首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comeau SR  Kozakov D  Brenke R  Shen Y  Beglov D  Vajda S 《Proteins》2007,69(4):781-785
ClusPro is the first fully automated, web-based program for docking protein structures. Users may upload the coordinate files of two protein structures through ClusPro's web interface, or enter the PDB codes of the respective structures. The server performs rigid body docking, energy screening, and clustering to produce models. The program output is a short list of putative complexes ranked according to their clustering properties. ClusPro has been participating in CAPRI since January 2003, submitting predictions within 24 h after a target becomes available. In Rounds 6-11, ClusPro generated acceptable submissions for Targets 22, 25, and 27. In general, acceptable models were obtained for the relatively easy targets without substantial conformational changes upon binding. We also describe the new version of ClusPro that incorporates our recently developed docking program PIPER. PIPER is based on the fast Fourier transform correlation approach, but the method is extended to use pairwise interaction potentials, thereby increasing the number of near-native docked structures.  相似文献   

2.
Wiehe K  Pierce B  Tong WW  Hwang H  Mintseris J  Weng Z 《Proteins》2007,69(4):719-725
We present an evaluation of our protein-protein docking approach using the ZDOCK and ZRANK algorithms, in combination with structural clustering and filtering, utilizing biological data in Rounds 6-11 of the CAPRI docking experiment. We achieved at least one prediction of acceptable accuracy for five of six targets submitted. In addition, two targets resulted in medium-accuracy predictions. In the new scoring portion of the CAPRI exercise, we were able to attain at least one acceptable prediction for the three targets submitted and achieved three medium-accuracy predictions for Target 26. Scoring was performed using ZRANK, a new algorithm for reranking initial-stage docking predictions using a weighted energy function and no structural refinement. Here we outline a practical and successful docking strategy, given limited prior biological knowledge of the complex to be predicted.  相似文献   

3.
The two previous CAPRI experiments showed the success of our rigid-body and refinement approach. For this third edition of CAPRI, we have used a new faster protocol called pyDock, which uses electrostatics and desolvation energy to score docking poses generated with FFT-based algorithms. In target T24 (unbound/model), our best prediction had the highest value of fraction of native contacts (40%) among all participants, although it was not considered as acceptable by the CAPRI criteria. In target T25 (unbound/bound), we submitted a model with medium quality. In target T26 (unbound/unbound), we did not submit any acceptable model (but we would have submitted acceptable predictions if we had included available mutational information about the binding site). For targets T27 (unbound/unbound) and T28 (homo-dimer using model), nobody (including us) submitted any acceptable model. Intriguingly, the crystal structure of target T27 shows an alternative interface that correlates with available biological data (we would have submitted acceptable predictions if we had included this). We also participated in all targets of the SCORERS experiment, with at least acceptable accuracy in all valid cases. We submitted two medium and four acceptable scoring models of T25. Using additional distance restraints (from mutational data), we had two medium and two acceptable scoring models of T26. For target T27, we submitted two acceptable scoring models of the alternative interface in the crystal structure. In summary, CAPRI showed the excellent capabilities of pyDock in identifying near-native docking poses.  相似文献   

4.
Here we present version 2.0 of HADDOCK, which incorporates considerable improvements and new features. HADDOCK is now able to model not only protein-protein complexes but also other kinds of biomolecular complexes and multi-component (N > 2) systems. In the absence of any experimental and/or predicted information to drive the docking, HADDOCK now offers two additional ab initio docking modes based on either random patch definition or center-of-mass restraints. The docking protocol has been considerably improved, supporting among other solvated docking, automatic definition of semi-flexible regions, and inclusion of a desolvation energy term in the scoring scheme. The performance of HADDOCK2.0 is evaluated on the targets of rounds 4-11, run in a semi-automated mode using the original information we used in our CAPRI submissions. This enables a direct assessment of the progress made since the previous versions. Although HADDOCK performed very well in CAPRI (65% and 71% success rates, overall and for unbound targets only, respectively), a substantial improvement was achieved with HADDOCK2.0.  相似文献   

5.
Hwang H  Vreven T  Pierce BG  Hung JH  Weng Z 《Proteins》2010,78(15):3104-3110
We report the performance of the ZDOCK and ZRANK algorithms in CAPRI rounds 13-19 and introduce a novel measure atom contact frequency (ACF). To compute ACF, we identify the residues that most often make contact with the binding partner in the complete set of ZDOCK predictions for each target. We used ACF to predict the interface of the proteins, which, in combination with the biological data available in the literature, is a valuable addition to our docking pipeline. Furthermore, we incorporated a straightforward and efficient clustering algorithm with two purposes: (1) to determine clusters of similar docking poses (corresponding to energy funnels) and (2) to remove redundancies from the final set of predictions. With these new developments, we achieved at least one acceptable prediction for targets 29 and 36, at least one medium-quality prediction for targets 41 and 42, and at least one high-quality prediction for targets 37 and 40; thus, we succeeded for six out of a total of 12 targets.  相似文献   

6.
Our information-driven docking approach HADDOCK has demonstrated a sustained performance since the start of its participation to CAPRI. This is due, in part, to its ability to integrate data into the modeling process, and to the robustness of its scoring function. We participated in CAPRI both as server and manual predictors. In CAPRI rounds 38-45, we have used various strategies depending on the available information. These ranged from imposing restraints to a few residues identified from literature as being important for the interaction, to binding pockets identified from homologous complexes or template-based refinement/CA-CA restraint-guided docking from identified templates. When relevant, symmetry restraints were used to limit the conformational sampling. We also tested for a large decamer target a new implementation of the MARTINI coarse-grained force field in HADDOCK. Overall, we obtained acceptable or better predictions for 13 and 11 server and manual submissions, respectively, out of the 22 interfaces. Our server performance (acceptable or higher-quality models when considering the top 10) was better (59%) than the manual (50%) one, in which we typically experiment with various combinations of protocols and data sources. Again, our simple scoring function based on a linear combination of intermolecular van der Waals and electrostatic energies and an empirical desolvation term demonstrated a good performance in the scoring experiment with a 63% success rate across all 22 interfaces. An analysis of model quality indicates that, while we are consistently performing well in generating acceptable models, there is room for improvement for generating/identifying higher quality models.  相似文献   

7.
Mustard D  Ritchie DW 《Proteins》2005,60(2):269-274
This article describes our attempts to dock the targets in CAPRI Rounds 3-5 using Hex 4.2, and it introduces a novel essential dynamics approach to generate multiple feasible conformations for docking. In the blind trial, the basic Hex algorithm found 1 high-accuracy solution for CAPRI Target 12, and several further medium- and low-accuracy solutions for Targets 11, 12, 13, and 14. Subsequent a posteriori docking of the targets using essential dynamics "eigenstructures" was found to give consistently better predictions than rigidly docking only the unbound or model-built starting structures. Some suggestions to improve this promising new approach are presented.  相似文献   

8.
CAPRI challenges offer a variety of blind tests for protein-protein interaction prediction. In CAPRI Rounds 38-45, we generated a set of putative binding modes for each target with an FFT-based docking algorithm, and then scored and ranked these binding modes with a proprietary scoring function, ITScorePP. We have also developed a novel web server, Rebipp. The algorithm utilizes information retrieval to identify relevant biological information to significantly reduce the search space for a particular protein. In parallel, we have also constructed a GPU-based docking server, MDockPP, for protein-protein complex structure prediction. Here, the performance of our protocol in CAPRI rounds 38-45 is reported, which include 16 docking and scoring targets. Among them, three targets contain multiple interfaces: Targets 124, 125, and 136 have 2, 4, and 3 interfaces, respectively. In the predictor experiments, we predicted correct binding modes for nine targets, including one high-accuracy interface, six medium-accuracy binding modes, and six acceptable-accuracy binding modes. For the docking server prediction experiments, we predicted correct binding modes for eight targets, including one high-accuracy, three medium-accuracy, and five acceptable-accuracy binding modes.  相似文献   

9.
We submitted predictions for all seven targets in the CAPRI experiment. For four targets, our submitted models included acceptable, medium accuracy predictions of the structures of the complexes, and for a fifth target we identified the location of the binding site of one of the molecules. We used a weighted-geometric docking algorithm in which contacts involving specified parts of the surfaces of either one or both molecules were up-weighted or down-weighted. The weights were based on available structural and biochemical data or on sequence analyses. The weighted-geometric docking proved very useful for five targets, improving the complementarity scores and the ranks of the nearly correct solutions, as well as their statistical significance. In addition, the weighted-geometric docking promoted formation of clusters of similar solutions, which include more accurate predictions.  相似文献   

10.
We report docking performance on the six targets of Critical Assessment of PRedicted Interactions (CAPRI) rounds 39-45 that involved heteromeric protein-protein interactions and had the solved structures released since the rounds were held. Our general strategy involved protein-protein docking using ZDOCK, reranking using IRAD, and structural refinement using Rosetta. In addition, we made extensive use of experimental data to guide our docking runs. All the experimental information at the amino-acid level proved correct. However, for two targets, we also used protein-complex structures as templates for modeling interfaces. These resulted in incorrect predictions, presumably due to the low sequence identity between the targets and templates. Albeit a small number of targets, the performance described here compared somewhat less favorably with our previous CAPRI reports, which may be due to the CAPRI targets being increasingly challenging.  相似文献   

11.
ATTRACT: protein-protein docking in CAPRI using a reduced protein model   总被引:1,自引:0,他引:1  
Zacharias M 《Proteins》2005,60(2):252-256
Protein-protein complex structures have been predicted for CAPRI Rounds 3 and 5 using a reduced protein model. Proteins are represented by up to 3 pseudoatoms per amino acid. The docking approach termed ATTRACT is based on energy minimization in translational and rotational degrees of freedom of one protein with respect to another protein. The reduced protein model allows one to perform systematic docking minimization of many thousand start structures in reasonable computer time. Flexibility of critical surface side-chains can be accounted for by a multiple conformational copy approach. The multicopy approach allows simultaneous adjustment of side-chain conformations and optimization of translational and rotational degrees of freedom of one protein with respect to the partner during docking. For 3 (Targets 8, 14, and 19) out of 5 CAPRI targets, the approach resulted in predictions in close agreement with experiment [root-mean-square deviation (RMSD) of backbone atoms within 10 A of the protein-protein interface < 1.8 A]. The comparison of predicted and experimental structures of the CAPRI targets indicates that besides local conformational changes (e.g., changes in side-chain conformations), global conformational changes of the protein backbone can be critical for complex formation. These conformational changes not accounted for during docking are a likely reason for the unrealistic predictions in 2 cases (Targets 9 and 18).  相似文献   

12.
We present an evaluation of the results of our ZDOCK and RDOCK algorithms in Rounds 3, 4, and 5 of the protein docking challenge CAPRI. ZDOCK is a Fast Fourier Transform (FFT)-based, initial-stage rigid-body docking algorithm, and RDOCK is an energy minimization algorithm for refining and reranking ZDOCK results. Of the 9 targets for which we submitted predictions, we attained at least acceptable accuracy for 7, at least medium accuracy for 6, and high accuracy for 3. These results are evidence that ZDOCK in combination with RDOCK is capable of making accurate predictions on a diverse set of protein complexes.  相似文献   

13.
Integration of template-based modeling, global sampling and precise scoring is crucial for the development of molecular docking programs with improved accuracy. We combined template-based modeling and ab-initio docking protocol as hybrid docking strategy called CoDock for the docking and scoring experiments of the seventh CAPRI edition. For CAPRI rounds 38-45, we obtained acceptable or better models in the top 10 submissions for eight out of the 16 evaluated targets as predictors, nine out of the 16 targets as scorers. Especially, we submitted acceptable models for all of the evaluated protein-oligosaccharide targets. For the CASP13-CAPRI experiment (round 46), we obtained acceptable or better models in the top 5 submissions for 10 out of the 20 evaluated targets as predictors, 11 out of the 20 targets as scorers. The failed cases for our group were mainly the difficult targets and the protein-peptide systems in CAPRI and CASP13-CAPRI experiments. In summary, this CAPRI edition showed that our hybrid docking strategy can be efficiently adapted to the increasing variety of challenges in the field of molecular interactions.  相似文献   

14.
RosettaDock uses real-space Monte Carlo minimization (MCM) on both rigid-body and side-chain degrees of freedom to identify the lowest free energy docked arrangement of 2 protein structures. An improved version of the method that uses gradient-based minimization for off-rotamer side-chain optimization and includes information from unbound structures was used to create predictions for Rounds 4 and 5 of CAPRI. First, large numbers of independent MCM trajectories were carried out and the lowest free energy docked configurations identified. Second, new trajectories were started from these lowest energy structures to thoroughly sample the surrounding conformation space, and the lowest energy configurations were submitted as predictions. For all cases in which there were no significant backbone conformational changes, a small number of very low-energy configurations were identified in the first, global search and subsequently found to be close to the center of the basin of attraction in the free energy landscape in the second, local search. Following the release of the experimental coordinates, it was found that the centers of these free energy minima were remarkably close to the native structures in not only the rigid-body orientation but also the detailed conformations of the side-chains. Out of 8 targets, the lowest energy models had interface root-mean-square deviations (RMSDs) less than 1.1 A from the correct structures for 6 targets, and interface RMSDs less than 0.4 A for 3 targets. The predictions were top submissions to CAPRI for Targets 11, 12, 14, 15, and 19. The close correspondence of the lowest free energy structures found in our searches to the experimental structures suggests that our free energy function is a reasonable representation of the physical chemistry, and that the real space search with full side-chain flexibility to some extent solves the protein-protein docking problem in the absence of significant backbone conformational changes. On the other hand, the approach fails when there are significant backbone conformational changes as the steric complementarity of the 2 proteins cannot be modeled without incorporating backbone flexibility, and this is the major goal of our current work.  相似文献   

15.
Computational structural prediction of macromolecular interactions is a fundamental tool toward the global understanding of cellular processes. The Critical Assessment of PRediction of Interactions (CAPRI) community-wide experiment provides excellent opportunities for blind testing computational docking methods and includes original targets, thus widening the range of docking applications. Our participation in CAPRI rounds 38 to 45 enabled us to expand the way we include evolutionary information in structural predictions beyond our standard free docking InterEvDock pipeline. InterEvDock integrates a coarse-grained potential that accounts for interface coevolution based on joint multiple sequence alignments of two protein partners (co-alignments). However, even though such co-alignments could be built for none of the CAPRI targets in rounds 38 to 45, including host-pathogen and protein-oligosaccharide complexes and a redesigned interface, we identified multiple strategies that can be used to incorporate evolutionary constraints, which helped us to identify the most likely macromolecular binding modes. These strategies include template-based modeling where only local adjustments should be applied when query-template sequence identity is above 30% and larger perturbations are needed below this threshold; covariation-based structure prediction for individual protein partners; and the identification of evolutionarily conserved and structurally recurrent anchoring interface motifs. Overall, we submitted correct predictions among the top 5 models for 12 out of 19 interface challenges, including four High- and five Medium-quality predictions. Our top 20 models included correct predictions for three out of the five targets we missed in the top 5, including two targets for which misleading biological data led us to downgrade correct free docking models.  相似文献   

16.
Méndez R  Leplae R  Lensink MF  Wodak SJ 《Proteins》2005,60(2):150-169
The current status of docking procedures for predicting protein-protein interactions starting from their three-dimensional (3D) structure is reassessed by evaluating blind predictions, performed during 2003-2004 as part of Rounds 3-5 of the community-wide experiment on Critical Assessment of PRedicted Interactions (CAPRI). Ten newly determined structures of protein-protein complexes were used as targets for these rounds. They comprised 2 enzyme-inhibitor complexes, 2 antigen-antibody complexes, 2 complexes involved in cellular signaling, 2 homo-oligomers, and a complex between 2 components of the bacterial cellulosome. For most targets, the predictors were given the experimental structures of 1 unbound and 1 bound component, with the latter in a random orientation. For some, the structure of the free component was derived from that of a related protein, requiring the use of homology modeling. In some of the targets, significant differences in conformation were displayed between the bound and unbound components, representing a major challenge for the docking procedures. For 1 target, predictions could not go to completion. In total, 1866 predictions submitted by 30 groups were evaluated. Over one-third of these groups applied completely novel docking algorithms and scoring functions, with several of them specifically addressing the challenge of dealing with side-chain and backbone flexibility. The quality of the predicted interactions was evaluated by comparison to the experimental structures of the targets, made available for the evaluation, using the well-agreed-upon criteria used previously. Twenty-four groups, which for the first time included an automatic Web server, produced predictions ranking from acceptable to highly accurate for all targets, including those where the structures of the bound and unbound forms differed substantially. These results and a brief survey of the methods used by participants of CAPRI Rounds 3-5 suggest that genuine progress in the performance of docking methods is being achieved, with CAPRI acting as the catalyst.  相似文献   

17.
CAPRI is a communitywide experiment to assess the capacity of protein-docking methods to predict protein-protein interactions. Nineteen groups participated in rounds 1 and 2 of CAPRI and submitted blind structure predictions for seven protein-protein complexes based on the known structure of the component proteins. The predictions were compared to the unpublished X-ray structures of the complexes. We describe here the motivations for launching CAPRI, the rules that we applied to select targets and run the experiment, and some conclusions that can already be drawn. The results stress the need for new scoring functions and for methods handling the conformation changes that were observed in some of the target systems. CAPRI has already been a powerful drive for the community of computational biologists who development docking algorithms. We hope that this issue of Proteins will also be of interest to the community of structural biologists, which we call upon to provide new targets for future rounds of CAPRI, and to all molecular biologists who view protein-protein recognition as an essential process.  相似文献   

18.
The intrinsic flexibility of DNA and the difficulty of identifying its interaction surface have long been challenges that prevented the development of efficient protein–DNA docking methods. We have demonstrated the ability our flexible data-driven docking method HADDOCK to deal with these before, by using custom-built DNA structural models. Here we put our method to the test on a set of 47 complexes from the protein–DNA docking benchmark. We show that HADDOCK is able to predict many of the specific DNA conformational changes required to assemble the interface(s). Our DNA analysis and modelling procedure captures the bend and twist motions occurring upon complex formation and uses these to generate custom-built DNA structural models, more closely resembling the bound form, for use in a second docking round. We achieve throughout the benchmark an overall success rate of 94% of one-star solutions or higher (interface root mean square deviation ≤4 Å and fraction of native contacts >10%) according to CAPRI criteria. Our improved protocol successfully predicts even the challenging protein–DNA complexes in the benchmark. Finally, our method is the first to readily dock multiple molecules (N > 2) simultaneously, pushing the limits of what is currently achievable in the field of protein–DNA docking.  相似文献   

19.
The last 3 rounds (3-5) of CAPRI included a wide range of docking targets. Several targets were especially challenging, since they involved large-scale movements and symmetric rearrangement, while others were based on homology models. We have approached the targets with a variety of geometry-based docking algorithms that include rigid docking, symmetric docking, and flexible docking with symmetry constraints. For all but 1 docking target, we were able to submit at least 1 acceptable quality prediction. Here, we detail for each target the prediction methods used and the specific biological data employed, and supply a retrospective analysis of the results. We highlight the advantages of our techniques, which efficiently exploit the geometric shape complementarity properties of the interaction. These enable them to run only few minutes on a standard PC even for flexible docking, thus proving their scalability toward computational genomic scale experiments. We also outline the major required enhancements, such as the introduction of side-chain position refinement and the introduction of flexibility for both docking partners.  相似文献   

20.
Targets in the protein docking experiment CAPRI (Critical Assessment of Predicted Interactions) generally present new challenges and contribute to new developments in methodology. In rounds 38 to 45 of CAPRI, most targets could be effectively predicted using template-based methods. However, the server ClusPro required structures rather than sequences as input, and hence we had to generate and dock homology models. The available templates also provided distance restraints that were directly used as input to the server. We show here that such an approach has some advantages. Free docking with template-based restraints using ClusPro reproduced some interfaces suggested by weak or ambiguous templates while not reproducing others, resulting in correct server predicted models. More recently we developed the fully automated ClusPro TBM server that performs template-based modeling and thus can use sequences rather than structures of component proteins as input. The performance of the server, freely available for noncommercial use at https://tbm.cluspro.org , is demonstrated by predicting the protein-protein targets of rounds 38 to 45 of CAPRI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号