首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Comparative immunocytochemical experiments with antisera directed against renin and three synthetical peptides (Pro 1, Pro 2A and Pro 3) covering almost the entire span of human renin prosegment were performed on human kidney tissue. With anti-Pro 1, i.e. the antiserum which recognizes the NH2 terminus of human prorenin, no clear immunolabeling of juxtaglomerular epithelioid cell secretory granules could be obtained. It is therefore concluded that the corresponding portion of human prorenin may be cleaved off in the Golgi complex. After application of anti-Pro 3, the antiserum which recognizes the COOH terminus of the prosegment, only the juvenile secretory granules of epithelioid cells were consistently labeled, whereas, in contrast, some of the intermediate and most of the mature secretory granules were anti-Pro 3-negative. As the immunoreactivity of mature renin increased remarkably from protogranules to mature secretory granules, it is suggested that the cleavage of the COOH terminus of the prosegment, i.e. the activation of renin, takes place in juvenile and intermediate granules during condensation of the enzyme. The immunoreactivity of Pro 2A, corresponding to the middle portion of the prosegment, disappeared in a somewhat earlier stage of granulopoiesis than that of Pro 3. It is therefore concluded that the corresponding segmental cleavage, the result of which is a truncated version of intact prorenin, occurs in the protogranules of epithelioid cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Summary Comparative immunocytochemical experiments with antisera directed against renin and three synthetical peptides (Pro 1, Pro 2 A and Pro 3) covering almost the entire span of human renin prosegment were performed on human kidney tissue. With anti-Pro 1, i.e. the antiserum which recognizes the NH2 terminus of human prorenin, no clear immunolabeling of juxtaglomerular epithelioid cell secretory granules could be obtained. It is therefore concluded that the corresponding portion of human prorenin may be cleaved off in the Golgi complex.After application of anti-Pro 3, the antiserum which recognizes the COOH terminus of the prosegment, only the juvenile secretory granules of epithelioid cells were consistently labeled, whereas, in contrast, some of the intermediate and most of the mature secretory granules were anti-Pro 3-negative. As the immunoreactivity of mature renin increased remarkably from protogranules to mature secretory granules, it is suggested that the cleavage of the COOH terminus of the prosegment, i.e. the activation of renin, takes place in juvenile and intermediate granules during condensation of the enzyme.The immunoreactivity of Pro 2A, corresponding to the middle portion of the prosegment, disappeared in a some-what earlier stage of granulopoiesis than that of Pro 3. It is therefore concluded that the corresponding segmental cleavage, the result of which is a truncated version of intact prorenin, occurs in the protogranules of epithelioid cells.The data presented are consistent with the assumption that the secretion of active renin takes place by the exocytosis of mature secretory granules, while the secretion of inactive renin, which is a truncated version of intact prorenin, is mediated by the exocytosis of juvenile and intermediate granules.These studies were supported by the German Research Foundation within the Forschergruppe Niere/Heidelberg  相似文献   

3.
The molecular biology of renin, prorenin, and the renin gene have been studied. A tissue-specific pattern of expression was found in rat and human tissues. In the human placenta, the transfected and endogenous renin promoters are active, and renin mRNA levels and transfected promoter activity are increased by a calcium ionophore plus cAMP. Cultured pituitary AtT-20 cells transfected with a preprorenin expression vector mimick renal renin release by converting prorenin to renin and releasing renin in response to 8Br-cAMP. Studies with mutant renin genes suggest that the body of renin directs renin to the regulated secretory pathway, and renin glycosylation affects its trafficking. Chinese hamster ovary cells were used to produce recombinant prorenin. Infused prorenin was not converted to renin in monkeys. Renin crystals were used to determine its three-dimensional structure. Renin resembles other aspartyl proteases in the active site and core, but it differs in other regions that probably explain renin's unique substrate specificity. Based on structural and mutational analysis, a model for human prorenin was built that suggests lysine -2 of the prosegment interacts with active site aspartate residues, and that the prosegment inactivation of renin is stabilized by binding of an amino terminal beta strand into a groove on renin.  相似文献   

4.
Human renin plays an important role in blood pressure homeostasis and is secreted in a regulated manner from the juxtaglomerular apparatus of the kidney in response to various physiological stimuli. Many aspects of the regulated release of renin (including accurate processing of prorenin to renin, subcellular targeting of renin to dense secretory granules, and regulated release of active renin) can be reproduced in mouse pituitary AtT-20 cells transfected with a human preprorenin expression vector. Using protein engineering, we have attempted to define the roles of various structures in prorenin that affect its production and trafficking to dense core secretory granules, resulting in its activation and regulated secretion. Replacement of the native signal peptide of human preprorenin with that of a constitutively secreted protein (immunoglobulin M) had no apparent effect on either the constitutive secretion of prorenin or the regulated secretion of active renin in transfected AtT-20 cells. Removal of the pro segment resulted in a marked reduction in total renin secretion, but did not prevent renin from entering the regulated secretory pathway. Single or combined mutations in the two glycosylation sites of human renin did not prevent its regulated secretion; however, the complete elimination of glycosylation resulted in a significant increase in the ratio of renin/prorenin secreted by the transfected cells. Thus, these results suggest that 1) at least one of the sequences that target human renin to dense secretory granules lies within the protein moiety of active renin; 2) the presence of the pro segment is important for efficient prorenin and renin production; and 3) glycosylation can quantitatively affect the proportion of active renin secreted.  相似文献   

5.
Two peptides were synthesized, corresponding to the sequences (-19 to -7) and (-26 to -17) of the prorenin prosegment. Monoclonal antibodies were raised to these sequences and used to characterize human plasma inactive renin. Only anti (-19 to -7) reacted with inactive renin, as measured by direct assay or affinity chromatography. The data were used to evaluate two possible inactive renin stuctures: plasma inactive renin is a truncated prorenin lacking the prosegment N-terminal portion; its spatial conformation masks the N-terminal extremity, preventing interaction of this region with specific antibodies.  相似文献   

6.
Inhibition of human renin by synthetic peptides derived from its prosegment   总被引:2,自引:0,他引:2  
The primary structure of human preprorenin has recently been determined from its cDNA sequence. It includes a 46-amino acid NH2-terminal prosegment. Six peptides corresponding to the entire prosegment (9-40), except for the NH2-terminal (1-8) and COOH-terminal (41-46) ends have been synthesized. These peptides were tested for their inhibitory effect on human plasma renin activity. Boc-Tyr-Thr-Thr-Phe-Lys-Arg-Ile-Phe-Leu-Lys-Arg-Met-Pro-OMe (where Boc represents t-butoxycarbonyl and OMe represents methoxy) (h Y(9-20) and its fragment Boc-Leu-Lys-Arg-Met-Pro-OMe h (16-20) were the most potent inhibitors with IC50 values of 2 X 10(-4) and 3 X 10(-4)M, respectively. Peptides located near the COOH-terminus were less inhibitory. The inhibitory capacity of h (16-20) was studied further on highly purified human renin acting on either pure human angiotensinogen or a synthetic human tetradecapeptide substrate. In both of these assays its inhibitory potency was about 10-fold greater than that found on plasma renin activity. Peptide h (16-20) was 3-6 times less potent in inhibiting human renin than its mouse counterpart m (15-19) was in inhibiting mouse renin. Kinetic studies carried out with h (16-20) showed a mixed type of inhibition. When human angiotensinogen was used as substrate, Ki and K'i values were 17.7 +/- 3.9 and 2.9 +/- 0.9 microM, respectively. These studies showed that human renin, like mouse renin and pepsin, can be inhibited by peptides derived from its prosegment. In addition, as in the case of pepsin, they suggest that the NH2-terminal part of the prosegment interacts more strongly with the active enzyme.  相似文献   

7.
A sequence-specific antibody that recognizes a portion of the prosegment of human renin precursor was raised and used to provide direct evidence that plasma inactive renin contains the prosequence of renal renin and is therefore probably prorenin rather than an inactivated form of previously active renin. The information may help not only to resolve a major controversy concerning the nature of inactive renin in human plasma but also to elucidate its exact physiological role.  相似文献   

8.
The cDNA encoding human preprorenin has been introduced into the adenovirus-transformed human kidney cell line 293. The recombinant 293 cells expressed and secreted prorenin; trypsin was used to activate the secreted prorenin to renin in vitro. The recombinant protein was purified to homogeneity by a single affinity chromatographic step. Using synthetic tetradecapeptide, the Km was 57.1 +/- 9.3 microM and the kcat was (7.48 +/- 1.57) x 10(3)/hr. Activation with trypsin resulted in a secondary cleavage between Arg53 and Leu54 generating a two chain form held together via a disulfide between Cys51 and Cys58. This secondary cleavage did not affect enzyme activity as determined by the ability of renin to degrade a synthetic tetradecapeptide substrate. Our paper demonstrates the potential for producing large quantities of renin from human kidney cells and also suggests that the use of trypsin, which has been widely used to convert prorenin to renin in vitro, causes a secondary cleavage in the renin peptide chain.  相似文献   

9.
We isolated 7.4 mg of pure renin from 2 kg of rat kidneys using affinity chromatography on pepstatin-aminohexyl-Sepharose and an octapeptide renin inhibitor, H-77-Sepharose. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that renin consists of two polypeptide chains linked by a disulfide bond, one of Mr = 36,000 (heavy chain) and the other of Mr = 3,000 (light chain). The amino-terminal 10-amino acid sequences of the heavy and the light chains were identical to the sequences beginning at Ser72 and Asp355, respectively, of the amino acid sequence of preprorenin deduced from the renin cDNA sequence. Amino acid sequencing of the carboxyl-terminal peptide of the heavy chain, generated by digestion with lysyl endopeptidase, showed that the carboxyl-terminal residue of the heavy chain is Phe. Thus, the propeptide of prorenin is cleaved after Thr71, followed by removal of two amino acids, Arg353 and Asn354, the result being formation of the heavy and light chains. Thus, the site of cleavage of rat prorenin is after a nonbasic amino acid, in contrast to the cleavage of the propeptide after a pair of basic amino acids in mouse submaxillary renin, human renal renin, and many secretory proteins. Treatment of renin with neuraminidase or glycopeptidase F had no apparent effect on the charge heterogeneity of renin. Glycosylation probably does not contribute to charge heterogeneity.  相似文献   

10.
To examine the correlation of localization of prorenin, renin, and cathepsins B, H, and L, immunocytochemistry was applied to rat renal tissue, using a sequence-specific anti-body (anti-prorenin) that recognizes the COOH terminus of the rat renin prosegment. In serial semi-thin sections, immunodeposits for prorenin, renin, and cathepsins B, H, and L were localized in the same juxtaglomerular (JG) cells. Immunodeposits for renin were detected throughout the cytoplasm of the cells, whereas those for prorenin were detected in the perinuclear region. Immunoreactivity for cathepsin B was stronger than that for cathepsins H and L. By electron microscopy, prorenin was localized in small (immature) granules but not in large mature granules, whereas renin was localized mainly in mature granules. In serial thin sections, prorenin, renin, and cathepsin B were colocalized in the same immature granules containing heterogeneously dense material (intermediate granules). By double immunostaining, co-localization of renin with cathepsins B, H, or L was demonstrated in mature granules. The results suggest the possibility that processing of prorenin to renin occurs in immature granules of rat JG cells, and cathepsin B detected in JG cells may be a major candidate for the maturation of renin.  相似文献   

11.
Antibodies and prorenin mutants have long been used to structurally characterize prorenin, the inactive proenzyme form of renin. They were designed on the basis of homology models built using other aspartyl protease proenzyme structures since no structure was available for prorenin. Here, we present the first X-ray structure of a prorenin. The current structure of prorenin reveals that, in this zymogene, the active site of renin is blocked by the N-terminal residues of the mature version of the renin molecule, which are, in turn, covered by an Ω-shaped prosegment. This prevents access of substrates to the active site. The departure of the prosegment on activation induces an important global conformational change in the mature renin molecule with respect to prorenin: similar to other related enzymes such as pepsin or gastricsin, the segment that constitutes the N-terminal β-strand in renin is displaced from the renin active site by about 180° straight into the position that corresponds to the N-terminal β-strand of the prorenin prosegment. This way, the renin active site will become completely exposed and capable of carrying out its catalytic functions. A unique inactivation mechanism is also revealed, which does not make use of a lysine against the catalytic aspartates, probably in order to facilitate pH-independent activation [e.g., by the (pro)renin receptor].  相似文献   

12.
Renin is produced from a larger, inactive precursor, prorenin, by endoproteolytic removal of the amino-terminal prosegment. In this study, we have transfected Chinese hamster ovary cells with the expression plasmid of mouse Ren 2 preprorenin, and have purified mouse Ren 2 prorenin from the incubation medium of these cells by DEAE-Toyopearl chromatography, Blue-Toyopearl chromatography, and isoelectric focusing. Prorenin thus purified has a molecular mass of 42 kDa as determined by SDS-PAGE and an isoelectric point of 6.5. Amino-terminal sequencing has demonstrated that the purified prorenin has the amino-terminus predicted from the nucleotide sequence of mouse Ren 2 preprorenin cDNA.  相似文献   

13.
Pure human inactive renin. Evidence that native inactive renin is prorenin   总被引:1,自引:0,他引:1  
To clarify contradicting observations on the identity of inactive renin and prorenin, inactive renin was completely purified from native human chorion laeve and the culture medium of human chorion cells. A 720,000-fold purification with 14% recovery was achieved from chorion laeve in 6 steps, including immunoaffinity chromatography on a monoclonal antibody to human renin coupled to Protein A-Sepharose CL-4B. A 3,100-fold purification with 40% recovery was achieved from chorion culture medium in 4 steps, including immunoaffinity chromatography. Inactive renin purified from the two different sources migrated as a single protein band with the same molecular weight of 47,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and consisted of multiple components that could be resolved by isoelectric focusing. Both had the same pI values which shifted downward upon activation by trypsin; however, relative peak heights were different between the two preparations. The purified inactive renin from chorion laeve was completely inactive and did not bind to pepstatin-aminohexyl-Sepharose; however, that from chorion culture medium was partially active and completely bound to the pepstatin gel, indicating that each molecule is partially activated. Trypsin-activated inactive renins from both sources were identical with human renal renin in terms of pH optimum and Km. Specific activities of trypsin-activated inactive renin from chorion laeve and chorion culture medium were 529 Goldblatt units/mg of protein and 449 Goldblatt units/mg of protein, respectively. Amino acid sequence analysis of both of the purified inactive renin preparations demonstrated a leucine residue at the amino terminus. The sequence of 11 additional amino acids was identical in both and agreed with that predicted from the base sequence of the renin gene. These findings indicate that preprorenin is converted to prorenin following removal of a 23-amino acid signal peptide and that the native inactive renin, whose amino acid sequence commences with Leu-Pro-Thr..., is prorenin.  相似文献   

14.
Transfection of Chinese hamster ovary (CHO) cells with a plasmid containing the cDNA for human preprorenin has provided cell lines that secrete 15 mg of native prorenin per liter of culture medium. Tryptic activation of the prorenin occurs by selective cleavage of the Arg66-Leu67 bond (numbering as in preprorenin). The renin product, purified in a single step and in high yield by affinity chromatography, is fully stable for as long as 8 months when stored in solution at 4 degrees C and pH 6.5. Purity of the renin was judged to be greater than 95% by gel electrophoresis, compositional and N-terminal sequence analyses, and specific enzyme activity. An important aspect of the present work is the development of a direct assay for renin which permits accurate and reproducible evaluation of enzyme units and kinetic parameters. Application of methods described herein, combined with appropriate scale-up fermentation capabilities, provides the means for generating gram quantities of human renin and its zymogen.  相似文献   

15.
Human prorenin attached by a decahistidine tag at the C-terminus was produced in Chinese hamster ovary cells. The tagged protein secreted into the culture medium was in the inactive prorenin form, and was activated to mature renin by proteolytic removal of its prosegment by trypsin in the same manner as native prorenin. The tagged (pro)renin was efficiently purified by metal-chelate affinity chromatography. The enzymatic properties of mature renin carrying the tag were similar to native renin. These results indicate that the introduction of a decahistidine tag at the C-terminus does not interfere with either the correct folding of prorenin or the catalytic activity of mature renin.  相似文献   

16.
Human prorenin attached by a decahistidine tag at the C-terminus was produced in Chinese hamster ovary cells. The tagged protein secreted into the culture medium was in the inactive prorenin form, and was activated to mature renin by proteolytic removal of its prosegment by trypsin in the same manner as native prorenin. The tagged (pro)renin was efficiently purified by metal-chelate affinity chromatography. The enzymatic properties of mature renin carrying the tag were similar to native renin. These results indicate that the introduction of a decahistidine tag at the C-terminus does not interfere with either the correct folding of prorenin or the catalytic activity of mature renin.  相似文献   

17.
The [Tyr47, Nle53] preprorenin (47-60) peptide methyl ester, a tetradecapeptide related to the human renin prosegment, has been synthesized using a three-segment coupling strategy. Selective deprotection of the segments before coupling allowed an easy removal of the final tetradecapeptide side chain-protecting groups by acidolysis and an easy purification. Antibodies raised against this peptide bound the plasmatic inactive renin.  相似文献   

18.
T Shinagawa  Y S Do  J Baxter  W A Hsueh 《Biochemistry》1992,31(10):2758-2764
Posttranslational processing of enzymatically inactive prorenin to an active form participates in the control of the activity of a key system involved in blood pressure regulation, growth, and other important functions. The issue is complicated because renin can be produced by a number of tissues throughout the body, in addition to the kidney, but the mechanism by which they process prorenin to renin is unknown and difficult to determine because of the small amounts of renin present. In the juxtaglomerular cell of the kidney, a 43 amino acid prosegment is cleaved from the amino terminus of prorenin to generate renin of molecular weight 44,000 [Do, Y. S., Shinagawa, T., Tam, H., Inagami, T., & Hsueh, W. A. (1987) J. Biol. Chem. 262, 1037-1043]. Using human uterine lining or a recombinant human prorenin system, we employed the same approach as that used in kidney, ammonium sulfate precipitation at pH 3.1 followed by pepstatin and H-77 affinity chromatography or gel filtration, to purify to homogeneity a 45,500-MW totally active renin. The specific activity of the active truncated prorenin was 850 Goldblatt units (GU)/mg of protein for chorion-decidua renin and 946 GU/mg of protein for recombinant renin, both similar to that reported for pure human renal renin. Both forms of renin cross-reacted with an antibody generated against 44,00-MW pure human renal renin and with an antibody generated against a peptide identical to the carboxy-terminal one-third of the prosegment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Renin was completely purified from human kidney cortex employing a rapid three-step procedure which included homogenization and ammonium sulfate precipitation, aminohexyl-pepstatin affinity chromatography, and affinity chromatography using a synthetic octapeptide renin inhibitor (H-77) with a reduced peptide bond (-CH2-NH- instead of -CO-NH-) between Leu5-Leu6, Three kg of cortex dissected from 10 kg of human cadaver kidney yielded 1.7 +/- 0.5 mg of protein (mean +/- S.E. for five procedures) with a specific activity of 1094 +/- 166 Goldblatt units/mg of protein and an overall recovery of 52 +/- 2%. Both gel filtration high performance liquid chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed a molecular weight of 44,000, although Mr = 22,000 and 18,000 bands were also identified by SDS-PAGE. The pH optima with sheep angiotensinogen were 5.5 and 7.8 and the Km was 0.31 microM. With pure human substrate the pH optimum was 6.0 and the Km was 1.15 microM. Enzyme activity was inhibited by two different anti-human renal renin antibodies. Amino-terminal sequencing demonstrated a leucine residue at the 1-position. Sequencing of 15 additional amino acids agreed with that predicted from the gene sequence and indicated that prorenin is converted to renin following cleavage at the carboxyl end of two basic residues, Lys-2 Arg-1. As with SDS-PAGE analysis, high performance liquid chromatography in the presence of 6 M urea demonstrated Mr = 44,000, 22,000, and 18,000 bands. Immunoblot studies revealed that all of these bands cross-reacted with antihuman renin antibody. Amino-terminal sequencing indicated the Mm = 22,000 band is the amino terminus and the Mr = 18,000 band the carboxyl terminus of Mr = 44,000 renin. In the aqueous phase, these subunits bound to H-77 suggesting that they represent components of the active enzyme complex. Unlike mouse renin, there was no evidence of disulfide bonds. These results raise the question of whether human renin circulates as a subunit aggregation as well as a single chain protein. This may serve as a possible mechanism to regulate renin activity in plasma and tissues.  相似文献   

20.
To study the activation-inactivation mechanism of the renin zymogen, prorenin, a tertiary structural model of human prorenin was constructed using computer graphics and molecular dynamics calculations, based on the pepsinogen structure. This prorenin model shows that the folded prosegment polypeptide can fit into the substrate binding cleft of the renin moiety. The three positively charged residues, Arg 10, Arg 15, and Arg 20, in the prosegment make salt bridges with Asp 225, Glu 331, and Asp 60, respectively, in renin. Arg 43, which is in the processing site, forms salt bridges with the catalytic residues of Asp 81 and Asp 269. These ionic interactions between the prosegment and the renin may contribute to keeping the prorenin structure as an inactive form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号