首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A higher plant has three different types of RPA heterotrimeric complex   总被引:2,自引:0,他引:2  
Replication protein A (RPA) is a protein complex composed of three subunits known as RPA70, RPA32, and RPA14. Generally, only one version of each of the three RPA genes is present in animals and yeast (with the exception of the human RPA32 ortholog). In rice (Oryza sativa L.), however, two paralogs of RPA70 have been reported. We screened the rice genome for RPA subunit genes, and identified three OsRPA70 (OsRPA70a, OsRPA70b and OsRPA70c), three OsRPA32 (OsRPA32-1, OsRPA32-2 and OsRPA32-3), and one OsRPA14. Through two-hybrid assays and pull down analyses, we showed that OsRPA70a interacted preferentially with OsRPA32-2, OsRPA70b with OsRPA32-1, and OsRPA70c with OsRPA32-3. OsRPA14 interacted with all OsRPA32 paralogs. Thus, rice has three types of RPA complex: OsRPA70a-OsRPA32-2-OsRPA14 (type A), OsRPA70b-OsRPA32-1-OsRPA14 (type B), and OsRPA70c-OsRPA32-3-OsRPA14 (type C). Subcellular localization analysis suggested that the type-A RPA complex is required for chloroplast DNA metabolism, whereas types B and C function in nuclear DNA metabolism.  相似文献   

3.
Replication protein A phosphorylation and the cellular response to DNA damage   总被引:12,自引:0,他引:12  
Binz SK  Sheehan AM  Wold MS 《DNA Repair》2004,3(8-9):1015-1024
Defects in cellular DNA metabolism have a direct role in many human disease processes. Impaired responses to DNA damage and basal DNA repair have been implicated as causal factors in diseases with DNA instability like cancer, Fragile X and Huntington's. Replication protein A (RPA) is essential for multiple processes in DNA metabolism including DNA replication, recombination and DNA repair pathways (including nucleotide excision, base excision and double-strand break repair). RPA is a single-stranded DNA-binding protein composed of subunits of 70-, 32- and 14-kDa. RPA binds ssDNA with high affinity and interacts specifically with multiple proteins. Cellular DNA damage causes the N-terminus of the 32-kDa subunit of human RPA to become hyper-phosphorylated. Current data indicates that hyper-phosphorylation causes a change in RPA conformation that down-regulates activity in DNA replication but does not affect DNA repair processes. This suggests that the role of RPA phosphorylation in the cellular response to DNA damage is to help regulate DNA metabolism and promote DNA repair.  相似文献   

4.
Replication protein A (RPA) is a heterotrimeric (subunits of 70, 32, and 14 kDa) single-stranded DNA-binding protein that is required for DNA replication, recombination, and repair. The 40-residue N-terminal domain of the 32-kDa subunit of RPA (RPA32) becomes phosphorylated during S-phase and after DNA damage. Recently it has been shown that phosphorylation or the addition of negative charges to this N-terminal phosphorylation domain modulates RPA-protein interactions and increases cell sensitivity to DNA damage. We found that addition of multiple negative charges to the N-terminal phosphorylation domain also caused a significant decrease in the ability of a mutant form of RPA to destabilize double-stranded (ds) DNA. Kinetic studies suggested that the addition of negative charges to the N-terminal phosphorylation domain caused defects in both complex formation (nucleation) and subsequent destabilization of dsDNA by RPA. We conclude that the N-terminal phosphorylation domain modulates RPA interactions with dsDNA. Similar changes in DNA interactions were observed with a mutant form of RPA in which the N-terminal domain of the 70-kDa subunit was deleted. This suggested a functional link between the N-terminal domains of the 70- and 32-kDa subunits of RPA. NMR experiments provided evidence for a direct interaction between the N-terminal domain of the 70-kDa subunit and the negatively charged N-terminal phosphorylation domain of RPA32. These findings suggest that phosphorylation causes a conformational change in the RPA complex that regulates RPA function.  相似文献   

5.
Eukaryotic replication protein A (RPA) is a single-stranded(ss) DNA binding protein with multiple functions in DNA replication, repair, and genetic recombination. The 70-kDa subunit of eukaryotic RPA contains a conserved four cysteine-type zinc-finger motif that has been implicated in the regulation of DNA replication and repair. Recently, we described a novel function for the zinc-finger motif in the regulation of human RPA's ssDNA binding activity through reduction-oxidation (redox). Here, we show that yeast RPA's ssDNA binding activity is regulated by redox potential through its RPA32 and/or RPA14 subunits. Yeast RPA requires a reducing agent, such as dithiothreitol (DTT), for its ssDNA binding activity. Also, under non-reducing conditions, its DNA binding activity decreases 20 fold. In contrast, the RPA70 subunit does not require DTT for its DNA binding activity and is not affected by the redox condition. These results suggest that all three subunits are required for the regulation of RPA's DNA binding activity through redox potential.  相似文献   

6.
DNA replication is a process that is highly conserved among eukaryotes. Nonetheless, little is known about the proteins involved in it in plants. Replication protein A (RPA) is a heterotrimeric, single-stranded DNA-binding protein with several functions in DNA metabolism in humans and yeast and supposedly also in plants. Here we report on the regulation of OsRPA2, the 32-kDa subunit of RPA from rice ( Oryza sativa L.). We found conserved regulation mechanisms at the level of gene expression between animal and plant RPA2 genes and distinct features of OsRPA2 regulation at the level of protein expression. Unlike in animals or in yeast, protein abundance in rice was regulated in a cell cycle phase-specific manner and was altered after UV-C light exposure. On the other hand, posttranslational modification through phosphorylation did not appear to play a pivotal role in rice as it does in animal cells. Our results indicate that plant-specific mechanisms of regulation have evolved for RPA2 within the generally well-conserved process of DNA replication, suggesting specific requirements for regulation of DNA metabolism in plants as compared to other eukaryotes.  相似文献   

7.
Although the mechanical aspects of the single-stranded DNA (ssDNA) binding activity of human replication protein A (RPA) have been extensively studied, only limited information is available about its interaction with other physiologically relevant DNA structures. RPA interacts with partial DNA duplexes that resemble DNA intermediates found in the processes of DNA replication and DNA repair. Limited proteolysis of RPA showed that RPA associated with ssDNA is less protected against proteases than RPA bound to a partial duplex DNA containing a 5'-protruding tail that had the same length as the ssDNA. Modification of both the 70- and 32-kDa subunits, RPA70 and RPA32, respectively, by photoaffinity labeling indicates that RPA can bind the primer-template junction of partial duplex DNAs by interacting with the 3'-end of the primer. The identification of the protein domains modified by the photoreactive 3'-end of the primer showed that domains located in the central part of the RPA32 subunit (amino acids 39-180) and the C-terminal part of the RPA70 subunit (amino acids 432-616) are involved in these interactions.  相似文献   

8.
Kim A  Park JS 《Molecules and cells》2002,13(3):493-497
The eukaryotic replication protein A (RPA) is a heterotrimeric protein complex. It consists of 70, 32, and 14 kDa subunits that are involved in DNA replication, repair, and genetic recombination. RPA is a 4-cysteine type zinc-finger protein. RPA's zinc-finger domain is not essential for DNA binding activity, but it is involved in the regulation of RPA's DNA binding activity through reduction-oxidation (redox). In this study, we show that yeast RPA's ssDNA binding activity is regulated by redox potential through its subcomplexes of 32 and 14 kDa subunits. In contrast, the subunits' complex, RPA70, formed a stable complex with ssDNA, even under non-reducing conditions. The addition of DTT and H202 had no effect on its DNA binding activity. In RPA70, since the addition of the subcomplexes of the 32 and 14 kDa subunits, it restored the modulating ssDNA binding activity to native RPA's DNA binding activity. These results suggest that the subcomplexes of the 32 and 14 kDa subunits may be involved in the modulating RPA's DNA binding activity through redox change. These studies, therefore, show the novel structure and function relationship of a multiprotein complex in that the role of a specific domain (or one subunit) is regulated by the other subunits.  相似文献   

9.
Replication protein A (RPA) is a complex of three polypeptides of 70, 34, and 13 kDa isolated from diverse eukaryotes. The complex is a single-stranded DNA-binding protein essential for simian virus 40-based DNA replication in vitro and for viability in the yeast Saccharomyces cerevisiae. We have identified a new 30-kDa human protein which interacts with the 70- and 13-kDa subunits of RPA, with a yeast two-hybrid/interaction trap method. This protein, Rpa4, has 47% identity with Rpa2, the 34-kDa subunit of RPA. Rpa4 associates with the 70- and 13-kDa subunits to form a trimeric complex capable of binding to single-stranded DNA. Rpa4 is preferentially expressed in placental and colon mucosa tissues. In the placenta, Rpa4 is more abundant than the 70-kDa Rpa1 subunit and is not associated with either Rpa1 or with any other single-stranded DNA-binding protein. In proliferating cells in culture, Rpa4 is considerably less abundant than Rpa1 and Rpa2. Northern (RNA) blot analysis suggest that there are alternatively processed forms of the RPA4 mRNA, and Southern blot analysis indicates that beside RPA4 there may be other members of the RPA2 gene family.  相似文献   

10.
Lao Y  Gomes XV  Ren Y  Taylor JS  Wold MS 《Biochemistry》2000,39(5):850-859
Human replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein (subunits of 70, 32, and 14 kDa) that is required for cellular DNA metabolism. RPA has been reported to interact specifically with damaged double-stranded DNA and to participate in multiple steps of nucleotide excision repair (NER) including the damage recognition step. We have examined the mechanism of RPA binding to both single-stranded and double-stranded DNA (ssDNA and dsDNA, respectively) containing damage. We show that the affinity of RPA for damaged dsDNA correlated with disruption of the double helix by the damaged bases and required RPAs ssDNA-binding activity. We conclude that RPA is recognizing single-stranded character caused by the damaged nucleotides. We also show that RPA binds specifically to damaged ssDNA. The specificity of binding varies with the type of damage with RPA having up to a 60-fold preference for a pyrimidine(6-4)pyrimidone photoproduct. We show that this specific binding was absolutely dependent on the zinc-finger domain in the C-terminus of the 70-kDa subunit. The affinity of RPA for damaged ssDNA was 5 orders of magnitude higher than that of the damage recognition protein XPA (xeroderma pigmentosum group A protein). These findings suggest that RPA probably binds to both damaged and undamaged strands in the NER excision complex. RPA binding may be important for efficient excision of damaged DNA in NER.  相似文献   

11.
The role for zinc in replication protein A   总被引:6,自引:0,他引:6  
Heterotrimeric human single-stranded DNA (ssDNA)-binding protein, replication protein A (RPA), is a central player in DNA replication, recombination, and repair. The C terminus of the largest subunit, RPA70, contains a putative zinc-binding motif and is implicated in complex formation with two smaller subunits, RPA14 and RPA32. The C-terminal domain of RPA70 (RPA70-CTD) was characterized using proteolysis and x-ray fluorescence emission spectroscopy. The proteolytic core of this domain comprised amino acids 432-616. X-ray fluorescence spectra revealed that RPA70-CTD possesses a coordinated Zn(II). The trimeric complex of RPA70-CTD, the ssDNA-binding domain of RPA32 (amino acids 43-171), and RPA14 had strong DNA binding activity. When properly coordinated with zinc, the trimer's affinity to ssDNA was only 3-10-fold less than that of the ssDNA-binding domain in the middle of RPA70. However, the DNA-binding activity of the trimer was dramatically reduced in the presence of chelating agents. Our data indicate that (i) Zn(II) is essential to stabilize the tertiary structure of RPA70-CTD; (ii) RPA70-CTD possesses DNA-binding activity, which is modulated by Zn(II); and (iii) ssDNA binding by the trimer is a synergistic effect generated by the RPA70-CTD and RPA32.  相似文献   

12.
Menin is a 70-kDa protein encoded by MEN1, the tumor suppressor gene disrupted in multiple endocrine neoplasia type 1. In a yeast two-hybrid system based on reconstitution of Ras signaling, menin was found to interact with the 32-kDa subunit (RPA2) of replication protein A (RPA), a heterotrimeric protein required for DNA replication, recombination, and repair. The menin-RPA2 interaction was confirmed in a conventional yeast two-hybrid system and by direct interaction between purified proteins. Menin-RPA2 binding was inhibited by a number of menin missense mutations found in individuals with multiple endocrine neoplasia type 1, and the interacting regions were mapped to the N-terminal portion of menin and amino acids 43 to 171 of RPA2. This region of RPA2 contains a weak single-stranded DNA-binding domain, but menin had no detectable effect on RPA-DNA binding in vitro. Menin bound preferentially in vitro to free RPA2 rather than the RPA heterotrimer or a subcomplex consisting of RPA2 bound to the 14-kDa subunit (RPA3). However, the 70-kDa subunit (RPA1) was coprecipitated from HeLa cell extracts along with RPA2 by menin-specific antibodies, suggesting that menin binds to the RPA heterotrimer or a novel RPA1-RPA2-containing complex in vivo. This finding was consistent with the extensive overlap in the nuclear localization patterns of endogenous menin, RPA2, and RPA1 observed by immunofluorescence.  相似文献   

13.
Replication protein A (RPA) consisting of three subunits is a eukaryotic single-stranded DNA (ssDNA)-binding protein involved in DNA replication, repair and recombination. We report here the identification and characterization of a RPA large subunit (CpRPA1) gene from the apicomplexan Cryptosporidium parvum. The CpRPA1 gene encodes a 53.9-kDa peptide that is remarkably smaller than that from other eukaryotes (i.e. approximately 70 kDa) and is actively expressed in both free sporozoites and parasite intracellular stages. This short-type RPA large subunit has also been characterized from one other protist, Crithidia fasciculata. Three distinct domains have been identified in the RPA large subunit of humans and yeasts: an N-terminal protein interaction domain, a central ssDNA-binding area, and a C-terminal subunit-interacting region. Sequence analysis reveals that the short-type RPA large subunit differs from that of other eukaryotes in that only the domains required for ssDNA binding and heterotrimer formation are present. It lacks the N-terminal domain necessary for the binding of proteins mainly involved in DNA repair and recombination. This major structural difference suggests that the mechanism for DNA repair and recombination in some protists differs from that of other eukaryotes. Since replication proteins play an essential role in the cell cycle, the fact that RPA proteins of C. parvum differ from those of its host suggests that RPA be explored as a potential chemotherapeutic target for controlling cryptosporidiosis and/or diseases caused by other apicomplexans.  相似文献   

14.
Replication protein A (RPA) is a heterotrimeric, single-stranded DNA-binding complex comprised of 70-kDa (RPA1), 32-kDa (RPA2), and 14-kDa (RPA3) subunits that is essential for DNA replication, recombination, and repair in eukaryotes. In addition, recent studies using vertebrate model systems have suggested an important role for RPA in the initiation of cell cycle checkpoints following exposure to DNA replication stress. Specifically, RPA has been implicated in the recruitment and activation of the ATM-Rad3-related protein kinase, ATR, which in conjunction with the related kinase, ATM (ataxia-telangiectasia-mutated), transmits checkpoint signals via the phosphorylation of downstream effectors. In this report, we have explored the effects of RPA insufficiency on DNA replication, cell survival, and ATM/ATR-dependent signal transduction in response to genotoxic stress. RNA interference-mediated suppression of RPA1 caused a slowing of S phase progression, G2/M cell cycle arrest, and apoptosis in HeLa cells. RPA-deficient cells demonstrated high levels of spontaneous DNA damage and constitutive activation of ATM, which was responsible for the terminal G2/M arrest phenotype. Surprisingly, we found that neither RPA1 nor RPA2 were essential for the hydroxyurea- or UV-induced phosphorylation of the ATR substrates CHK1 and CREB (cyclic AMP-response element-binding protein). These findings reveal that RPA is required for genomic stability and suggest that activation of ATR can occur through RPA-independent pathways.  相似文献   

15.
Walther AP  Gomes XV  Lao Y  Lee CG  Wold MS 《Biochemistry》1999,38(13):3963-3973
Human replication protein A (RPA) is a multiple subunit single-stranded DNA-binding protein that is required for multiple processes in cellular DNA metabolism. This complex, composed of subunits of 70, 32, and 14 kDa, binds to single-stranded DNA (ssDNA) with high affinity and participates in multiple protein-protein interactions. The 70-kDa subunit of RPA is known to be composed of multiple domains: an N-terminal domain that participates in protein interactions, a central DNA-binding domain (composed of two copies of a ssDNA-binding motif), a putative (C-X2-C-X13-C-X2-C) zinc finger, and a C-terminal intersubunit interaction domain. A series of mutant forms of RPA were used to elucidate the roles of these domains in RPA function. The central DNA-binding domain was necessary and sufficient for interactions with ssDNA; however, adjacent sequences, including the zinc-finger domain and part of the N-terminal domain, were needed for optimal ssDNA-binding activity. The role of aromatic residues in RPA-DNA interactions was examined. Mutation of any one of the four aromatic residues shown to interact with ssDNA had minimal effects on RPA activity, indicating that individually these residues are not critical for RPA activity. Mutation of the zinc-finger domain altered the structure of the RPA complex, reduced ssDNA-binding activity, and eliminated activity in DNA replication.  相似文献   

16.
Replication protein A (RPA) is a eukaryotic ssDNA-binding protein and contains three subunits: RPA70, RPA32, and RPA14. Phosphorylation of the N-terminal region of the RPA32 subunit plays an essential role in DNA metabolism in processes such as replication and damage response. Phosphorylated RPA32 (pRPA32) binds to RPA70 and possibly regulates the transient RPA70-Bloom syndrome helicase (BLM) interaction to inhibit DNA resection. However, the structural details and determinants of the phosphorylated RPA32–RPA70 interaction are still unknown. In this study, we provide molecular details of the interaction between RPA70 and a mimic of phosphorylated RPA32 (pmRPA32) using fluorescence polarization and NMR analysis. We show that the N-terminal domain of RPA70 (RPA70N) specifically participates in pmRPA32 binding, whereas the unphosphorylated RPA32 does not bind to RPA70N. Our NMR data revealed that RPA70N binds pmRPA32 using a basic cleft region. We also show that at least 6 negatively charged residues of pmRPA32 are required for RPA70N binding. By introducing alanine mutations into hydrophobic positions of pmRPA32, we found potential points of contact between RPA70N and the N-terminal half of pmRPA32. We used this information to guide docking simulations that suggest the orientation of pmRPA32 in complex with RPA70N. Our study demonstrates detailed features of the domain-domain interaction between RPA70 and RPA32 upon phosphorylation. This result provides insight into how phosphorylation tunes transient bindings between RPA and its partners in DNA resection.  相似文献   

17.
Replication protein A (RPA) is the major single-stranded DNA-binding protein in eukaryotes. RPA is composed of three subunits of 70, 32, and 14 kDa. The N-terminal domain of the 70-kDa subunit (RPA70) has weak DNA binding activity, interacts with proteins, and is involved in cellular DNA damage response. To define the mechanism by which this domain regulates RPA function, we analyzed the function of RPA forms containing a deletion of the N terminus of RPA70 and mutations in the phosphorylation domain of RPA (N-terminal 40 amino acids of the 32-kDa subunit). Although each individual mutation has only modest effects on RPA activity, a form combining both phosphorylation mimetic mutations and a deletion of the N-terminal domain of RPA70 was found to have dramatically altered activity. This combined mutant was defective in binding to short single-stranded DNA oligonucleotides and had altered interactions with proteins that bind to the DNA-binding core of RPA70. These results indicate that in the absence of the N-terminal domain of RPA70, a negatively charged phosphorylation domain disrupts the activity of the core DNA-binding domain of RPA. We conclude that the N-terminal domain of RPA70 functions by interacting with the phosphorylation domain of the 32-kDa subunit and blocking undesirable interactions with the core DNA-binding domain of RPA. These studies indicate that RPA conformation is important for regulating RPA-DNA and RPA-protein interactions.  相似文献   

18.
Replication protein A (RPA) is a three-subunit protein complex with multiple functions in DNA replication. Previous study indicated that human RPA (h-RPA) could not be replaced by Schizosaccharomyces pombe RPA (sp-RPA) in simian virus 40 (SV40) replication, suggesting that h-RPA may have a specific function in SV40 DNA replication. To understand the specificity of h-RPA in replication, we prepared heterologous RPAs containing the mixture of human and S.pombe subunits and compared these preparations for various enzymatic activities. Heterologous RPAs containing two human subunits supported SV40 DNA replication, whereas those containing only one human subunit poorly supported DNA replication, suggesting that RPA complex requires at least two human subunits to support its function in SV40 DNA replication. All heterologous RPAs effectively supported single-stranded (ss)DNA binding activity and an elongation of a primed DNA template catalyzed by DNA polymerase (pol) α and δ. A strong correlation between SV40 DNA replication activity and large tumor antigen (T-ag)-dependent RNA primer synthesis by pol α–primase complex was observed among the heterologous RPAs. Furthermore, T-ag showed a strong interaction with 70- and 34-kDa subunits from human, but poorly interacted with their S.pombe counterparts, indicating that the specificity of h-RPA is due to its role in RNA primer synthesis. In the SV40 replication reaction, the addition of increasing amounts of sp-RPA in the presence of fixed amount of h-RPA significantly reduced overall DNA synthesis, but increased the size of lagging strand, supporting a specific role for h-RPA in RNA primer synthesis. Together, these results suggest that the specificity of h-RPA in SV40 replication lies in T-ag-dependent RNA primer synthesis.  相似文献   

19.
Replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein (70, 32, and 14 kDa) that is an essential component of the DNA replication fork. A complementary DNA encoding zebrafish RPA 32-kDa subunit was isolated by screening a zebrafish embryo lambda APII cDNA library with a human RPA p32 cDNA probe. The zebrafish RPA p32 cDNA consisted of 1097 bp encoding 272 amino acid residues. The deduced amino acid sequence shows high similarity to mouse and human RPA p32. In vitro phosphorylation of zebrafish RPA protein by Cdc2 kinase was shown. A recombinant protein of zebrafish RPA p32 containing a short histidine tag at the NH(2)-terminus was overexpressed in Escherichia coli BL21(DE3) pLys using an inducible T7 expression system, and was purified by Ni-NTA affinity chromatography. In this article, cloning of the zebrafish RPA p32 cDNA is reported in relation to the study of DNA replication in fish.  相似文献   

20.
Replication protein A (RPA), the major eukaryotic single-strand DNA (ssDNA)-binding protein, is essential for replication, repair, recombination, and checkpoint activation. Defects in RPA-associated cellular activities lead to genomic instability, a major factor in the pathogenesis of cancer and other diseases. ssDNA binding activity is primarily mediated by two domains in the 70-kDa subunit of the RPA complex. These ssDNA interactions are mediated by a combination of polar residues and four conserved aromatic residues. Mutation of the aromatic residues causes a modest decrease in binding to long (30-nucleotide) ssDNA fragments but results in checkpoint activation and cell cycle arrest in cells. We have used a combination of biochemical analysis and knockdown replacement studies in cells to determine the contribution of these aromatic residues to RPA function. Cells containing the aromatic residue mutants were able to progress normally through S-phase but were defective in DNA repair. Biochemical characterization revealed that mutation of the aromatic residues severely decreased binding to short ssDNA fragments less than 20 nucleotides long. These data indicate that altered binding of RPA to short ssDNA intermediates causes a defect in DNA repair but not in DNA replication. These studies show that cells require different RPA functions in DNA replication and DNA repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号