首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane-associated prostaglandin E synthase (mPGE synthase) was previously purified to apparent homogeneity from the microsomal fraction of bovine heart (Watanabe, K., et al., Biochim. Biophys. Acta 1439, 406--414, 1999). The N-terminal 22-amino acid sequence of the purified enzyme was identical to that of the 88th to 109th amino acids deduced from the monkey (AB046026) or human (AK024100) cDNA that encodes a hypothetical protein with unknown function. The primary structure has the consensus region of glutaredoxin and of thioredoxin. We constructed an expression plasmid, using the vector (pTrc-HisA) and the monkey cDNA for the 290-amino-acid polypeptide. The recombinant protein with a M(r) of 33 kDa exhibited PGE synthase activity and was purified to apparent homogeneity by nickel-chelating column chromatography. The V(max) and K(m) values for PGH(2) of the purified recombinant mPGE synthase were about 3.3 mumol/min center dot mg of protein and 28 muM, respectively. The recombinant enzyme was activated by various SH-reducing reagents, i.e., dithiothreitol, glutathione (GSH), and beta-mercaptoethanol, in order of decreasing effectiveness. Moreover, the mRNA distribution was high in the heart and brain, but the mRNA was not expressed in the seminal vesicles. These results indicate that the recombinant mPGE synthase is identical to the enzyme purified from the microsomal fraction of bovine heart, and is a novel type of mPGE synthase based on the primary structure, a broad specificity of thiol requirement, and tissue distribution.  相似文献   

2.
Membrane-associated prostaglandin (PG) E synthase (mPGE synthase)-2 catalyzes the conversion of PGH2 primarily to PGE2. The enzyme is activated by various sulfhydryl reagents including dithiothreitol, dihydrolipoic acid, and glutathione, and it is different from mPGE synthase-1 and cytosolic PGE synthase, both of which require specifically glutathione. Recently, other investigators reported that their preparation of mPGE synthase-2 containing heme converted PGH2 to 12L-hydroxy-5,8,10-heptadecatrienoic acid (HHT) rather than to PGE2 [T. Yamada, F. Takusagawa, Biochemistry 46 (2007) 8414-8424]. As we examined presently, the heme-bound enzyme expressed and purified according to their method synthesized HHT from PGH2, but also PGE2 in a decreased amount. Whereas the PGE synthase activity was completely lost at 50 °C for 5 min, the HHT synthase activity remained even at 100 °C for 5 min. In contrast, when the heme-bound enzyme was purified in the presence of dithiothreitol, only PGE2 was produced, but essentially no HHT was detected. Thus, native mPGE synthase-2 enzymatically catalyzes only the conversion of PGH2 to PGE2, but not to HHT, and heme is not involved in this reaction.  相似文献   

3.
Glycosylphosphatidylinositol-specific phospholipase C (GPtdIns-PLC) is found in the protozoan parasite Trypanosoma brucei. A region of protein sequence similarity exists between the protozoan enzyme and eubacterial phosphatidylinositol-phospholipases C. The functional relevance of Cys80 and Gln81 of GPtdIns-PLC, both in this region, was tested with a panel of mutations at each position. Gln81Glu, Gln81Ala, Gln81Gly, Gln81Lys and Gln81Leu mutants were inactive. Cleavage of GPtdIns was detectable in Gln81Asn, although the specific activity decreased 500-fold, and kcat was reduced 50-fold. Thus an amide side-chain at residue 81 is essential for catalysis by GPtdIns-PLC. Sulfhydryl reagents inactivate GPtdIns-PLC, suggesting that a Cys could be close to the enzyme active site. Surprisingly, p-chloromercuriphenyl sulfonate (p-CMPS) is significantly more potent than N-ethylmaleimide, the less bulky compound. This knowledge prompted us to test whether replacement of Cys80 with an amino acid possessing a bulky side-chain would inactivate GPtdIns-PLC: Cys80Ala, Cys80Thr, Cys80Phe, Cys184Ala, and Cys269-270-273Ser were constructed for that purpose. Cys80Phe lacked enzyme activity, while Cys80Ala, Cys80Thr and Cys269-270-273Ser retained 33 to 100% of wild-type activity. Interestingly, the Cys80Ala and Cys80Thr mutants became resistant to p-CMPS, as predicted if the sulfhydryl reagent reacted with Cys80 in the wild-type enzyme to form a cysteinyl mercurylphenylsulfonate moiety, a bulky adduct that inactivated GPtdIns-PLC, similar to the Cys80Phe mutation. We conclude that a bulky side-chain (or adduct) at position 80 of GPtdIns-PLC abolishes enzyme activity. Together, these observations place Cys80 and Gln81 at, or close to, the active site of GPtdIns-PLC from T. brucei.  相似文献   

4.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

5.
GTP cyclohydrolase I catalyses the hydrolytic release of formate from GTP followed by cyclization to dihydroneopterin triphosphate. The enzymes from bacteria and animals are homodecamers containing one zinc ion per subunit. Replacement of Cys110, Cys181, His112 or His113 of the enzyme from Escherichia coli by serine affords catalytically inactive mutant proteins with reduced capacity to bind zinc. These mutant proteins are unable to convert GTP or the committed reaction intermediate, 2-amino-5-formylamino-6-(beta-ribosylamino)-4(3H)-pyrimidinone 5'-triphosphate, to dihydroneopterin triphosphate. The crystal structures of GTP complexes of the His113Ser, His112Ser and Cys181Ser mutant proteins determined at resolutions of 2.5A, 2.8A and 3.2A, respectively, revealed the conformation of substrate GTP in the active site cavity. The carboxylic group of the highly conserved residue Glu152 anchors the substrate GTP, by hydrogen bonding to N-3 and to the position 2 amino group. Several basic amino acid residues interact with the triphosphate moiety of the substrate. The structure of the His112Ser mutant in complex with an undefined mixture of nucleotides determined at a resolution of 2.1A afforded additional details of the peptide folding. Comparison between the wild-type and mutant enzyme structures indicates that the catalytically active zinc ion is directly coordinated to Cys110, Cys181 and His113. Moreover, the zinc ion is complexed to a water molecule, which is in close hydrogen bond contact to His112. In close analogy to zinc proteases, the zinc-coordinated water molecule is suggested to attack C-8 of the substrate affording a zinc-bound 8R hydrate of GTP. Opening of the hydrated imidazole ring affords a formamide derivative, which remains coordinated to zinc. The subsequent hydrolysis of the formamide motif has an absolute requirement for zinc ion catalysis. The hydrolysis of the formamide bond shows close mechanistic similarity with peptide hydrolysis by zinc proteases.  相似文献   

6.
Macrophage migration inhibitory factor (MIF) displays both cytokine and enzyme activities, but its molecular mode of action is still unclear. MIF contains three cysteine residues and we showed recently that the conserved Cys57-Ala-Leu-Cys60 (CALC) motif is critical for the oxidoreductase and macrophage-activating activities of MIF. Here we probed further the role of this catalytic centre by expression, purification, and characterization of the cysteine-->serine mutants Cys60Ser, Cys57Ser/Cys60Ser, and Cys81Ser of human MIF and of mutants Ala58Gly/Leu59Pro and Ala58Gly/Leu59His, containing a thioredoxin (Trx)-like and protein disulphide isomerase (PDI)-like dipeptide, respectively. The catalytic centre mutants formed inclusion bodies and the resultant mutant proteins Cys57Ser/Cys60Ser, Ala58Gly/Leu59Pro, and Als58Gly/Leu59His were only soluble in organic solvent or 6 m GdmHCl when reconstituted at concentrations above 1 microgram.mL-1. This made it necessary to devise new purification methods. By contrast, mutant Cys81Ser was soluble. Effects of pH, solvent, and ionic strength conditions on the conformation of the mutants were analysed by far-UV CD spectropolarimetry and mutant stability was examined by denaturant-induced unfolding. The mutants, except for mutant Cys81Ser, showed a close conformational similarity to wild-type (wt) MIF, and stabilization of the mutants was due mainly to acid pH conditions. Intramolecular disulphide bond formation at the CALC region was confirmed by near-UV CD of mutant Cys60Ser. Mutant Cys81Ser was not involved in disulphide bond formation, yet had decreased stability. Analysis in the oxidoreductase and a MIF-specific cytokine assay revealed that only substitution of the active site residues led to inactivation of MIF. Mutant Cys60Ser had no enzyme and markedly reduced cytokine activity, whereas mutant Cys81Ser was active in both tests. The Trx-like variant showed significant enzyme activity but was less active than wtMIF; PDI-like MIF was enzymatically inactive. However, both variants had full cytokine activity. Together with the low but nonzero cytokine activity of mutant Cys60Ser, this indicated that the cytokine activity of MIF may not be tightly regulated by redox effects or that a distinguishable receptor mechanism exists. This study provides evidence for a role of the CALC motif in the oxidoreductase and cytokine activities of MIF, and suggests that Cys81 could mediate conformational effects. Availability and characterization of the mutants should greatly aid in the further elucidation of the mechanism of action of the unusual cytokine MIF.  相似文献   

7.
We determined the active site of penicillin-binding protein (PBP) 2 of Escherichia coli. A water-soluble form of PBP 2, which was constructed by site-directed mutagenesis, was purified by affinity chromatography, labeled with dansyl-penicillin, and then digested with a combination of proteases. The amino acid composition of the labeled chymotryptic peptide purified by HPLC was identical with that of the amino acid sequence, Ala-Thr-Gln-Gly-Val-Tyr-Pro-Pro-Ala-Ser330-Thr-Val-Lys-Pro (residues 321-334) of PBP 2, which was deduced from the nucleotide sequence of the pbpA gene encoding PBP 2. This amino acid sequence was verified by sequencing the labeled tryptic peptide containing the labeled chymotryptic peptide region. A mutant PBP 2 (thiol-PBP 2), constructed by site-directed mutagenesis to replace Ser330 with Cys, lacked the penicillin-binding activity. These findings provided evidence that Ser330 near the middle of the primary structure of PBP 2 is the penicillin-binding active-site residue, as predicted previously on the basis of the sequence homology. Around this active site, the sequence Ser-Xaa-Xaa-Lys was observed, which is conserved in the active-site regions of all E. coli PBPs so far studied, class A and class C beta-lactamases, and D-Ala carboxypeptidases. The COOH-terminal amino acid of PBP 2 was identified as His633.  相似文献   

8.
The amino acid sequence of a protease inhibitor isolated from the hemolymph of Sarcophaga bullata larvae was determined by tandem mass spectrometry. Homology considerations with respect to other protease inhibitors with known primary structures assisted in the choice of the procedure followed in the sequence determination and in the alignment of the various peptides obtained from specific chemical cleavage at cysteines and enzyme digests of the S. bullata protease inhibitor. The resulting sequence of 57 residues is as follows: Val Asp Lys Ser Ala Cys Leu Gln Pro Lys Glu Val Gly Pro Cys Arg Lys Ser Asp Phe Val Phe Phe Tyr Asn Ala Asp Thr Lys Ala Cys Glu Glu Phe Leu Tyr Gly Gly Cys Arg Gly Asn Asp Asn Arg Phe Asn Thr Lys Glu Glu Cys Glu Lys Leu Cys Leu.  相似文献   

9.
The complete amino acid sequence of Achromobacter lyticus protease I (EC 3.4.21.50), which specifically hydrolyzes lysyl peptide bonds, has been established. This has been achieved by sequence analysis of the reduced and S-carboxymethylated protease and of peptides obtained by enzymatic digestion with Achromobacter protease I itself and Staphylococcus aureus V8 protease and by chemical cleavage with cyanogen bromide. The protease consists of 268 residues with three disulfide bonds, which have been assigned to Cys6-Cys216, Cys12-Cys80, and Cys36-Cys58. Comparison of the amino acid sequence of Achromobacter protease and other serine proteases of bacterial and mammalian origins has revealed that Achromobacter protease I is a mammalian-type serine protease of which the catalytic triad comprises His57, Asp113, and Ser194. It has also been shown that the protease has 9- and 26-residue extensions of the peptide chain at the N and C termini, respectively, and overall sequence homology is as low as 20% with bovine trypsin. The presence of a disulfide bridge between the N-terminal extension Cys6 and Cys216 close to the putative active site in the C-terminal region is thought to be responsible for the generation of maximal proteolytic function in the pH range 8.5-10.7 and enhanced stability to denaturation.  相似文献   

10.
11.
Nitric oxide (NO), produced in different cell types through the conversion of L-arginine into L-citrulline by the enzyme NO synthase, has been proposed to exert its action in several physiological and pathological events. The great propensity for nitrosothiol formation and breakdown represents a mechanism which modulates the action of macromolecules containing NO-reactive Cys residues at their active centre and/or allosteric sites. Based on the human haemoglobin (Hb) structure and accounting for the known acid-base catalysed Cys beta93-nitrosylation and Cys beta393NO-denitrosylation processes, the putative amino acid sequence (Lys/Arg/His/Asp/Glu)Cys(Asp/Glu) (sites -1, 0, and + 1, respectively) has been proposed as the minimum consensus motif for Cys-NO reactivity. Although not found in human Hb, the presence of a polar amino acid residue (Gly/Ser/Thr/Cys/Tyr/Asn/Gln) at the -2 position has been observed in some NO-reactive protein sequences (e.g., NMDA receptors). However, the most important component of the tri- or tetra-peptide consensus motif has been recognised as the Cys(Asp/Glu) pair [Stamler et al., Neuron (1997) 18, 691-696]. Here, we analyse the three-dimensional structure of several proteins containing NO-reactive Cys residues, and show that their nitrosylation and denitrosylation processes may depend on the Cys-Sy atomic structural microenvironment rather than on the tri- or tetra-peptide sequence consensus motif.  相似文献   

12.
13.
Prostaglandin F (PGF) ethanolamide (prostamide F) synthase, which catalyzed the reduction of prostamide H(2) to prostamide F(2alpha), was found in mouse and swine brain. The enzyme was purified from swine brain, and its amino acid sequence was defined. The mouse enzyme consisted of a 603-bp open reading frame coding for a 201-amino acid polypeptide with a molecular weight of 21,669. The amino acid sequence placed the enzyme in the thioredoxin-like superfamily with Cys(44) being the active site. The enzyme expressed in Escherichia coli as well as the native enzyme catalyzed not only the reduction of prostamide H(2) to prostamide F(2alpha) but also that of PGH(2) to PGF(2alpha). The V(max) and K(m) values for prostamide H(2) were about 0.25 micromol/min.mg of protein and 7.6 microm, respectively, and those for PGH(2) were about 0.69 micromol/min.mg of protein and 6.9 microm, respectively. Neither PGE(2) nor PGD(2) served as a substrate for this synthase. Based on these data, we named the enzyme prostamide/PGF synthase. Although the enzyme showed a broad specificity for reductants, reduced thioredoxin preferentially served as a reducing equivalent donor for this enzyme. Moreover, Northern and Western blot analyses in addition to the prostamide F synthase activity showed that the enzyme was mainly distributed in the brain and spinal cord, and the immunohistochemical study in the spinal cord showed that the enzyme was found mainly in the cytosol. These results suggest that prostamide/PGF synthase may play an important functional role in the central nervous system.  相似文献   

14.
The specific activity of subtilisin E, an alkaline serine protease of Bacillus subtilis, was substantially increased by optimizing the amino acid residue at position 31 (Ile in the wild-type enzyme) in the vicinity of the catalytic triad of the enzyme. Eight uncharged amino acids (Cys, Ser, Thr, Gly, Ala, Val, Leu, and Phe) were introduced at this site, which is next to catalytic Asp32, using site-directed mutagenesis. Mutant enzymes were expressed in Escherichia coli and were prepared from the periplasmic space. Only the Val and Leu substitutions gave active enzyme, and the Leu31 mutant was found to have a greatly increased activity compared to the wild-type enzyme. The other six mutant enzymes showed a marked decrease in activity. This result indicates that a branched-chain amino acid at position 31 is essential for the expression of subtilisin activity and that the level of the activity depends on side chain structure. The purified Leu31 mutant enzyme was analyzed with respect to substrate specificity, heat stability, and optimal temperature. It was found that the Leu31 replacement caused a prominent 2-6-fold increase in catalytic efficiency (kcat/Km) due to a larger kcat for peptide substrates.  相似文献   

15.
Abe I  Watanabe T  Lou W  Noguchi H 《The FEBS journal》2006,273(1):208-218
Aloesone synthase (ALS) and chalcone synthase (CHS) are plant-specific type III poyketide synthases sharing 62% amino acid sequence identity. ALS selects acetyl-CoA as a starter and carries out six successive condensations with malonyl-CoA to produce a heptaketide aloesone, whereas CHS catalyses condensations of 4-coumaroyl-CoA with three malonyl-CoAs to generate chalcone. In ALS, CHS's Thr197, Gly256, and Ser338, the active site residues lining the initiation/elongation cavity, are uniquely replaced with Ala, Leu, and Thr, respectively. A homology model predicted that the active site architecture of ALS combines a 'horizontally restricting' G256L substitution with a 'downward expanding' T197A replacement relative to CHS. Moreover, ALS has an additional buried pocket that extends into the 'floor' of the active site cavity. The steric modulation thus facilitates ALS to utilize the smaller acetyl-CoA starter while providing adequate volume for the additional polyketide chain extensions. In fact, it was demonstrated that CHS-like point mutations at these positions (A197T, L256G, and T338S) completely abolished the heptaketide producing activity. Instead, A197T mutant yielded a pentaketide, 2,7-dihydroxy-5-methylchromone, while L256G and T338S just afforded a triketide, triacetic acid lactone. In contrast, L256G accepted 4-coumaroyl-CoA as starter to efficiently produce a tetraketide, 4-coumaroyltriacetic acid lactone. These results suggested that Gly256 determines starter substrate selectivity, while Thr197 located at the entrance of the buried pocket controls polyketide chain length. Finally, Ser338 in proximity of the catalytic Cys164 guides the linear polyketide intermediate to extend into the pocket, thus leading to formation of the hepataketide in Rheum palmatum ALS.  相似文献   

16.
The 5-, 12-, and 15-lipoxygenases contain a highly conserved sequence of the form His-(X)4-His-(X)4-His-(X)17-His-(X)8-His which represents a potential binding site for non heme iron to the protein. The importance of selected amino acids within this His cluster for the activity of human 5-lipoxygenase was investigated by site-directed mutagenesis using bacteria and insect cells expression systems. After single mutation of each of the 5 His residues at positions 363, 368, 373, 391, and 400 by Ser, Cys, or Lys, measurable levels of 5-lipoxygenase activity could be recovered in Escherichia coli only for the Ser363 and Cys363 mutants, with most amino acid substitutions causing a decrease in the levels of expression of the soluble protein. In contrast, 25-80% of soluble 5-lipoxygenase activity was recovered after the replacement of several of the hydrophobic amino acids in this region: Tyr384 by Ser or Phe; Phe394 by Trp and Val375 by Ala. Met436 could be replaced by Leu with little effect on 5-lipoxygenase activity or turnover inactivation half-time. High levels of mutant 5-lipoxygenases containing a Ser residue instead of His at each of the five positions were also expressed in Spodoptera frugiperda (Sf9) cells infected with recombinant baculovirus. The specific activity (58-75% of control) and the reaction time course of the Ser363, Ser391, and Ser400 mutants were comparable with that of native 5-lipoxygenase whereas inactive proteins were obtained for the Ser368 and Ser373 mutants. These results show that His368 and His373 residues are important for 5-lipoxygenase activity and that the other conserved His363, His391, His400, and Met436 residues are not crucial for the catalytic cycle or for the mechanism of self-inactivation of 5-lipoxygenase.  相似文献   

17.
The crystal structures of N-acetylglutamate synthase (NAGS) in the arginine biosynthetic pathway of Neisseria gonorrhoeae complexed with acetyl-CoA and with CoA plus N-acetylglutamate have been determined at 2.5- and 2.6-A resolution, respectively. The monomer consists of two separately folded domains, an amino acid kinase (AAK) domain and an N-acetyltransferase (NAT) domain connected through a 10-A linker. The monomers assemble into a hexameric ring that consists of a trimer of dimers with 32-point symmetry, inner and outer ring diameters of 20 and 100A, respectively, and a height of 110A(.) Each AAK domain interacts with the cognate domains of two adjacent monomers across two 2-fold symmetry axes and with the NAT domain from a second monomer of the adjacent dimer in the ring. The catalytic sites are located within the NAT domains. Three active site residues, Arg316, Arg425, and Ser427, anchor N-acetylglutamate in a position at the active site to form hydrogen bond interactions to the main chain nitrogen atoms of Cys356 and Leu314, and hydrophobic interactions to the side chains of Leu313 and Leu314. The mode of binding of acetyl-CoA and CoA is similar to other NAT family proteins. The AAK domain, although catalytically inactive, appears to bind arginine. This is the first reported crystal structure of any NAGS, and it provides insights into the catalytic function and arginine regulation of NAGS enzymes.  相似文献   

18.
Xiong C  O'Keefe BR  Byrd RA  McMahon JB 《Peptides》2006,27(7):1668-1675
Scytovirin (SVN) is a novel anti-HIV protein isolated from aqueous extracts of the cultured cyanobacterium Scytonema varium. SVN contains two apparent domains, one comprising amino acids 1-48 and the second stretching from amino acids 49 to 95. These two domains display significant homology to each other and a similar pattern of disulfide bonds. Two DNA constructs encoding scytovirin 1-48 (Cys7Ser) (SD1) and 49-95 (Cys55Ser) (SD2) were constructed, and expressed in E. coli, with thioredoxin fused to their N-terminus. Purified recombinant products were tested for binding activities with the HIV surface envelope glycoproteins gp120 and gp41. Whole cell anti-HIV data showed that SD1 had similar anti-HIV activity to the full-length SVN, whereas SD2 had significantly less anti-HIV activity. Further deletion mutants of the SD1 domain (SVN(3-45)Cys7Ser, SVN(6-45)Cys7Ser, SVN(11-45)Cys7Ser) showed that the N-terminal residues are necessary for full anti-HIV activity of SD1 and that an eight amino acid deletion from the C-terminus (SVN(1-40)Cys7Ser) had a significant effect, decreasing the anti-HIV activity of SD1 by approximately five-fold.  相似文献   

19.
20.
[2Fe2S] ferredoxins isolated from various plants and algae comprise 93–99 amino acid residues and resemble each other not only in sequences, but also in physiological functions. One of them isolated from Spirulina platensis was subjected to X-ray analysis and its three dimensional structure is now known. [2Fe2S] ferredoxins of a different type are found in halobacteria and comprise 128 amino acid residues. Both types of the [2Fe2S] ferredoxins exhibit low redox potentials. By comparing the amino acid sequences of 28 [2Fe2S] ferredoxins and the tertiary structure of S. platensis ferredoxin we predicted a common three-dimensional structure to the [2Fe2S] ferredoxins and proposed a molecular surface area to be interacting with FNR. An artificial small molecule composed of 20 amino acid residues is designed on the basis of the tertiary structure of S. platensis ferredoxin. The amino acid sequence was predicted to be ProTyrSerCysArgAlaGlyAlaCysSerThrCysAlaGly ProLeuLeuThr CysVal which should have a [2Fe2S] cluster with a low redox potential  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号