首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conformational states of two peptide sequences that bind to staphylococcal enterotoxin B are sampled by replica exchange molecular dynamic (REMD) simulations in explicit water. REMD simulations were treated with 52 replicas in the range of 280–501 K for both peptides. The conformational ensembles of both peptides are dominated by random coil, bend and turn structures with a small amount of helical structures for each temperature. In addition, while an insignificant presence of β-bridge structures were observed for both peptides, the β-sheet structure was observed only for peptide 3. The results obtained from simulations at 300 K are consistent with the experimental results obtained from circular dichroism spectroscopy. From the analysis of REMD results, we also calculated hydrophobic and hydrophilic solvent accessible surface areas for both peptides, and it was observed that the hydrophobic segments of the peptides tend to form bend or turn structures. Moreover, the free-energy landscapes of both peptides were obtained by principal component analysis to understand how the secondary structural properties change according to their complex space. From the free-energy analysis, we have found several minima for both peptides at decreased temperature. For these obvious minima of both peptides, it was observed that the random coil, bend and turn structures are still dominant and the helix, β-bridge or β-sheet structures can appear or disappear with respect to minima. On the other hand, when we compare the results of REMD with conventional MD simulations for these peptides, the configurations of peptide 3 might be trapped in energy minima during the conventional MD simulations. Hence, it can be said that the REMD simulations have provided a sufficiently high sampling efficiency.  相似文献   

2.
Nguyen PH  Stock G  Mittag E  Hu CK  Li MS 《Proteins》2005,61(4):795-808
The free energy landscape and the folding mechanism of the C-terminal beta-hairpin of protein G is studied by extensive replica exchange molecular dynamics simulations (40 replicas and 340 ns total simulation time), using the GROMOS96 force field and the SPC explicit water solvent. The study reveals that the system preferentially adopts a beta-hairpin structure at biologically important temperatures, and that the helix content is low at all temperatures studied. Representing the free energy landscape as a function of several types of reaction coordinates, four local minima corresponding to the folded, partially folded, molten globule, and unfolded states are identified. The findings suggest that the folding of the beta-hairpin occurs as the sequence: collapse of hydrophobic core --> formation of H-bond --> formation of the turn. Identifying the folded and molten globule states as the main conformations, the free energy landscape of the beta-hairpin is consistent with a two-state behavior with a broad transition state. The temperature dependence of the folding-unfolding transition is investigated in some detail. The enthalpy and entropy jumps at the folding transition temperature are found to be about three times lower than the experimental estimates, indicating that the folding-unfolding transition in silico is less cooperative than its in vitro counterpart.  相似文献   

3.
WW domain proteins are usually regarded as simple models for understanding the folding mechanism of β-sheet. CC45 is an artificial protein that is capable of folding into the same structure as WW domain. In this article, the replica exchange molecular dynamics simulations are performed to investigate the folding mechanism of CC45. The analysis of thermal stability shows that β-hairpin 1 is more stable than β-hairpin 2 during the unfolding process. Free energy analysis shows that the unfolding of this protein substantially proceeds through solvating the smaller β-hairpin 2, followed by the unfolding of β-hairpin 1. We further propose the unfolding process of CC45 and the folding mechanism of two β-hairpins. These results are similar to the previous folding studies of formin binding protein 28 (FBP28). Compared with FBP28, it is found that CC45 has more aromatic residues in N-terminal loop, and these residues contact with C-terminal loop to form the outer hydrophobic core, which increases the stability of CC45. Knowledge about the stability and folding behaviour of CC45 may help in understanding the folding mechanisms of the β-sheet and in designing new WW domains.  相似文献   

4.
The interaction of ZnO nanoparticles with biological molecules such as proteins is one of the most important and challenging problems in molecular biology. Molecular dynamics (MD) simulations are useful technique for understating the mechanism of various interactions of proteins and nanoparticles. In the present work, the interaction mechanism of insulin with ZnO nanoparticles was studied. Simulation methods including MD and replica exchange molecular dynamics (REMD) and their conditions were surveyed. According to the results obtained by REMD simulation, it was found that insulin interacts with ZnO nanoparticle surface via its polar and charged amino acids. Unfolding insulin at ZnO nanoparticle surface, the terminal parts of its chains play the main role. Due to the linkage between chain of insulin and chain of disulfide bonds, opposite directional movements of N terminal part of chain A (toward nanoparticle surface) and N termini of chain B (toward solution) make insulin unfolding. In unfolding of insulin at this condition, its helix structures convert to random coils at terminal parts chains.  相似文献   

5.
Kannan S  Zacharias M 《Proteins》2007,66(3):697-706
During replica exchange molecular dynamics (RexMD) simulations, several replicas of a system are simulated at different temperatures in parallel allowing for exchange between replicas at frequent intervals. This technique allows significantly improved sampling of conformational space and is increasingly being used for structure prediction of peptides and proteins. A drawback of the standard temperature RexMD is the rapid increase of the replica number with increasing system size to cover a desired temperature range. In an effort to limit the number of replicas, a new Hamiltonian-RexMD method has been developed that is specifically designed to enhance the sampling of peptide and protein conformations by applying various levels of a backbone biasing potential for each replica run. The biasing potential lowers the barrier for backbone dihedral transitions and promotes enhanced peptide backbone transitions along the replica coordinate. The application on several peptide cases including in all cases explicit solvent indicates significantly improved conformational sampling when compared with standard MD simulations. This was achieved with a very modest number of 5-7 replicas for each simulation system making it ideally suited for peptide and protein folding simulations as well as refinement of protein model structures in the presence of explicit solvent.  相似文献   

6.
Jang S  Kim E  Pak Y 《Proteins》2006,62(3):663-671
Designed miniproteins with a betabetaalpha motif, such as BBA5, 1FSD, and 1PSV can serve as a benchmark set to test the validity of all-atom force fields with computer simulation, because they contain all the basic structural elements in protein folding. Unfortunately, it was found that the standard all-atom force fields with the generalized Born (GB) implicit solvation model tend to produce distorted free energy surfaces for the betabetaalpha proteins, not only because energetically those proteins need to be described by more balanced weights of the alpha- and beta-strands, but also because the GB implicit solvation model suffers from overestimated salt bridge effects. In an attempt to resolve these problems, we have modified one of the standard all-atom force fields in conjunction with the GB model, such that each native state of the betabetaalpha proteins is in its free energy minimum state with reasonable energy barriers separating local minima. With this modified energy model, the free energy contour map in each protein was constructed from the replica exchange molecular dynamics REMD simulation. The resulting free energy surfaces are significantly improved in comparison with previous simulation results and consistent with general views on small protein folding behaviors with realistic topology and energetics of all three proteins.  相似文献   

7.
Replica exchange molecular dynamics (MD) simulations of Met-enkephalin in explicit solvent reveal helical and nonhelical structures. Four predominant structures of Met-enkephalin are sampled with comparable probabilities (two helical and two nonhelical). The energy barriers between these configurations are low, suggesting that Met-enkephalin switches easily between configurations. This is consistent with the requirement that Met-enkephalin be sufficiently flexible to bind to several different receptors. Replica exchange simulations of 32 ns are shown to sample approximately five times more configurational space than constant temperature MD simulations of the same duration. The energy landscape for the replica exchange simulation is presented. A detailed study of replica trajectories demonstrates that the significant increases in temperature provided by the replica exchange technique enable transitions from nonhelical to helical structures that would otherwise be prevented by kinetic trapping. Met-enkephalin (Type Entrez Proteins; Value A61445; Service Entrez Proteins).  相似文献   

8.
In this work we report the study of a peptide, the Contryphan Vn produced by Conus ventricosus, a vermivorous cone snail living in the temperate Mediterranean sea. This cyclic peptide of nine residues is a ring closed by a Cys-Cys (Cys: cysteine) disulfide bond containing two proline (Pro) residues and two tryptophans (Trp), one of them being a D-Trp. We present a statistical mechanical characterization of the peptide, simulated in water for about 200 ns with classical molecular dynamics (MD). In recent years there has been a growing interest in the study of the mechanics and dynamics of biological molecules, and in particular for proteins and peptides, about the relationship between collective motions and the active conformations which exert the biological function. To this aim we used the essential dynamics analysis on the MD trajectory and extracted, from the total fluctuations of the molecule, the dominant dynamical modes responsible of the principal conformational transitions. The Contryphan Vn small size allowed us to investigate in details the all-atoms dynamics and the corresponding thermodynamics in conformational space defined by the most significant intramolecular motions.  相似文献   

9.
Li W  Zhang J  Wang W 《Proteins》2007,67(2):338-349
Full sequence design protein FSD-1 is a designed protein based on the motif of zinc finger protein. In this work, its folding mechanism and thermal stability are investigated using the replica exchange molecular dynamics model with the water molecules being treated explicitly. The results show that the folding of the FSD-1 is initiated by the hydrophobic collapse, which is accompanied with the formation of the C-terminal alpha-helix. Then the folding proceeds with the formation of the beta-hairpin and the further package of the hydrophobic core. Compared with the beta-hairpin, the alpha-helix has much higher stability. It is also found that the N-capping motif adopted by the FSD-1 contributes to the stability of the alpha-helix dramatically. The hydrophobic contacts made by the side chain of Tyr3 in the native state are essential for the stabilization of the beta-hairpin. It is also found that the folding of the N-terminal beta-hairpin and the C-terminal alpha-helix exhibits weak cooperativity, which is consistent with the experimental data. Meanwhile, the folding pathway is compared between the FSD-1 and the target zinc finger peptide, and the possible role of the zinc ion on the folding pathway of zinc finger is proposed. Proteins 2007. (c) 2007 Wiley-Liss, Inc.  相似文献   

10.
Zhang J  Li W  Wang J  Qin M  Wang W 《Proteins》2008,72(3):1038-1047
Downhill folding is one of the most important predictions of energy landscape theory. Recently, the Escherichia coli 2-oxoglutarate dehydrogenase PSBD was described as a first example of global downhill folding (Garcia-Mira et al., Science 2002;298:2191), classification that has been later subject of significant controversy. To help resolve this problem, by using intensive all-atom simulation with explicit water model and the replica exchange method, we sample the phase space of protein BBL and depict the free energy landscape. We give an estimate of the free energy barrier height of 1-2 k(B)T, dependent on the way the energy landscape is projected. We also study the conformational distribution of the transition region and find that the three helices generally take the similar positions as that in the native states whereas their spatial orientations show large variability. We further detect the inconsistency between different signals by individually fitting the thermal denaturation curves of five structural features using two-state model, which gives a wide spread melting temperature of 19 K. All of these features are consistent with a picture of folding with very low cooperativities. Compared with the experimental data (Sadqi et al., Nature 2006; 442:317), our results indicate that the Naf-BBL (pH5.3) may have an even lower barrier height and cooperativity.  相似文献   

11.
12.
We have investigated energy landscape of human lysozyme in its native state by using principal component analysis and a model, jumping-among-minima (JAM) model. These analyses are applied to 1 nsec molecular dynamics trajectory of the protein in water. An assumption embodied in the JAM model allows us to divide protein motions into intra-substate and inter-substate motions. By examining intra-substate motions, it is shown that energy surfaces of individual conformational substates are nearly harmonic and mutually similar. As a result of principal component analysis and JAM model analysis, protein motions are shown to consist of three types of collective modes, multiply hierarchical modes, singly hierarchical modes, and harmonic modes. Multiply hierarchical modes, the number of which accounts only for 0.5% of all modes, dominate contributions to total mean-square atomic fluctuation. Inter-substate motions are observed only in a small-dimensional subspace spanned by the axes of multiplyhierarchical and singly hierarchical modes. Inter-substate motions have two notable time components: faster component seen within 200 psec and slower component. The former involves transitions among the conformational substates of the low-level hierarchy, whereas the latter involves transitions of the higher level substates observed along the first four multiply hierarchical modes. We also discuss dependence of the subspace, which contains conformational substates, on time duration of simulation. Proteins 33:496–517, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Nymeyer H  Woolf TB  Garcia AE 《Proteins》2005,59(4):783-790
We implement the replica exchange molecular dynamics algorithm to study the interactions of a model peptide (WALP-16) with an explicitly represented DPPC membrane bilayer. We observe the spontaneous, unbiased insertion of WALP-16 into the DPPC bilayer and its folding into an alpha-helix with a transbilayer orientation. The free energy surface suggests that the insertion of the peptide into the DPPC bilayer precedes secondary structure formation. Although the peptide has some propensity to form a partially helical structure in the interfacial region of the DPPC/water system, this state is not a productive intermediate but rather an off-pathway trap for WALP-16 insertion. Equilibrium simulations show that the observed insertion/folding pathway mirrors the potential of mean force (PMF). Calculation of the enthalpic and entropic contributions to this PMF show that the surface bound conformation of WALP-16 is significantly lower in energy than other conformations, and that the insertion of WALP-16 into the bilayer without regular secondary structure is enthalpically unfavorable by 5-10 kcal/mol/residue. The observed insertion/folding pathway disagrees with the dominant conceptual model, which is that a surface-bound helix is an obligatory intermediate for the insertion of alpha-helical peptides into lipid bilayers. In our simulations, the observed insertion/folding pathway is favored because of a large (>100 kcal/mol) increase in system entropy that occurs when the unstructured WALP-16 peptide enters the lipid bilayer interior. The insertion/folding pathway that is lowest in free energy depends sensitively on the near cancellation of large enthalpic and entropic terms. This suggests the possibility that intrinsic membrane peptides may have a diversity of insertion/folding behaviors depending on the exact system of peptide and lipid under consideration.  相似文献   

14.
Structure of the 21-30 fragment of amyloid beta-protein   总被引:1,自引:0,他引:1  
Folding and self-assembly of the 42-residue amyloid beta-protein (Abeta) are linked to Alzheimer's disease (AD). The 21-30 region of Abeta, Abeta(21-30), is resistant to proteolysis and is believed to nucleate the folding of full-length Abeta. The conformational space accessible to the Abeta(21-30) peptide is investigated by using replica exchange molecular dynamics simulations in explicit solvent. Conformations belonging to the global free energy minimum (the "native" state) from simulation are in good agreement with reported NMR structures. These conformations possess a bend motif spanning the central residues V24-K28. This bend is stabilized by a network of hydrogen bonds involving the side chain of residue D23 and the amide hydrogens of adjacent residues G25, S26, N27, and K28, as well as by a salt bridge formed between side chains of K28 and E22. The non-native states of this peptide are compact and retain a native-like bend topology. The persistence of structure in the denatured state may account for the resistance of this peptide to protease degradation and aggregation, even at elevated temperatures.  相似文献   

15.
The chromatin modification is regulated by the histone acetyltransferase (HAT) and histone deacetyltransferase (HDAC) enzymes; abnormal function of these enzymes leads to several malignant diseases. The inhibition of these enzymes using natural ligand molecules is an emerging technique to cure these diseases. The in vitro analysis of natural molecules, venenatine, spinosine, palmatine and taxodione are giving the best inhibition rate against p300 HAT enzyme. However, the detailed understanding of binding and the stability of these molecules with p300 HAT is not yet known. The aim of the present study is focused to determine the binding strength of the molecules from molecular dynamics simulation analysis. The docking analysis confirms that, the venenatine (−6.97 kcal/mol - conformer 8), spinosine (−6.52 kcal/mol conformer −10), palmatine (−5.72 kcal/mol conformer-3) and taxodione (−4.99 kcal/mol conformer-4) molecules form strong hydrogen bonding interactions with the key amino acid residues (Arg1410, Thr1411 and Trp1466) present in the active site of p300. In the molecular dynamics (MD) simulation, the spinosine retain these key interactions with the active site amino acid residues (Arg1410, Thr1411, and Trp1466) than venenatine and are stable throughout the simulation. The RMSD value of spinosine (0.5 to 1.3 Å) and venenatine (0.3 to 1.3 Å) are almost equal during the MD simulation. However, during the MD simulation, the intermolecular interaction between venenatine and the active site amino acid residues (Arg1410, Thr1411, and Trp1466) decreased on comparing with the spinosine-p300 interaction. The binding free energy of the spinosine (−15.30 kcal/mol) is relatively higher than the venenatine (−11.8 kcal/mol); this increment is attributed to the strong hydrogen bonding interactions of spinosine molecule with the active site amino acid residues of p300.  相似文献   

16.
The conformational transition states of a beta-hairpin peptide in explicit water were identified from the free energy landscapes obtained from the multicanonical ensemble, using an enhanced conformational sampling calculation. The beta-hairpin conformations were significant at 300 K in the landscape, and the typical nuclear Overhauser effect signals were reproduced, consistent with the previously reported experiment. In contrast, the disordered conformations were predominant at higher temperatures. Among the stable conformations at 300 K, there were several free energy barriers, which were not visible in the landscapes formed with the conventional parameters. We identified the transition states around the saddle points along the putative folding and unfolding paths between the beta-hairpin and the disordered conformations in the landscape. The characteristic features of these transition states are the predominant hydrophobic contacts and the several hydrogen bonds among the side-chains, as well as some of the backbone hydrogen bonds. The unfolding simulations at high temperatures, 400 K and 500 K, and their principal component analyses also provided estimates for the transition state conformations, which agreed well with those at 400 K and 500 K deduced from the current free energy landscapes at 400 K and 500 K, respectively. However, the transition states at high temperatures were much more widely distributed on the landscape than those at 300 K, and their conformations were different.  相似文献   

17.
Because of its unusual spectroscopic properties, green fluorescent protein (GFP) has become a useful tool in molecular genetics, biochemistry and cell biology. Here, we computationally characterize the behavior of two GFP constructs, designed as bioprobes for enzymatic triggering using intramolecular fluorescence resonance energy transfer (FRET). These constructs differ in the location of an intramolecular FRET partner, an attached chemical chromophore (either near an N-terminal or C-terminal site). We apply the temperature replica exchange molecular dynamics method to the two flexible constructs in conjunction with a generalized Born implicit solvent model. The calculated rate of FRET was derived from the interchromophore distance, R, and orientational factor, kappa(2). In agreement with experiment, the construct with the C-terminally attached dye was predicted to have higher energy transfer rate than observed for the N-terminal construct. The molecular basis for this observation is discussed. In addition, we find that the orientational factor, kappa(2), deviates from the commonly assumed value, the implications of which are also considered.  相似文献   

18.
Ramya L  Gautham N 《Biopolymers》2012,97(3):165-176
We report here a comparative study of the molecular conformational energy landscape generated using the mutually orthogonal Latin squares (MOLS) method, molecular dynamics (MD), and Monte Carlo (MC) simulation. The MOLS method, as described earlier from our laboratory, uses an experimental design technique to rapidly and exhaustively sample the low energy conformations of a molecule. MD and MC simulations have been used to perform similar tasks. In the comparison reported here, the three methods were applied to a pair of neuropeptides, namely Met- and Leu-enkephalin. A set of 1500 conformations of these enkephalins were generated using these methods with CHARMM22 force field, and the resulting samples were analyzed to determine the extent and nature of coverage of the conformational space. The results indicate that the MOLS method samples a larger number of possible conformations and identifies conformations closer to the experimental structures than the MD and MC simulations.  相似文献   

19.
Endothelial protein C receptor (EPCR) is a CD1‐like transmembrane glycoprotein with important regulatory roles in protein C (PC) pathway, enhancing PC's anticoagulant, anti‐inflammatory, and antiapoptotic activities. Similarly to homologous CD1d, EPCR binds a phospholipid [phosphatidylethanolamine (PTY)] in a groove corresponding to the antigen‐presenting site, although it is not clear if lipid exchange can occur in EPCR as in CD1d. The presence of PTY seems essential for PC γ‐carboxyglutamic acid (Gla) domain binding. However, the lipid‐free form of the EPCR has not been characterized. We have investigated the structural role of PTY on EPCR, by multiple molecular dynamics (MD) simulations of ligand bound and unbound forms of the protein. Structural changes, subsequent to ligand removal, led to identification of two stable and folded ligand‐free conformations. Compared with the bound form, unbound structures showed a narrowing of the A′ pocket and a high flexibility of the helices around it, in agreement with CD1d simulation. Thus, a lipid exchange with a mechanism similar to CD1d is proposed. In addition, unbound conformations presented a reduced interaction surface for Gla domain, confirming the role of PTY in establishing the proper EPCR conformation for the interaction with its partner protein. Single MD simulations were also obtained for 29 mutant models with predicted structural stability and impaired binding ability. Ligand affinity calculations, based on linear interaction energy method, showed that substitution‐induced conformational changes affecting helices around the A′ pocket were associated to a reduced binding affinity. Mutants responsible for this effect may represent useful reagents for experimental tests. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
In this paper, we report the results of molecular dynamics simulations of AXH monomer of Ataxin‐1. The AXH domain plays a crucial role in Ataxin‐1 aggregation, which accompanies the initiation and progression of Spinocerebellar ataxia type 1. Our simulations involving both classical and replica exchange molecular dynamics, followed by principal component analysis of the trajectories obtained, reveal substantial conformational fluctuations of the protein structure, especially in the N‐terminal region. We show that these fluctuations can be generated by thermal noise since the free energy barriers between conformations are small enough for thermally stimulated transitions. In agreement with the previous experimental findings, our results can be considered as a basis for a future design of ataxin aggregation inhibitors that will require several key conformations identified in the present study as molecular targets for ligand binding. Proteins 2016; 84:52–59. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号