noncatalytic site(s) rather than through binding to an active site.  相似文献   

5.
Chitinase was purified from the culture filtrate of a Vibrio sp. isolated from soil and its enzymatic properties were examined. The molecular weight measured by SDS-gel electrophoresis was approximately 100,000. The chitinase hydrolyzed colloidal chitin, chitin powder, chitosan and chitin oligosaccharides more than chitotriose but did not hydrolyze glycolchitin and chitobiose.  相似文献   

6.
Hepatitis C virus encodes an autoprotease, NS2-3, which is required for processing of the viral polyprotein between the non-structural NS2 and NS3 proteins. This protease activity is vital for the replication and assembly of the virus and therefore represents a target for the development of anti-viral drugs. The mechanism of this auto-processing reaction is not yet clear but the protease activity has been shown to map to the C-terminal region of NS2 and the N-terminal serine protease region of NS3. The NS2-3 precursor can be expressed in Escherichia coli as inclusion bodies, purified as denatured protein and refolded, in the presence of detergents and the divalent metal ion zinc, into an active form capable of auto-cleavage. Here, intrinsic tryptophan fluorescence has been used to assess refolding in the wild-type protein and specific active site mutants. We also investigate the effects on protein folding of alterations to the reaction conditions that have been shown to prevent auto-cleavage. Our data demonstrate that these active site mutations do not solely affect the cleavage activity of the HCV NS2-3 protease but significantly affect the integrity of the global protein fold.  相似文献   

7.
We provide evidence that chitinase A from Vibrio carchariae acts as an endochitinase. The chitinase A gene isolated from V. carchariae genome encodes 850 amino acids expressing a 95-kDa precursor. Peptide masses of the native enzyme identified from MALDI-TOF or nanoESIMS were identical with the putative amino acid sequence translated from the corresponding nucleotide sequence. The enzyme has a highly conserved catalytic TIM-barrel region as previously described for Serratia marcescens ChiA. The Mr of the native chitinase A was determined to be 62,698, suggesting that the C-terminal proteolytic cleavage site was located between R597 and K598. The DNA fragment that encodes the processed enzyme was subsequently cloned and expressed in Escherichia coli. The expressed protein exhibited chitinase activity on gel activity assay. Analysis of chitin hydrolysis using HPLC/ESI-MS confirmed the endo characteristics of the enzyme.  相似文献   

8.
High-performance liquid chromatography mass spectrometry (HPLC MS) was employed to assess the binding behaviors of various substrates to Vibrio harveyi chitinase A. Quantitative analysis revealed that hexaNAG preferred subsites −2 to +2 over subsites −3 to +2 and pentaNAG only required subsites −2 to +2, while subsites −4 to +2 were not used at all by both substrates. The results suggested that binding of the chitooligosaccharides to the enzyme essentially occurred in compulsory fashion. The symmetrical binding mode (−2 to +2) was favored presumably to allow the natural form of sugars to be utilized effectively. Crystalline α chitin was initially hydrolyzed into a diverse ensemble of chitin oligomers, providing a clear sign of random attacks that took place within chitin chains. However, the progressive degradation was shown to occur in greater extent at later time to complete hydrolysis. The effect of the reducing-end residues were also investigated by means of HPLC MS. Substitutions of Trp275 to Gly and Trp397 to Phe significantly shifted the anomer selectivity of the enzyme toward β substrates. The Trp275 mutation modulated the kinetic property of the enzyme by decreasing the catalytic constant (k cat) and the substrate specificity (k cat/K m) toward all substrates by five- to tenfold. In contrast, the Trp397 mutation weakened the binding strength at subsite (+2), thereby speeding up the rate of the enzymatic cleavage toward soluble substrates but slowing down the rate of the progressive degradation toward insoluble chitin.  相似文献   

9.
Two active mutants of aspartate transcarbamoylase from Escherichia coli have been purified from strains which produce large quantities of enzyme. Each enzyme was isolated from a different spontaneous revertant of a pyrimidine auxotrophic strain produced by mutagenesis with nitrogen mustard. Both enzymes exhibit allosteric properties with one having significantly less and the other more cooperativity than wild-type enzyme. Isolated catalytic subunits had different values of Km and Vmax. Studies on hybrids constructed from mutant catalytic and wild-type regulatory subunits (and vice versa) indicate that catalytic chains encoded by pyrB and not the regulatory chains encoded by pyrI were affected by the mutations. Differential scanning calorimetry experiments support these conclusions. Both mutant enzymes undergo ligand-promoted conformational changes analogous to those exhibited by wild-type enzyme: a 3% decrease in the sedimentation coefficient and a 5-fold increase in the reactivity of the sulfhydryl groups of the regulatory chains. Interactions between catalytic and regulatory chains in the mutants are weaker than those in the wild-type enzyme. The gross conformational changes of the mutants upon adding the bisubstrate ligand, N-(phosphonacetyl)-L-aspartate, in the presence of the substrate, carbamoylphosphate, and the activator, ATP, correlate with differences in cooperativity. The mutant with lower cooperativity is more readily converted from the low-affinity, compact, T-state to the high-affinity, swollen, R-state than is wild-type enzyme; this conversion for the more cooperative enzyme is energetically less favorable.  相似文献   

10.
Despite extensive primary sequence diversity, crystal structures of several bacterial cytochrome P450 monooxygenases (P450s) and a single eukaryotic P450 indicate that these enzymes share a structural core of alpha-helices and beta-sheets and vary in the loop regions contacting individual substrates. To determine the extent to which individual structural features are conserved among divergent P450s existing in a single biosynthetic pathway, we have modeled the structures of four highly divergent P450s (CYP73A5, CYP84A1, CYP75B1, CYP98A3) in the Arabidopsis phenylpropanoid pathway synthesizing lignins, flavonoids and anthocyanins. Analysis of these models has indicated that, despite primary sequence identities as low as 13%, the structural cores and several loop regions of these P450s are highly conserved. Substrate docking indicated that all four enzymes employ a common strategy to identify their substrates in that their cinnamate-derived substrates align along helix I with their aromatic ring positioned towards the C-terminus of this helix and their aliphatic tails positioned towards the N-terminus. Further similarity was observed in the way the substrates contact the consensus P450 substrate recognition sites (SRS). Residues predicted to contact the aromatic ring region exist in SRS5, SRS6 and the C-terminal portion of SRS4 and residues contacting the distal end of each substrate exist in SRS1, SRS2 and the N-terminal portion of SRS4. Alignments of the regions contacting the aromatic ring region indicate that SRS4, SRS5 and SRS6 share higher degrees of sequence conservation than found in SRS1, SRS2 or the full-length protein.  相似文献   

11.
Human angiogenin (Ang) is an unusual homolog of bovine pancreatic RNase A that utilizes its ribonucleolytic activity to induce the formation of new blood vessels. The pyrimidine-binding site of Ang was shown previously to be blocked by glutamine 117, indicating that Ang must undergo a conformational change to bind and cleave RNA. The mechanism and nature of this change are not known, and no Ang-inhibitor complexes have been characterized structurally thus far. Here, we report crystal structures for the complexes of Ang with the inhibitors phosphate and pyrophosphate, and the structure of the complex of the superactive Ang variant Q117G with phosphate, all at 2.0 A resolution. Phosphate binds to the catalytic site of both Ang and Q117G in essentially the same manner observed in the RNase A-phosphate complex, forming hydrogen bonds with the side chains of His 13, His 114, and Gln 12, and the main chain of Leu 115; it makes an additional interaction with the Lys 40 ammonium group in the Ang complex. One of the phosphate groups of pyrophosphate occupies a similar position. The other phosphate extends toward Gln 117, and lies within hydrogen-bonding distance from the side-chain amide of this residue as well as the imidazole group of His 13 and the main-chain oxygen of Leu 115. The pyrimidine site remains obstructed in all three complex structures, that is, binding to the catalytic center is not sufficient to trigger the conformational change required for catalytic activity, even in the absence of the Gln 117 side chain. The Ang-pyrophosphate complex structure suggests how nucleoside pyrophosphate inhibitors might bind to Ang; this information may be useful for the design of Ang antagonists as potential anti-angiogenic drugs.  相似文献   

12.
13.
The active sites of all bacterial and vertebrate dihydrofolate reductases that have been examined have a tryptophan residue near the binding sites for NADPH and dihydrofolate. In cases where the three-dimensional structure has been determined by X-ray crystallography, this conserved tryptophan residue makes hydrophobic and van der Waals interactions with the nicotinamide moiety of bound NADPH, and its indole nitrogen interacts with the C4 oxygen of bound folate through a bridge provided by a bound water molecule. We have addressed the question of why even the very conservative replacement of this tryptophan by phenylalanine does not seem to occur naturally. Human dihydrofolate reductase with this replacement of tryptophan by phenylalanine has increased rate constants for dissociation of substrates and products and a considerably decreased rate of hydride transfer. These cause some changes in steady-state kinetic behavior, including substantial increases in Michaelis constants for NADPH and dihydrofolate, but there is also a 3-fold increase in kcat. The branched mechanistic pathway for this enzyme has been completely defined and is sufficiently different from that of wild-type enzyme to cause changes in some transient-state kinetics. The most critical changes resulting from the amino acid substitution appear to be a 50% decrease in stability and a decrease in efficiency from 69% to 21% under intracellular conditions.  相似文献   

14.
To investigate the roles of the active site residues in the catalysis of Bacillus thuringiensis WB7 chitinase, twelve mutants, F201L, F201Y, G203A, G203D, D205E, D205N, D207E, D207N, W208C, W208R, E209D and E209Q were constructed by site-directed mutagenesis. The results showed that the mutants F201L, G203D, D205N, D207E, D207N, W208C and E209D were devoid of activity, and the loss of the enzymatic activities for F201Y, G203A, D205E, W208R and E209Q were 72, 70, 48, 31 and 29%, respectively. The pH-activity profiles indicated that the optimum pH for the mutants as well as for the wildtype enzyme was 8.0. E209Q exhibited a broader active pH range while D205E, G203A and F201Y resulted in a narrower active pH range. The pH range of activity reduced 1 unit for D205E, and 2 units for G203A and F201Y. The temperature-activity profiles showed that the optimum temperature for other mutants as well as wildtype enzyme was 60°C, but 50°C for G203A, which suggested that G203A resulted in a reduction of thermostability. The study indicated that the six active site residues involving in mutagenesis played an important part in WB7 chitinase. In addition, the catalytic mechanisms of the six active site residues in WB7 chitinase were discussed.  相似文献   

15.
The role of the active site hydrogen bond of cytochrome P-450cam has been studied utilizing a combination of site-directed mutagenesis and substrate analogues with altered hydrogen bonding capabilities. Cytochrome P-450cam normally catalyzes the regiospecific hydroxylation of the monoterpene camphor. The x-ray crystal structure of this soluble bacterial cytochrome P-450 (Poulos, T. L., Finzel, B. C., Gunsalus, I. C., Wagner, G. C., and Kraut, J. (1985) J. Biol. Chem. 260, 16122-16128) indicates a specific hydrogen bond between tyrosine 96 and the carbonyl moiety of the camphor substrate. The site-directed mutant in which tyrosine 96 has been changed to a phenylalanine and the substrate analogues thiocamphor and camphane have been used to probe this interaction in several aspects of catalysis. At room temperature, both the mutant enzyme with camphor and the wild type enzyme with thiocamphor bound result in 59 and 65% high-spin ferric enzyme as compared to the 95% high spin population obtained with native enzyme and camphor as substrate. The equilibrium dissociation constant is moderately increased, from 1.6 microM for the wild type protein to 3.0 and 3.3 microM for wild type-thiocamphor and mutant-camphor complexes, respectively. Camphane bound to cytochrome P-450cam exhibits a larger decrease in high spin fraction (45%) and a correspondingly larger KD (46 microM), suggesting that the carbonyl moiety of camphor plays an important steric role in addition to its interaction as a hydrogen bond acceptor. The absolute regioselectivity of the mutant enzyme, and of the wild type enzyme with thiocamphor, is lost resulting in production of several hydroxylated products in addition to the 5-exo-hydroxy isomer. Based on rates of NADH oxidation, comparison of the substrate specificity for these systems (kcat/KD) indicates a 5- and 7-fold decrease in specificity for the mutant enzyme and thiocamphor-wild type complex, respectively. The replacement of the cytochrome P-450cam active site tyrosine with phenylalanine does not affect the branching ratio of monooxygenase versus oxidase chemistry or peroxygenase activity (Atkins, W.M., and Sligar, S.G. (1987) J. Am. Chem. Soc. 109, 3754-3760).  相似文献   

16.
Chitinase is an enzyme used by insects to degrade the structural polysaccharide, chitin, during the molting process. Tryptophan 145 (W145) of Manduca sexta (tobacco hornworm) chitinase is a highly conserved residue found within a second conserved region of family 18 chitinases. It is located between aspartate 144 (D144) and glutamate 146 (E146), which are putative catalytic residues. The role of the active site residue, W145, in M. sexta chitinase catalysis was investigated by site-directed mutagenesis. W145 was mutated to phenylalanine (F), tyrosine (Y), isoleucine (I), histidine (H), and glycine (G). Wild-type and mutant forms of M. sexta chitinases were expressed in a baculovirus-insect cell line system. The chitinases secreted into the medium were purified and characterized by analyzing their catalytic activity and substrate or inhibitor binding properties. The wild-type chitinase was most active in the alkaline pH range. Several of the mutations resulted in a narrowing of the range of pH over which the enzyme hydrolyzed the polymeric substrate, CM-Chitin-RBV, predominantly on the alkaline side of the pH optimum curve. The range was reduced by about 1 pH unit for W145I and W145Y and by about 2 units for W145H and W145F. The W145G mutation was inactive. Therefore, the hydrophobicity of W145 appears to be critical for maintaining an abnormal pKa of a catalytic residue, which extends the activity further into the alkaline range. All of the mutant enzymes bound to chitin, suggesting that W145 was not essential for binding to chitin. However, the small difference in Km's of mutated enzymes compared to Km values of the wild-type chitinase towards both the oligomeric and polymeric substrates suggested that W145 is not essential for substrate binding but probably influences the ionization of a catalytically important group(s). The variations in kcat's among the mutated enzymes and the IC50 for the transition state inhibitor analog, allosamidin, indicate that W145 also influences formation of the transition state during catalysis.  相似文献   

17.
18.
We have used random sequence mutagenesis to generate mutants of DNA polymerase β in an effort to identify amino acid residues important for function, catalytic efficiency and fidelity of replication. A library containing 100 000 mutants at residues 274–278 in the N-helix of the thumb subdomain of the polymerase was constructed and screened for polymerase activity by genetic complementation. The genetic screen identified 4000 active pol β mutants, 146 of which were sequenced. Each of the five positions mutagenized tolerated substitutions, but residues G274 and F278 were only found substituted in combination with mutations at other positions. The least conserved residue, D276, was replaced by a variety of amino acids and, therefore, does not appear to be essential for function. Steady-state kinetic analysis, however, demonstrated that D276 may be important for catalytic efficiency. Mutant D276E exhibited a 25-fold increase in catalytic efficiency over the wild-type enzyme but also a 25-fold increase in G:T misincorporation efficiency. We present a structural model that can account for the observations and we discuss the implications of this study for the question of enzyme optimization by natural selection.  相似文献   

19.
An outbreak of serious mortality among the cultured groupers Epinephelus coioides, characterized by a swollen intestine containing yellow fluid, occurred in the summer of 1993 in Taiwan. A motile strain EmI82KL was isolated from the intestinal yellow fluid of the moribund groupers with tryptic soy agar supplemented with 2% NaCl and/or thiosulfate citrate bile salt sucrose agar. This strain was characterized and identified as Vibrio carchariae and was susceptible to chloramphenicol, doxycycline-HCl, nalidixic acid, oxolinic acid, oxytetracycline, and sulfonamide while resistant to ampicillin and penicillin G. In addition, the strain was neither auto-agglutinating nor hemagglutinating, but it was hemolytic against erythrocytes from sheep, rabbit, tilapia, and grouper. The bacteria could be reisolated from kidney, liver, and the transparent yellow fluid of swollen intestine of moribund groupers after bacterial challenge and re-identified as the same species. The LD50 value was 2.53 × 107 colony forming units/g grouper body weight. Received: 26 December 1996 / Accepted: 20 February 1997  相似文献   

20.
【背景】几丁质是自然界中储藏量仅次于纤维素的有机物,几丁质酶能降解几丁质生成几丁寡糖,实现废弃物的高值化利用,目前菌株产几丁质酶能力低限制了它的生产应用。【目的】克隆弧菌(Vibrio sp.)GR52的几丁质酶基因,实现其在大肠杆菌中的异源表达,对分离纯化的重组几丁质酶进行酶学性质研究。【方法】以弧菌GR52菌株基因组DNA为模板,克隆得到几丁质酶基因GR52-1,构建重组基因工程菌BL21(DE3)/p ET22b-chi GR52-1,诱导表达的产物通过Ni-NTA树脂纯化后进行酶学性质研究。【结果】重组酶的最适反应pH为6.0,在pH5.0-10.0范围内37°C保温1 h仍能保持85%以上的相对酶活力,具有较好的pH稳定性;最适反应温度为50°C,在45°C保温1 h其酶活力基本没有损失,在50°C保温1 h其残余酶活力仍达60%;在1 mmol/L浓度下,Cu~(2+)、Ca2+对该酶具有促进作用,Hg+对该酶具有明显的抑制作用;在5 mmol/L浓度下,Ni+对该酶具有一定的促进作用,Mn~(2+)、Co~(2+)、Li~+、Fe~(2+)、Hg~+、SDS(十二烷基硫酸钠)对该酶具有明显的抑制作用。以胶体几丁质为底物时,动力学参数Km、Vmax、kcat分别为0.85 mg/m L、0.19μmol/(m L·min)和7.02 s-1。底物特异性分析表明该重组酶能特异性降解几丁质。【结论】重组几丁质酶具有良好的酶学性质,为几丁质酶的开发应用奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号