首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Microsomal prostaglandin E synthase-1 (mPGES-1) has been regarded as an attractive drug for inflammation-related diseases. In search of new mPGES-1 inhibitors, we performed virtual screening using our traditional Chinese medicine and natural products database (http://tcm.cmu.edu.tw/) and constructed comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) using a training set of 30 experimentally tested mPGES-1 inhibitors. The CoMFA and CoMSIA models derived were statistically significant with cross-validated coefficient values of 0.808 for CoMFA and 0.829 for CoMSIA and non-cross-validated coefficient values of 0.829 for CoMFA and 0.980 for CoMSIA. Docking and de novo evolution design gave three top derivatives, 2-O-caffeoyl tartaric acid-Evo_2, glucogallin-Evo_1 and 3-O-feruloylquinic acid-Evo_7 that have higher binding affinities than the control, glutathione. These three derivatives have interactions with Arg70, Arg73, Arg110, Arg126 and Arg38, which all are mPGES-1 key active site residues. In addition, these derivatives fit well into the CoMFA and CoMSIA models, with hydrophobic, hydrophilic and electropositive substructures mapped onto corresponding contour plots. Hence, we suggest that these three de novo compounds could be a starting basis for new mPGES-1 inhibitors.  相似文献   

2.
This study examined the effect of prostaglandin E2 (PGE2) produced by microsomal prostaglandin E synthase-1 (mPGES-1) on circadian rhythm. Using wild-type mice (WT) and mPGES-1 knockout mice (mPGES-1−/−), I recorded and automatically analyzed the natural behavior of mice in home cages for 24 h and measured brain levels of PGE2. The switch to wakefulness was not smooth, and sleepiness and the total duration of sleep were significantly longer in the mPGES-1−/− mice. Moreover, the basal concentration of PGE2 was significantly lower in the mPGES-1−/− mice. These findings suggest that PGE2 produced by mPGES-1 regulates the onset of wakefulness and the maintenance of circadian rhythm.  相似文献   

3.
Microsomal prostaglandin E2 synthase (mPGES)-1 is an inducible protein recently shown to be an important enzyme in inflammatory prostaglandin E2 (PGE2) production in some peripheral inflammatory lesions. However, in inflammatory sites in the brain, the induction of mPGES-1 is poorly understood. In this study, we demonstrated the expression of mPGES-1 in the brain parenchyma in a lipopolysaccharide (LPS)-induced inflammation model. A local injection of LPS into the rat substantia nigra led to the induction of mPGES-1 in activated microglia. In neuron-glial mixed cultures, mPGES-1 was co-induced with cyclooxygenase-2 (COX-2) specifically in microglia, but not in astrocytes, oligodendrocytes or neurons. In microglia-enriched cultures, the induction of mPGES-1, the activity of PGES and the production of PGE2 were preceded by the induction of mPGES-1 mRNA and almost completely inhibited by the synthetic glucocorticoid dexamethasone. The induction of mPGES-1 and production of PGE2 were also either attenuated or absent in microglia treated with mPGES-1 antisense oligonucleotide or microglia from mPGES-1 knockout (KO) mice, respectively, suggesting the necessity of mPGES-1 for microglial PGE2 production. These results suggest that the activation of microglia contributes to PGE2 production through the concerted de novo synthesis of mPGES-1 and COX-2 at sites of inflammation of the brain parenchyma.  相似文献   

4.
Rat carrageenin-induced pleurisy was used to clarify the role of prostaglandin H synthase (PGHS)-2 in acute inflammation. Intrapleural injection of 0.2 ml of 2% λ-carrageenin induced accumulation of exudate and infiltration of leukocytes into the pleural cavity. When PGHS-1 and -2 proteins in the pleural exudate cells were analyzed by Western blot analysis, PGHS-2 was detectable from 1 hr after carrageenin injection. Its level rose sharply, remained high from 3 to 7 hr after injection, and then fell to near the detection limit. PGHS-1 was also detected, but kept almost the same level throughout the course of the pleurisy. Levels of prostaglandin (PG) E2 and thromboxane (TX) B2 in the exudate increased from hour 3 to hour 7, and then declined. Thus, the changes of the level of PGE2 were closely paralleled those of PGHS-2.The selective PGHS-2 inhibitors NS-398, nimesulide and SC-58125 suppressed the inflammatory reaction and caused a marked decrease in the level of PGE2 but not in those of TXB2 and 6-keto-PGF. These results suggest that the PGHS-2 expressed in the pleural exudate cells may be involved in PGE2 formation at the site of inflammation.  相似文献   

5.
The goal of the present study was to assess how genetic loss of microsomal prostaglandin E2 synthase-1 (mPGES-1) affects acute cardiac ischemic damage after coronary occlusion in mice. Wild type (WT), heterozygous (mPGES-1+/−), and homozygous (mPGES-1−/−) knockout mice were subjected to left coronary artery occlusion. At 24 h, myocardial infarct (MI) volume was measured histologically. Post-MI survival, plasma levels of creatine phosphokinase (CPK) and cardiac troponin-I, together with MI size, were similar in WT, mPGES-1+/− and mPGES-1−/− mice. In contrast, post-MI survival was reduced in mPGES-1−/− mice pretreated with I prostanoid receptor (IP) antagonist (12/16) compared with vehicle-treated controls (13/13 mPGES-1−/−) together with increased CPK and cardiac troponin-I release. The deletion of mPGES-1 in mice results in increased prostacyclin I2 (PGI2) formation and marginal effects on the circulatory prostaglandin E2 (PGE2) level. We conclude that loss of mPGES-1 results in increased PGI2 formation, and in contrast to inhibition of PGI2, without worsening acute cardiac ischemic injury.  相似文献   

6.
Membrane-associated prostaglandin (PG) E synthase (mPGE synthase)-2 catalyzes the conversion of PGH2 primarily to PGE2. The enzyme is activated by various sulfhydryl reagents including dithiothreitol, dihydrolipoic acid, and glutathione, and it is different from mPGE synthase-1 and cytosolic PGE synthase, both of which require specifically glutathione. Recently, other investigators reported that their preparation of mPGE synthase-2 containing heme converted PGH2 to 12L-hydroxy-5,8,10-heptadecatrienoic acid (HHT) rather than to PGE2 [T. Yamada, F. Takusagawa, Biochemistry 46 (2007) 8414-8424]. As we examined presently, the heme-bound enzyme expressed and purified according to their method synthesized HHT from PGH2, but also PGE2 in a decreased amount. Whereas the PGE synthase activity was completely lost at 50 °C for 5 min, the HHT synthase activity remained even at 100 °C for 5 min. In contrast, when the heme-bound enzyme was purified in the presence of dithiothreitol, only PGE2 was produced, but essentially no HHT was detected. Thus, native mPGE synthase-2 enzymatically catalyzes only the conversion of PGH2 to PGE2, but not to HHT, and heme is not involved in this reaction.  相似文献   

7.
We have characterized the structures of cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2 synthase-1 (mPGES-1) in intact cells using bifunctional and photo-activatable crosslinking agents. A dimeric complex was detected for COX-2 by both crosslinking approaches, consistent with the crystal structure of the enzyme. For mPGES-1, treatment of A549 cells with disuccinimidyl suberate yielded immunoreactive protein bands corresponding to a dimer (33 kDa) and a trimer (45 kDa), as observed for the isolated enzyme. Photo-crosslinking with photoactivatable methionine in intact cells generated complexes with molecular weights corresponding to the dimer (33 kDa) and two putative trimer forms (50 and 55 kDa). Treatment with the selective mPGES-1 inhibitor MF63 prevented the formation of the 50 and 55 kDa crosslinked complexes, while an inactive structural analogue had no effect. Our data indicate that COX-2 forms a dimer in intact cells and that mPGES-1 has an oligomeric structure that can be disrupted by a selective inhibitor.  相似文献   

8.
The cyclooxygenase activity of the bifunctional enzyme prostaglandin H(2) synthase-2 (PGHS-2) is the target of non-steroidal anti-inflammatory drugs. Inhibition of the peroxidase activity of PGHS has been less studied. Using Soret absorption changes, the binding of aromatic hydroxamic acids to the peroxidase site of PGHS-2 was examined to investigate the structural determinants of inhibition. Typical of mammalian peroxidases, the K(d) for benzhydroxamic acid (42mM) is much greater than that for salicylhydroxamic acid (475microM). Binding of the hydroxamic acid tepoxalin (25microM) resulted in only minor Soret changes. However, tepoxalin is an efficient reducing cosubstrate, indicating that it is an alternative electron donor rather than an inhibitor of the peroxidase activity. Aromatic hydrazides are metabolically activated inhibitors of peroxidases. 2-Naphthoichydrazide (2-NZH) caused the time- and concentration-dependent inhibition of both PGHS-2 peroxidase and cyclooxygenase activities. H(2)O(2) was required for the inactivation of both PGHS-2 activities and indomethacin (which binds at the cyclooxygenase site) did not affect the peroxidase inhibitory potency of 2-NZH. A series of aromatic hydrazides were found to be potent inhibitors of PGHS-2 peroxidase activity with IC(50) values in the 6-100microM range for 13 of the 18 hydrazides examined. Selective inhibition of PGHS-2 over myeloperoxidase and horseradish peroxidase isozyme C was increased by certain ring substitutions. In particular, a chloro group para to the hydrazide moiety increased the PGHS-2 selectivity relative to both myeloperoxidase and horseradish peroxidase isozyme C.  相似文献   

9.
We cloned the cDNA for mouse microsomal prostaglandin (PG) E synthase-1 (mPGES-1) and expressed the recombinant enzyme in Escherichia coli. The membrane fraction containing recombinant mPGES-1 catalyzed the isomerization of PGH2 to PGE2 in the presence of GSH with K(m) values of 130 microM for PGH2 and 37 microM for GSH, a turnover number of 600 min(-1), and a k(cat)/K(m) ratio of 4.6 min(-1) microM(-1). Recombinant mPGES-1 was purified and used to generate a polyclonal antibody highly specific for mPGES-1. The antibody showed a single band on Western blotting of microsomal fractions from lipopolysaccharide-treated mouse peritoneal macrophages. Northern and Western blotting analyses revealed that mPGES-1 was induced together with cyclooxygenase-2 in mouse macrophages after treatment of the cells with lipopolysaccharide. Confocal immunofluorescence microscopy revealed that both mPGES-1 and cyclooxygenase-2 were colocalized in the lipopolysaccharide-treated macrophages. Taken together, these results demonstrate that mPGES-1 is an efficient downstream enzyme for the production of PGE2 in the activated macrophages treated by lipopolysaccharide.  相似文献   

10.
COX-2 与mPGES-1 在肾透明细胞癌中的表达及临床意义   总被引:1,自引:0,他引:1       下载免费PDF全文
目的:探讨环氧合酶-2(COX-2)和膜结合型前列腺素E2合成酶1(mPGES-1)在肾透明细胞癌组织中的表达及临床意义。方法:采用免疫组化SP法分别检测49例肾透明细胞癌组织标本和21例正常肾组织标本中COX-2和mPGES-1的表达。结果:COX-2在正常肾组织中的阳性表达率为4.8%,在肾透明细胞癌组织中的阳性表达率为53.1%(P<0.05);mPGES-1在正常肾组织中的阳性表达率为4.8%,在肾透明细胞癌组织中的阳性表达率为40.8%(P<0.05);COX-2和mPGES-1的高表达均与肾透明细胞癌的病理分级和临床分期无相关性(P>0.05);COX-2和mPGES-1在肾透明细胞癌中的表达呈正相关(P<0.05),r=0.5。结论:COX-2和mPGES-1在肾透明细胞癌发生及发展过程中共同发挥重要作用;COX-2和mPGES-1可能成为肾透明细胞癌新的治疗靶点。  相似文献   

11.
We investigated possible involvement of three isozymes of prostaglandin E synthase (PGES), microsomal PGES-1 (mPGES-1), mPGES-2 and cytosolic PGES (cPGES) in COX-2-dependent prostaglandin E(2) (PGE(2)) formation following proteinase-activated receptor-2 (PAR2) stimulation in human lung epithelial cells. PAR2 stimulation up-regulated mPGES-1 as well as COX-2, but not mPGES-2 or cPGES, leading to PGE(2) formation. The PAR2-triggered up-regulation of mPGES-1 was suppressed by inhibitors of COX-1, cytosolic phospholipase A(2) (cPLA(2)) and MEK, but not COX-2. Finally, a selective inhibitor of mPGES-1 strongly suppressed the PAR2-evoked PGE(2) formation. PAR2 thus appears to trigger specific up-regulation of mPGES-1 that is dependent on prostanoids formed via the MEK/ERK/cPLA(2)/COX-1 pathway, being critical for PGE(2) formation.  相似文献   

12.
Prostaglandin (PG)E2 is a critical lipid mediator connecting chronic inflammation to cancer. The anti-carcinogenic epigallocatechin-3-gallate (EGCG) from green tea (Camellia sinensis) suppresses cellular PGE2 biosynthesis, but the underlying molecular mechanisms are unclear. Here, we investigated the interference of EGCG with enzymes involved in PGE2 biosynthesis, namely cytosolic phospholipase (cPL)A2, cyclooxygenase (COX)-1 and -2, and microsomal prostaglandin E2 synthase-1 (mPGES-1). EGCG failed to significantly inhibit isolated COX-2 and cPLA2 up to 30 μM and moderately blocked isolated COX-1 (IC50 > 30 μM). However, EGCG efficiently inhibited the transformation of PGH2 to PGE2 catalyzed by mPGES-1 (IC50 = 1.8 μM). In lipopolysaccharide-stimulated human whole blood, EGCG significantly inhibited PGE2 generation, whereas the concomitant synthesis of other prostanoids (i.e., 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid and 6-keto PGF) was not suppressed. Conclusively, mPGES-1 is a molecular target of EGCG, and inhibition of mPGES-1 is seemingly the predominant mechanism underlying suppression of cellular PGE2 biosynthesis by EGCG.  相似文献   

13.
Prostaglandin E(2) (PGE(2)) is the most common prostanoid and has a variety of bioactivities including a crucial role in urogenital function. Multiple enzymes are involved in its biosynthesis. Among 3 PGE(2) terminal synthetic enzymes, membrane-associated PGE(2) synthase-2 (mPGES-2) is the most recently identified, and its role remains uncharacterized. In previous studies, membrane-associated PGE(2) synthase-1 (mPGES-1) and cytosolic PGE(2) synthase (cPGES) were reported to be expressed along the urogenital tracts. Here we report the genomic structure and tissue distribution of mPGES-2 in the urogenital system. Analysis of several bioinformatic databases demonstrated that mouse mPGES-2 spans 7 kb and consists of 7 exons. The mPGES-2 promoter contains multiple Sp1 sites and a GC box without a TATA box motif. Real-time quantitative PCR revealed that constitutive mPGES-2 mRNA was most abundant in the heart, brain, kidney and small intestine. In the urogenital system, mPGES-2 was highly expressed in the renal cortex, followed by the renal medulla and ovary, with lower levels in the ureter, bladder and uterus. Immunohistochemistry studies indicated that mPGES-2 was ubiquitously expressed along the nephron, with much lower levels in the glomeruli. In the ureter and bladder, mPGES-2 was mainly localized to the urothelium. In the reproductive system, mPGES-2 was restricted to the epithelial cells of the testis, epididymis, vas deferens and seminal vesicle in males, and oocytes, stroma cells and corpus luteum of the ovary and epithelial cells of the oviduct and uterus in females. This expression pattern is consistent with an important role for mPGES-2-mediated PGE(2) in urogenital function.  相似文献   

14.
Prostaglandin (PG) H(2) (PGH(2)), formed from arachidonic acid, is an unstable intermediate and is converted efficiently into more stable arachidonate metabolites (PGD(2), PGE(2), and PGF(2)) by the action of three groups of enzymes. Prostaglandin E synthase catalyzes an isomerization reaction, PGH(2) to PGE(2). Microsomal prostaglandin E synthase type-2 (mPGES-2) has been crystallized with an anti-inflammatory drug indomethacin (IMN), and the complex structure has been determined at 2.6A resolution. mPGES-2 forms a dimer and is attached to lipid membrane by anchoring the N-terminal section. Two hydrophobic pockets connected to form a V shape are located in the bottom of a large cavity. IMN binds deeply in the cavity by placing the OMe-indole and chlorophenyl moieties into the V-shaped pockets, respectively, and the carboxyl group interacts with S(gamma) of C110 by forming a H-bond. A characteristic H-bond chain formation (N-H...S(gamma)-H...S(gamma)...H-N) is seen through Y107-C113-C110-F112, which apparently decreases the pK(a) of S(gamma) of C110. The geometry suggests that the S(gamma) of C110 is most likely the catalytic site of mPGES-2. A search of the RCSB Protein Data Bank suggests that IMN can fit into the PGH(2) binding site in various proteins. On the basis of the crystal structure and mutation data, a PGH(2)-bound model structure was built. PGH(2) fits well into the IMN binding site by placing the alpha and omega-chains in the V-shaped pockets, and the endoperoxide moiety interacts with S(gamma) of C110. A possible catalytic mechanism is proposed on the basis of the crystal and model structures, and an alternative catalytic mechanism is described. The fold of mPGES-2 is quite similar to those of GSH-dependent hematopoietic prostaglandin D synthase, except for the two large loop sections.  相似文献   

15.
We determined the roles of reactive oxygen species (ROS) in the expression of cyclooxygenase-2 (COX-2) and the production of prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-activated microglia. LPS treatment increased intracellular ROS in rat microglia dose-dependently. Pre-treatment with superoxide dismutase (SOD)/catalase, or SOD/catalase mimetics that can scavenge intracellular ROS, significantly attenuated LPS-induced release in PGE2. Diphenylene iodonium (DPI), a non-specific NADPH oxidase inhibitor, decreased LPS-induced PGE2 production. In addition, microglia from NADPH oxidase-deficient mice produced less PGE2 than those from wild-type mice following LPS treatment. Furthermore, LPS-stimulated expression of COX-2 (determined by RT-PCR analysis of COX-2 mRNA and western blot for its protein) was significantly reduced by pre-treatment with SOD/catalase or SOD/catalase mimetics. SOD/catalase mimetics were more potent than SOD/catalase in reducing COX-2 expression and PGE2 production. As a comparison, scavenging ROS had no effect on LPS-induced nitric oxide production in microglia. These results suggest that ROS play a regulatory role in the expression of COX-2 and the subsequent production of PGE2 during the activation process of microglia. Thus, inhibiting NADPH oxidase activity and subsequent ROS generation in microglia can reduce COX-2 expression and PGE2 production. These findings suggest a potential therapeutic intervention strategy for the treatment of inflammation-mediated neurodegenerative diseases.  相似文献   

16.
Prostaglandin E2 (PGE2) and hypoxia-inducible factor-1α (HIF-1α) affect many mechanisms that have been shown to play a role in prostate cancer. In PGE2-treated LNCaP cells, up-regulation of HIF-1α requires the internalization of PGE2, which is in sharp contrast with the generally accepted view that PGE2 acts through EP receptors located at the cell membrane. Here we aimed to study in androgen-independent PC3 cells the role of intracellular PGE2 in several events linked to prostate cancer progression. To this end, we used bromocresol green, an inhibitor of prostaglandin uptake that blocked the immediate rise in intracellular immunoreactive PGE2 following treatment with 16,16-dimethyl-PGE2. Bromocresol green prevented the stimulatory effect of 16,16-dimethyl-PGE on cell proliferation, adhesion, migration and invasion and on HIF-1α expression and activity, the latter assessed as the HIF-dependent activation of (i) a hypoxia response element-luciferase plasmid construct, (ii) production of angiogenic factor vascular endothelial growth factor-A and (iii) in vitro angiogenesis. The basal phenotype of PC3 cells was also affected by bromocresol green, that substantially lowered expression of HIF-1α, production of vascular endothelial growth factor-A and cell proliferation. These results, and the fact that we found functional intracellular EP receptors in PC3 cells, suggest that PGE2-dependent intracrine mechanisms play a role in prostate cancer Therefore, inhibition of the prostaglandin uptake transporter might be a novel therapeutic approach for the treatment of prostate cancer.  相似文献   

17.
We investigated the effects of vitamin D3 on the signaling pathways by prostaglandin E2 (PGE2) in osteoblast-like MC3T3-E1 cells. The pretreatment with 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3), an active form of vitamin D3, significantly inhibited cAMP accumulation induced by 10 μM PGE2 in a dose-dependent manner in the range between 1 pM and 1 nM. This effect of 1,25-(OH)2D3 was dependent on the time of pretreatment up to 8 h. 1,25-(OH)2D3 also inhibited the cAMP accumulation induced by NaF, a GTP-binding protein activator, or forskolin which directly activates adenylate cyclase. On the other hand, 1,25-(OH)2D3 significantly inhibited PGE2-induced IP3 formation in a dose-dependent manner between 10 pM and 1 nM. However, 1,25-(OH)2D3 had little effect on NaF-induced IP3 formation. The pretreatment with 24,25-dihydroxyvitamin D3, an inactive form of vitamin D3, affected neither cAMP accumulation nor IP3 formation induced by PGE2. These results strongly suggest that 1,25-(OH)2D3 modulates the signaling by PGE2 in osteoblast-like cells as follows: the inhibitory effect on the cAMP production is exerted at a point downstream from adenylate cyclase and the inhibitory effect on the phosphoinositide hydrolysis is exerted at the point between the PGE2 receptor and GTP-binding protein, probably Gi2.  相似文献   

18.
Yogesh Dahiya 《FEBS letters》2010,584(19):4227-4232
Many extracellular stimuli, e.g. microbial products, cytokines etc., result in the expression of inducible nitric oxide synthase (iNOS) in macrophages. However, it is not known whether expression of the iNOS gene in response to microbial products is a primary response of macrophages, or is the result of paracrine/autocrine signalling induced by endogenous biomolecules that are synthesised as a result of host cell-microbe interaction. In this paper we demonstrate that iNOS expression in mouse peritoneal macrophages in response to bacterial peptidoglycan (PGN) is a secondary effect requiring autocrine signalling of endogenously produced prostaglandin E2, and that PGN stimulation is mandatory, but not sufficient in itself, for induction of iNOS expression.  相似文献   

19.
In cloned osteoblast-like cells, MC3T3-E1, prostaglandin F2 alpha (PGF2 alpha) stimulated arachidonic acid (AA) release in a dose-dependent manner in the range between 1 nM and 10 microM. 12-O-tetradecanoylphorbol-13-acetate (TPA), a protein kinase C (PKC) activator, which by itself had little effect on AA release, markedly amplified the release of AA stimulated by PGF2 alpha in a dose-dependent manner. 4 alpha-phorbol 12,13-didecanoate, a phorbol ester which is inactive for PKC, showed little effect on the PGF2 alpha-induced AA release. 1-oleoyl-2-acetylglycerol (OAG), a specific activator for PKC, mimicked TPA by enhancement of the AA release induced by PGF2 alpha. H-7, a PKC inhibitor, markedly suppressed the effect of OAG on PGF2 alpha-induced AA release. Quinacrine, a phospholipase A2 inhibitor, showed partial inhibitory effect on PGF2 alpha-induced AA release, while it suppressed the amplification by OAG of PGF2 alpha-induced AA release almost to the control level. Furthermore, TPA enhanced the AA release induced by melittin, known as a phospholipase A2 activator. On the other hand, TPA inhibited the formation of inositol trisphosphate stimulated by PGF2 alpha. Under the same condition, PGF2 alpha indeed stimulated prostaglandin E2 (PGE2) synthesis and TPA markedly amplified the PGF2 alpha-induced PGE2 synthesis as well as AA release. These results indicate that the activation of PKC amplifies PGF2 alpha-induced both AA release and PGE2 synthesis through the potentiation of phospholipase A2 activity in osteoblast-like cells.  相似文献   

20.
Nociception evoked prostaglandin (PG) release in the spinal cord considerably contributes to the induction of hyperalgesia and allodynia. To evaluate the relative contribution of cyclooxygenase-1 (COX-1) and COX-2 in this process we assessed the effects of the selective COX-1 inhibitor SC560 and the selective COX-2 inhibitor celecoxib on formalin-evoked nociceptive behaviour and spinal PGE(2) release. SC560 (10 and 20 mg/kg) significantly reduced the nociceptive response and completely abolished the formalin-evoked PGE(2) raise. In contrast, celecoxib (10 and 20 mg/kg) was ineffective in both regards, i.e. the flinching behaviour was largely unaltered and the formalin-induced PGE(2) raise as assessed using microdialysis was only slightly, not significantly reduced. This suggests that the formalin-evoked rapid PG release was primarily caused by COX-1 and was independent of COX-2. Mean free spinal cord concentrations of celecoxib during the formalin assay were 32.0 +/- 4.5 nM, thus considerably higher than the reported IC50 for COX-2 (3-7 nM). Therefore, the lack of efficacy of celecoxib is most likely not to be a result of poor tissue distribution. COX-2 mRNA and protein expression in the spinal cord were not affected by microdialysis alone but the mRNA rapidly increased following formalin injection and reached a maximum at 2 h. COX-2 protein was unaltered up to 4 h after formalin injection. The time course of COX-2 up-regulation suggests that the formalin-induced nociceptive response precedes COX-2 protein de novo synthesis and may therefore be unresponsive to COX-2 inhibition. Considering the results obtained with the formalin model it may be hypothesized that the efficacy of celecoxib in early injury evoked pain may be less than that of unselective NSAIDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号