首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The active site loop of triosephosphate isomerase (TIM) exhibits a hinged-lid motion, alternating between the two well defined "open" and "closed" conformations. Until now the closed conformation had only been observed in protein complexes with substrate analogues. Here, we present the first rabbit muscle apo TIM structure, refined to 1.5A resolution, in which the active site loop is either in the open or in the closed conformation in different subunits of the enzyme. In the closed conformation described here, the lid loop residues participate in stabilizing hydrogen bonds characteristic of holo TIM structures, whereas chemical interactions observed in the open loop conformation are similar to those found in the apo structures of TIM. In the closed conformation, a number of water molecules are observed at the projected ligand atom positions that are hydrogen bonded to the active site residues. Additives used during crystallization (DMSO and Tris molecules and magnesium atoms) were modeled in the electron density maps. However, no specific binding of these molecules is observed at, or close to, the active site and the lid loop. To further investigate this unusual closed conformation of the apo enzyme, two more rabbit muscle TIM structures, one in the same and another in a different crystal form, were determined. These structures present the open lid conformation only, indicating that the closed conformation cannot be explained by crystal contact effects. To rationalize why the active site loop is closed in the absence of ligand in one of the subunits, extensive comparison with previously solved TIM structures was carried out, supported by the bulk of available experimental information about enzyme kinetics and reaction mechanism of TIM. The observation of both open and closed lid conformations in TIM crystals might be related to a persistent conformational heterogeneity of this protein in solution.  相似文献   

2.
Crystal structures of the RNA-dependent RNA polymerase genotype 2a of hepatitis C virus (HCV) from two crystal forms have been determined. Similar to the three-dimensional structures of HCV polymerase genotype 1b and other known polymerases, the structures of the HCV polymerase genotype 2a in both crystal forms can be depicted in the classical right-hand arrangement with fingers, palm, and thumb domains. The main structural differences between the molecules in the two crystal forms lie at the interface of the fingers and thumb domains. The relative orientation of the thumb domain with respect to the fingers and palm domains and the beta-flap region is altered. Structural analysis reveals that the NS5B polymerase in crystal form I adopts a "closed" conformation that is believed to be the active form, whereas NS5B in crystal form II adopts an "open" conformation and is thus in the inactive form. In addition, we have determined the structures of two NS5B polymerase/non-nucleoside inhibitor complexes. Both inhibitors bind at a common binding site, which is nearly 35 A away from the polymerase active site and is located in the thumb domain. The binding pocket is predominantly hydrophobic in nature, and the enzyme inhibitor complexes are stabilized by hydrogen bonding and van der Waals interactions. Inhibitors can only be soaked in crystal form I and not in form II; examination of the enzyme-inhibitor complex reveals that the enzyme has undergone a dramatic conformational change from the form I (active) complex to the form II (inactive).  相似文献   

3.
Triosephosphate isomerase has an important loop near the active site which can exist in a "closed" and in an "open" conformation. Here we describe the structural properties of this "flexible" loop observed in two different structures of trypanosomal triosephosphate isomerase. Trypanosomal triosephosphate isomerase, crystallized in the presence of 2.4 M ammonium sulfate, packs as an asymmetric dimer of 54,000 Da in the crystallographic asymmetric unit. Due to different crystal contacts, peptide 167-180 (the flexible loop of subunit-1) is an open conformation, whereas in subunit-2, this peptide (residues 467-480) is in a closed conformation. In the closed conformation, a hydrogen bond exists between the tip of the loop and a well-defined sulfate ion which is bound to the active site of subunit-2. Such an active site sulfate is not present in subunit-1 due to crystal contacts. When the native (2.4 M ammonium sulfate) crystals are transferred to a sulfate-free mother liquor, the flexible loop of subunit-2 adopts the open conformation. From a closed starting model, this open conformation was discovered through molecular dynamics refinement without manual intervention, despite involving C alpha shifts of up to 7 A. The tip of the loop, residues 472, 473, 474, and 475, moves as a rigid body. Our analysis shows that in this crystal form the flexible loop of subunit-2 faces a solvent channel. Therefore the open and the closed conformations of this flexible loop are virtually unaffected by crystal contacts. The actual observed conformation depends only on the absence or presence of a suitable ligand in the active site.  相似文献   

4.
The structure of the maltodextrin or maltose-binding protein, an initial receptor for bacterial ABC-type active transport and chemotaxis, consists of two globular domains that are separated by a groove wherein the ligand is bound and enclosed by an inter-domain rotation. Here, we report the determination of the crystal structures of the protein complexed with reduced maltooligosaccharides (maltotriitol and maltotetraitol) in both the "closed" and "open" forms. Although these modified sugars bind to the receptor, they are not transported by the wild-type transporter. In the closed structures, the reduced sugars are buried in the groove and bound by both domains, one domain mainly by hydrogen-bonding interactions and the other domain primarily by non-polar interactions with aromatic side-chains. In the open structures, which abrogate both cellular activities of active transport and chemotaxis because of the large separation between the two domains, the sugars are bound almost exclusively to the domain rich in aromatic residues. The binding site for the open chain glucitol residue extends to a subsite that is distinct from those for the glucose residues that were uncovered in prior structural studies of the binding of active linear maltooligosaccharides. Occupation of this subsite may also account for the inability of the reduced oligosaccharides to be transported. The structures reported here, combined with those previously determined for several other complexes with active oligosaccharides in the closed form and with cyclodextrin in the open form, revealed at least four distinct modes of ligand binding but with only one being functionally active. This versatility reflects the flexibility of the protein, from very large motions of interdomain rotation to more localized side-chain conformational changes, and adaptation by the oligosaccharides as well.  相似文献   

5.
The structure of the RNA-dependent RNA polymerase (RdRP) from the rabbit hemorrhagic disease virus has been determined by x-ray crystallography to a 2.5-A resolution. The overall structure resembles a "right hand," as seen before in other polymerases, including the RdRPs of polio virus and hepatitis C virus. Two copies of the polymerase are present in the asymmetric unit of the crystal, revealing active and inactive conformations within the same crystal form. The fingers and palm domains form a relatively rigid unit, but the thumb domain can adopt either "closed" or "open" conformations differing by a rigid body rotation of approximately 8 degrees. Metal ions bind at different positions in the two conformations and suggest how structural changes may be important to enzymatic function in RdRPs. Comparisons between the structures of the alternate conformational states of rabbit hemorrhagic disease virus RdRP and the structures of RdRPs from hepatitis C virus and polio virus suggest novel structure-function relationships in this medically important class of enzymes.  相似文献   

6.
The crystal structures of the group II chaperonins consisting of the alpha subunit with amino acid substitutions of G65C and/or I125T from the hyperthermophilic archaeum Thermococcus strain KS-1 were determined. These mutants have been shown to be active in ATP hydrolysis but inactive in protein folding. The structures were shown to be double-ring hexadecamers in an extremely closed form, which was consistent with the crystal structure of native alpha8beta8-chaperonin from Thermoplasma acidophilum. Comparisons of the present structures with the atomic structures of the GroEL14-GroES7-(ADP)7 complex revealed that the deficiency in protein-folding activity with the G65C amino acid substitution is caused by the steric hindrance of the local conformational change in an equatorial domain. We concluded that this mutant chaperonin with G65C substitution is deprived of the smooth conformational change in the refolding-reaction cycle. We obtained a new form of crystal with a distinct space group at a lower concentration of sulfate ion in the presence of nucleotide. The crystal structure obtained at the lower concentration of sulfate ion tilts outward, and has much looser inter-subunit contacts compared with those in the presence of a higher concentration of sulfate ion. Such subunit rotation has never been characterized in group II chaperonins. The crystal structure obtained at the lower concentration of sulfate ion tilts outward, and has much looser inter-subunit contacts compared with those in the presence of a higher concentration of sulfate ion.  相似文献   

7.
The class A PBP1b from Streptococcus pneumoniae is responsible for glycosyltransferase and transpeptidase (TP) reactions, forming the peptidoglycan of the bacterial cell wall. The enzyme has been produced in a stable, soluble form and undergoes time-dependent proteolysis to leave an intact TP domain. Crystals of this TP domain were obtained, diffracting to 2.2 A resolution, and the structure was solved by using molecular replacement. Analysis of the structure revealed an "open" active site, with important conformational differences to the previously determined "closed" apoenzyme. The active-site nucleophile, Ser460, is in an orientation that allows for acylation by beta-lactams. Consistent with the productive conformation of the conserved active-site catalytic residues, adjacent loops show only minor deviation from those of known acyl-enzyme structures. These findings are discussed in the context of enzyme functionality and the possible conformational sampling of PBP1b between active and inactive states.  相似文献   

8.
Using sets of experimental distance restraints, which characterize active or inactive receptor conformations, and the X-ray crystal structure of the inactive form of bovine rhodopsin as a starting point, we have constructed models of both the active and inactive forms of rhodopsin and the beta2-adrenergic G-protein coupled receptors (GPCRs). The distance restraints were obtained from published data for site-directed crosslinking, engineered zinc binding, site-directed spin-labeling, IR spectroscopy, and cysteine accessibility studies conducted on class A GPCRs. Molecular dynamics simulations in the presence of either "active" or "inactive" restraints were used to generate two distinguishable receptor models. The process for generating the inactive and active models was validated by the hit rates, yields, and enrichment factors determined for the selection of antagonists in the inactive model and for the selection of agonists in the active model from a set of nonadrenergic GPCR drug-like ligands in a virtual screen using ligand docking software. The simulation results provide new insights into the relationships observed between selected biochemical data, the crystal structure of rhodopsin, and the structural rearrangements that occur during activation.  相似文献   

9.
Glycine N-methyltransferase (S-adenosyl-l-methionine: glycine methyltransferase, EC 2.1.1.20; GNMT) catalyzes the AdoMet-dependent methylation of glycine to form sarcosine (N-methylglycine). Unlike most methyltransferases, GNMT is a tetrameric protein showing a positive cooperativity in AdoMet binding and weak inhibition by S-adenosylhomocysteine (AdoHcy). The first crystal structure of GNMT complexed with AdoMet showed a unique "closed" molecular basket structure, in which the N-terminal section penetrates and corks the entrance of the adjacent subunit. Thus, the apparent entrance or exit of the active site is not recognizable in the subunit structure, suggesting that the enzyme must possess a second, enzymatically active, "open" structural conformation. A new crystalline form of the R175K enzyme has been grown in the presence of an excess of AdoHcy, and its crystal structure has been determined at 3.0 A resolution. In this structure, the N-terminal domain (40 amino acid residues) of each subunit has moved out of the active site of the adjacent subunit, and the entrances of the active sites are now opened widely. An AdoHcy molecule has entered the site occupied in the "closed" structure by Glu15 and Gly16 of the N-terminal domain of the adjacent subunit. An AdoHcy binds to the consensus AdoMet binding site observed in the other methyltransferase. This AdoHcy binding site supports the glycine binding site (Arg175) deduced from a chemical modification study and site-directed mutagenesis (R175K). The crystal structures of WT and R175K enzymes were also determined at 2.5 A resolution. These enzyme structures have a closed molecular basket structure and are isomorphous to the previously determined AdoMet-GNMT structure. By comparing the open structure to the closed structure, mechanisms for auto-inhibition and for the forced release of the product AdoHcy have been revealed in the GNMT structure. The N-terminal section of the adjacent subunit occupies the AdoMet binding site and thus inhibits the methyltransfer reaction, whereas the same N-terminal section forces the departure of the potentially potent inhibitor AdoHcy from the active site and thus facilitates the methyltransfer reaction. Consequently GNMT is less active at a low level of AdoMet concentration, and is only weakly inhibited by AdoHcy. These properties of GNMT are particularly suited for regulation of the cellular AdoMet/AdoHcy ratio.  相似文献   

10.
The fatty acid elongation system FAS-II is involved in the biosynthesis of mycolic acids, which are major and specific long-chain fatty acids of the cell envelope of Mycobacterium tuberculosis and other mycobacteria, including Mycobacterium smegmatis. The protein MabA, also named FabG1, has been shown recently to be part of FAS-II and to catalyse the NADPH-specific reduction of long chain beta-ketoacyl derivatives. This activity corresponds to the second step of an FAS-II elongation round. FAS-II is inhibited by the antituberculous drug isoniazid through the inhibition of the 2-trans-enoyl-acyl carrier protein reductase InhA. Thus, the other enzymes making up this enzymatic complex represent potential targets for designing new antituberculous drugs. The crystal structure of the apo-form MabA was solved to 2.03 A resolution by molecular replacement. MabA is tetrameric and shares the conserved fold of the short-chain dehydrogenases/reductases (SDRs). However, it exhibits some significant local rearrangements of the active-site loops in the absence of a cofactor, particularly the beta5-alpha5 region carrying the unique tryptophan residue, in agreement with previous fluorescence spectroscopy data. A similar conformation has been observed in the beta-ketoacyl reductase from Escherichia coli and the distantly related dehydratase. The distinctive enzymatic and structural properties of MabA are discussed in view of its crystal structure and that of related enzymes.  相似文献   

11.
McKee TD  Lewis MR  Kono M 《Biochemistry》2007,46(43):12248-12252
The crystal structures of rhodopsin depict the inactive conformation of rhodopsin in the dark. The 11-cis retinoid chromophore, the inverse agonist holding rhodopsin inactive, is well-resolved. Thr118 in helix 3 is the closest amino acid residue next to the 9-methyl group of the chromophore. The 9-methyl group of retinal facilitates the transition from an inactive metarhodopsin I to the active metarhodopsin II intermediate. In this study, a site-specific mutation of Thr118 to the bulkier Trp was made with the idea to induce an active conformation of the protein. The data indicate that such a mutation does indeed result in an active protein that depends on the presence of the ligand, specifically the 9-methyl group. As a result of this mutation, 11-cis retinal has been converted to an agonist. The apoprotein form of this mutant is no more active than the wild-type apoprotein. However, unlike wild-type rhodopsin, the covalent linkage of the ligand can be attacked by hydroxylamine in the dark. The combination of the Thr118Trp mutation and the 9-methyl group of the chromophore behaves as a "steric doorstop" holding the protein in an open and active conformation.  相似文献   

12.
c-Src was the first proto-oncoprotein to be identified, and has become the focus of many drug discovery programs. Src structures of a major inactive form have shown how the protein kinase is rigidified by several interdomain interactions; active configurations of Src are generated by release from this "assembled" or "bundled" form. Despite the importance of Src as a drug target, there is relatively little structural information available regarding the presumably more flexible active forms. Here we report three crystal structures of a dimeric active c-Src kinase domain, in an apo and two ligand complexed forms, with resolutions ranging from 2.9A to 1.95A. The structures show how the kinase domain, in the absence of the rigidifying interdomain interactions of the inactivation state, adopts a more open and flexible conformation. The ATP site inhibitor CGP77675 binds to the protein kinase with canonical hinge hydrogen bonds and also to the c-Src specific threonine 340. In contrast to purvalanol B binding in CDK2, purvalanol A binds in c-Src with a conformational change in a more open ATP pocket.  相似文献   

13.
Enolase is a dimeric enzyme that catalyzes the interconversion of 2-phospho-D-glycerate and phosphoenolpyruvate. This reversible dehydration is effected by general acid-base catalysis that involves, principally, Lys345 and Glu211 (numbering system of enolase 1 from yeast). The crystal structure of the inactive E211Q enolase shows that the protein is properly folded. However, K345 variants have, thus far, failed to crystallize. This problem was solved by crystallization of an engineered heterodimer of enolase. The heterodimer was composed of an inactive subunit that has a K345A mutation and an active subunit that has N80D and N126D surface mutations to facilitate ion-exchange chromatographic separation of the three dimeric species. The structure of this heterodimeric variant, in complex with substrate/product, was obtained at 1.85 A resolution. The structure was compared to a new structure of wild-type enolase obtained from crystals belonging to the same space group. Asymmetric dimers having one subunit exhibiting two of the three active site loops in an open conformation and the other in a conformation having all three loops closed appear in both structures. The K345A subunit of the heterodimer is in the loop-closed conformation; its Calpha carbon atoms closely match those of the corresponding subunit of wild-type enolase (root-mean-squared deviation of 0.23 A). The kcat and kcat/Km values of the heterodimer are approximately half those of the N80D/N126D homodimer, which suggests that the subunits in solution are kinetically independent. A comparison of enolase structures obtained from crystals belonging to different space groups suggests that asymmetric dimers can be a consequence of the asymmetric positioning of the subunits within the crystal lattice.  相似文献   

14.
Acylaminoacyl peptidase from Aeropyrum pernix is a homodimer that belongs to the prolyl oligopeptidase family. The monomer subunit is composed of one hydrolase and one propeller domain. Previous crystal structure determinations revealed that the propeller domain obstructed the access of substrate to the active site of both subunits. Here we investigated the structure and the kinetics of two mutant enzymes in which the aspartic acid of the catalytic triad was changed to alanine or asparagine. Using different substrates, we have determined the pH dependence of specificity rate constants, the rate-limiting step of catalysis, and the binding of substrates and inhibitors. The catalysis considerably depended both on the kind of mutation and on the nature of the substrate. The results were interpreted in terms of alterations in the position of the catalytic histidine side chain as demonstrated with crystal structure determination of the native and two mutant structures (D524N and D524A). Unexpectedly, in the homodimeric structures, only one subunit displayed the closed form of the enzyme. The other subunit exhibited an open gate to the catalytic site, thus revealing the structural basis that controls the oligopeptidase activity. The open form of the native enzyme displayed the catalytic triad in a distorted, inactive state. The mutations affected the closed, active form of the enzyme, disrupting its catalytic triad. We concluded that the two forms are at equilibrium and the substrates bind by the conformational selection mechanism.  相似文献   

15.
Rehse PH  Kumei M  Tahirov TH 《Proteins》2005,61(4):1032-1037
The X-ray crystallographic structure of a thioredoxin from Thermus thermophilus was solved to 1.8 A resolution by molecular replacement. The crystals' space group was C2 with cell dimensions of a = 40.91, b = 95.44, c = 56.68 A, beta =91.41 degrees, with two molecules in the asymmetric unit. Unlike the reported thioredoxin structures, the biological unit of T. thermophilus thioredoxin is a dimer both in solution and in the crystal. The fold conforms to the "thioredoxin fold" that is common over a class of nine protein families including thioredoxin; however, the folded portion of this protein is much more compact than other thioredoxins previously solved by X-ray crystallography being reduced by one alpha-helix and one beta-strand. As with other thioredoxins, the active site is highly conserved even though the variation in sequence can be quite large. The T. thermophilus thioredoxin has some variability at the active site, especially compared with previously solved structures from bacterial sources.  相似文献   

16.
The crystal structure of the tetrameric alpha2beta2 acetyl-coenzyme A synthase/carbon monoxide dehydrogenase from Moorella thermoacetica has been solved at 1.9 A resolution. Surprisingly, the two alpha subunits display different (open and closed) conformations. Furthermore, X-ray data collected from crystals near the absorption edges of several metal ions indicate that the closed form contains one Zn and one Ni at its active site metal cluster (A-cluster) in the alpha subunit, whereas the open form has two Ni ions at the corresponding positions. Alternative metal contents at the active site have been observed in a recent structure of the same protein in which A-clusters contained one Cu and one Ni, and in reconstitution studies of a recombinant apo form of a related acetyl-CoA synthase. On the basis of our observations along with previously reported data, we postulate that only the A-clusters containing two Ni ions are catalytically active.  相似文献   

17.
Aristolochene synthase from Aspergillus terreus catalyzes the cyclization of the universal sesquiterpene precursor, farnesyl diphosphate, to form the bicyclic hydrocarbon aristolochene. The 2.2 A resolution X-ray crystal structure of aristolochene synthase reveals a tetrameric quaternary structure in which each subunit adopts the alpha-helical class I terpene synthase fold with the active site in the "open", solvent-exposed conformation. Intriguingly, the 2.15 A resolution crystal structure of the complex with Mg2+3-pyrophosphate reveals ligand binding only to tetramer subunit D, which is stabilized in the "closed" conformation required for catalysis. Tetramer assembly may hinder conformational changes required for the transition from the inactive open conformation to the active closed conformation, thereby accounting for the attenuation of catalytic activity with an increase in enzyme concentration. In both conformations, but especially in the closed conformation, the active site contour is highly complementary in shape to that of aristolochene, and a catalytic function is proposed for the pyrophosphate anion based on its orientation with regard to the presumed binding mode of aristolochene. A similar active site contour is conserved in aristolochene synthase from Penicillium roqueforti despite the substantial divergent evolution of these two enzymes, while strikingly different active site contours are found in the sesquiterpene cyclases 5-epi-aristolochene synthase and trichodiene synthase. Thus, the terpenoid cyclase active site plays a critical role as a template in binding the flexible polyisoprenoid substrate in the proper conformation for catalysis. Across the greater family of terpenoid cyclases, this template is highly evolvable within a conserved alpha-helical fold for the synthesis of terpene natural products of diverse structure and stereochemistry.  相似文献   

18.
Mechanosensitive channels must make a large conformational change during the transition from the closed to the open state. The crystal structure of the open form of the Escherichia coli MscS channel was recently solved and depicts a homoheptamer (1). In this study, cross-linking of site-specific cysteine substitutions demonstrates that residues up to 10-33 A apart in the crystal structure readily form disulfide bridges in the closed form and can also be cross-linked by a 10-A linker. Cross-linking between adjacent subunits stabilizes the heptameric form of the channel providing biochemical evidence to support the crystal structure. The data are consistent with the published model (1) in that the membrane domain is highly flexible and that the closed to open transition may involve a significant displacement of transmembrane helices 1 and 2, possibly by as much as 30 A. The data are also consistent with significant flexibility of the cytoplasmic domain.  相似文献   

19.
Structural studies of the streptavidin binding loop.   总被引:7,自引:5,他引:2       下载免费PDF全文
The streptavidin-biotin complex provides the basis for many important biotechnological applications and is an interesting model system for studying high-affinity protein-ligand interactions. We report here crystallographic studies elucidating the conformation of the flexible binding loop of streptavidin (residues 45 to 52) in the unbound and bound forms. The crystal structures of unbound streptavidin have been determined in two monoclinic crystal forms. The binding loop generally adopts an open conformation in the unbound species. In one subunit of one crystal form, the flexible loop adopts the closed conformation and an analysis of packing interactions suggests that protein-protein contacts stabilize the closed loop conformation. In the other crystal form all loops adopt an open conformation. Co-crystallization of streptavidin and biotin resulted in two additional, different crystal forms, with ligand bound in all four binding sites of the first crystal form and biotin bound in only two subunits in a second. The major change associated with binding of biotin is the closure of the surface loop incorporating residues 45 to 52. Residues 49 to 52 display a 3(10) helical conformation in unbound subunits of our structures as opposed to the disordered loops observed in other structure determinations of streptavidin. In addition, the open conformation is stabilized by a beta-sheet hydrogen bond between residues 45 and 52, which cannot occur in the closed conformation. The 3(10) helix is observed in nearly all unbound subunits of both the co-crystallized and ligand-free structures. An analysis of the temperature factors of the binding loop regions suggests that the mobility of the closed loops in the complexed structures is lower than in the open loops of the ligand-free structures. The two biotin bound subunits in the tetramer found in the MONO-b1 crystal form are those that contribute Trp 120 across their respective binding pockets, suggesting a structural link between these binding sites in the tetramer. However, there are no obvious signatures of binding site communication observed upon ligand binding, such as quaternary structure changes or shifts in the region of Trp 120. These studies demonstrate that while crystallographic packing interactions can stabilize both the open and closed forms of the flexible loop, in their absence the loop is open in the unbound state and closed in the presence of biotin. If present in solution, the helical structure in the open loop conformation could moderate the entropic penalty associated with biotin binding by contributing an order-to-disorder component to the loop closure.  相似文献   

20.
Two conformational states of Candida rugosa lipase.   总被引:5,自引:4,他引:1       下载免费PDF全文
The structure of Candida rugosa lipase in a new crystal form has been determined and refined at 2.1 A resolution. The lipase molecule was found in an inactive conformation, with the active site shielded from the solvent by a part of the polypeptide chain-the flap. Comparison of this structure with the previously determined "open" form of this lipase, in which the active site is accessible to the solvent and presumably the substrate, shows that the transition between these 2 states requires only movement of the flap. The backbone NH groups forming the putative oxyanion hole do not change position during this rearrangement, indicating that this feature is preformed in the inactive state. The 2 lipase conformations probably correspond to states at opposite ends of the pathway of interfacial activation. Quantitative analysis indicates a large increase of the hydrophobic surface in the vicinity of the active site. The flap undergoes a flexible rearrangement during which some of its secondary structure refolds. The interactions of the flap with the rest of the protein change from mostly hydrophobic in the inactive form to largely hydrophilic in the "open" conformation. Although the flap movement cannot be described as a rigid body motion, it has very definite hinge points at Glu 66 and at Pro 92. The rearrangement is accompanied by a cis-trans isomerization of this proline, which likely increases the energy required for the transition between the 2 states, and may play a role in the stabilization of the active conformation at the water/lipid interface. Carbohydrate attached at Asn 351 also provides stabilization for the open conformation of the flap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号