首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spermine is a constituent of all vertebrate cells. Nevertheless, it exerts toxic effects if it accumulates in cells. Spermine is a natural substrate of the FAD-dependent polyamine oxidase, a constitutive enzyme of many cell types. It has been reported that the toxicity of spermine was enhanced if polyamine oxidase was inhibited. We were interested to examine spermine toxicity to human colon carcinoma-derived CaCo-2 cells because, in contrast to most tumor cell lines, CaCo-2 cells undergo differentiation, which is paralleled by changes in polyamine metabolism. CaCo-2 cells were remarkably resistant to spermine accumulation, presumably because spermine is degraded by polyamine oxidase at a rate sufficient to provide spermidine for the maintenance of growth. Inactivation of polyamine oxidase increased the sensitivity to spermine. A major reason for the enhanced spermine cytotoxicity at low polyamine oxidase activity is presumably the profound depletion of spermidine, and the consequent occupation of spermidine binding sites by spermine. Hydrogen peroxide and the aldehydes 3-aminopropanal and 3-acetamidopropanal, the products of polyamine oxidase-catalyzed splitting of spermine and N 1-acetylspermine, contribute little to spermine cytotoxicity. Activation of caspase by spermine was insignificant, and the formation of DNA ladders, another indicator of apoptotic cell death, could not be observed. Thus it appears that cell death due to excessive accumulation of spermine in CaCo-2 cells was mainly nonapoptotic. The content of brush border membranes did not change between days 6 and 8 after seeding, and it was not affected by exposure of the cells to spermine. However, the activities of alkaline phosphatase, sucrase, and aminopeptidase in nontreated cells were considerably enhanced during this period, but remained low if cells were exposed to spermine. These changes appear to indicate that differentiation is prevented by intoxication with spermine, although other explanations cannot be excluded. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
1. Diamines (putrescine and cadaverine) and polyamines (spermidine and spermine) were extracted from tissues of the sea star Pycnopodia helianthoides, separated and quantitated using reversed-phase high-performance liquid chromatography (RP-HPLC). Simultaneous measurements of levels of protein and DNA and rates of incorporation of 14C-thymidine were carried out. 2. The most abundant polyamine in tissues was spermidine (0.3873-2.5282 nmol/mg tissue) followed by spermine (0.103-1.5517 nmol/mg tissue), putrescine (0.2096-0.5322 nmol/mg tissue) and cadaverine (0.022-0.6064 nmol/mg tissue). 3. An unknown molecule with derivatization and elution behaviour similar to that of polyamine standards was detected in all tissues. 4. Protein levels ranged from 20.47 mg/g tissue in the body wall to 48.44 mg/g tissue in the pyloric caecum. 5. DNA levels were lowest in the ovary (0.25 mg/g tissue) and highest in the testis (5.62 mg/g tissue). 6. Incorporation of 14C-thymidine was highest in the testis. Testicular tissue had the highest spermidine/spermine ratio (5.4). A significant correlation between the spermidine/spermine ratio and 14C-thymidine incorporation (expressed either as DPM/g tissue or DPM/mg protein) suggests that polyamines are implicated in the regulation of cell proliferation in the sea star P. helianthoides.  相似文献   

3.
Polyamines, including spermine, spermidine, and the precursor diamine, putrescine, are naturally occurring polycationic alkylamines that are required for eukaryotic cell growth, differentiation, and survival. This absolute requirement for polyamines and the need to maintain intracellular levels within specific ranges require a highly regulated metabolic pathway primed for rapid changes in response to cellular growth signals, environmental changes, and stress. Although the polyamine metabolic pathway is strictly regulated in normal cells, dysregulation of polyamine metabolism is a frequent event in cancer. Recent studies suggest that the polyamine catabolic pathway may be involved in the etiology of some epithelial cancers. The catabolism of spermine to spermidine utilizes either the one-step enzymatic reaction of spermine oxidase (SMO) or the two-step process of spermidine/spermine N 1-acetyltransferase (SSAT) coupled with the peroxisomal enzyme N 1-acetylpolyamine oxidase. Both catabolic pathways produce hydrogen peroxide and a reactive aldehyde that are capable of damaging DNA and other critical cellular components. The catabolic pathway also depletes the intracellular concentrations of spermidine and spermine, which are free radical scavengers. Consequently, the polyamine catabolic pathway in general and specifically SMO and SSAT provide exciting new targets for chemoprevention and/or chemotherapy.  相似文献   

4.
Chromatin prepared from maize shoot tips using as extraction medium including quinacrine as an inhibitor of polyamine oxidase, contained 1.6 pmol spermidine g DNA-1 and 14.8 pmol spermine g DNA-1, respectively. This represented 0.1% spermidine and 3.7% spermine as compared with the content of those amines in the whole tissue. No putrescine was detectable in the chromatin preparation. When contamination of polyamines in the preparation was determined by the addition of labeled polyamines to the extraction medium, the ratio of the polyamines in the preparation to those in the extraction medium was 0.1% spermidine and 0.7% spermine, respectively. Spermine in the chromatin preparation was almost fully solubilized by a DNase-treatment, but spermidine was less easily solubilized. Most of the spermine associated with the chromation is chromatin-specific.  相似文献   

5.
The mammary cells in virgin mice are essentially non-proliferative, but they can be induced to undergo DNA synthesis in vitro in the presence of insulin. Time course studies on polyamine biosynthesis and DNA synthesis showed that insulin elicits sequential stimulation of the activity of the polyamine biosynthetic enzymes, ornithine decarboxylase, S-adenosyl-L-methionine decarboxylase (SAMDC) and spermidine synthase, and an increase in the concentration of spermidine prior to the augmentation of DNA synthesis. At 48 to 72 hours of culture when DNA synthesis is maximal, the concentration of spermidine increased 2? to 3-fold, whereas the level of spermine remained unchanged. Addition of methyl glyoxal bis(guanylhydrazone) (5—10 μM), a potent inhibitor of SAMDC, to the medium at the onset of culture resulted in inhibition of spermidine formation and DNA synthesis, but when added at 24 hours or 48 hours of culture, the inhibitory effect on DNA synthesis was greatly reduced. The drug, however, produced little inhibition of RNA and protein synthesis. Inhibition of DNA synthesis by the drug can be reversed by addition of spermidine or other polyamines such as putrescine, cadaverine and spermine to the culture. Spermidine is, however, the only polyamine that is effective at physiological concentrations (100~150 pmoles/mg tissue). These results suggest a possibility that spermidine may play a key role in the regulation of mammary cell proliferation.  相似文献   

6.
Ishii I  Ikeguchi Y  Mano H  Wada M  Pegg AE  Shirahata A 《Amino acids》2012,42(2-3):619-626
Polyamines spermidine and spermine are known to be required for mammalian cell proliferation and for embryonic development. Alpha-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase (ODC) a limiting enzyme of polyamine biosynthesis, depleted the cellular polyamines and prevented triglyceride accumulation and differentiation in 3T3-L1 cells. In this study, to explore the function of polyamines in adipogenesis, we examined the effect of polyamine biosynthesis inhibitors on adipocyte differentiation and lipid accumulation of 3T3-L1 cells. The spermidine synthase inhibitor trans-4-methylcyclohexylamine (MCHA) increased spermine/spermidine ratios, whereas the spermine synthase inhibitor N-(3-aminopropyl)-cyclohexylamine (APCHA) decreased the ratios in the cells. MCHA was found to decrease lipid accumulation and GPDH activity during differentiation, while APCHA increased lipid accumulation and GPDH activity indicating the enhancement of differentiation. The polyamine-acetylating enzyme, spermidine/spermine N 1-acetyltransferase (SSAT) activity was increased within a few hours after stimulus for differentiation, and was found to be elevated by APCHA. In mature adipocytes APCHA decreased lipid accumulation while MCHA had the opposite effect. An acetylpolyamine oxidase and spermine oxidase inhibitor MDL72527 or an antioxidant N-acetylcysteine prevented the promoting effect of APCHA on adipogenesis. These results suggest that not only spermine/spermidine ratios but also polyamine catabolic enzyme activity may contribute to adipogenesis.  相似文献   

7.
Earlier unknown 1,8-diamino-3-methyl-4-azanonane (γ-MeSpd) was synthesized. The analogue was a substrate of neither spermine/spermidine N 1-acetyltransferase nor spermine synthase, but was capable to support the growth of DU145 cells having depleted polyamine pools. Such a combination of γ-MeSpd properties discloses novel opportunities to study cellular functions of catabolically unstable and easily interconvertible spermine and spermidine.  相似文献   

8.
Summary The expression patterns of cytosolic and nuclear polyamine acetyltransferases were studied in normal and neoplastic growth processesin vivo andin vitro to evidentiate the roles played by these enzymes in cell proliferation. In regenerating liver, cytosolic spermidine/spermine N1-acetyltransferase showed similar augments of mRNA level and enzymatic activity during the prereplicative period (4–8 h), whereas spermidine N8-acetyltransferase activity increased later (24 h) when DNA synthesis was maximally enhanced. In fibroblasts continuously dividing, the messenger for spermidine/spermine N1-acetyltransferase rapidly accumulated after serum-stimulation. In cultured Morris hepatoma cells stimulated to logarithmic growth, spermidine N8-acetyltransferase activity remained at plateau for 1 day declining thereafter, while spermidine/spermine N1-acetyltransferase activity immediately decreased. In Yoshida AH-130 hepatoma cells transplanted in rat peritoneum, spermidine N8-acetyltransferase and spermidine/spermine N1-acetyltransferase activities rose, respectively, in concomitance with elevated proliferation-rate and quasi-stationary phase of growth. Since the expression of cytosolic and nuclear acetyltransferases underwent different temporal activation, an involvement of these enzymes in separate metabolic processes controlling normal and neoplastic growth may be suggested.  相似文献   

9.
Quiescent confluent monolayers of WI38 human diploid fibroblasts were stimulated to proliferate by replacement of the exhausted medium with fresh medium containing 10% fetal calf serum. The cellular content of the polyamines, putrescine, spermidine, and spermine was studied at various intervals after the nutritional change. The putrescine content increased during the pre-replicative phase of the cell cycle, whereas the content of spermidine and spermine did not increase until after the initiation of DNA synthesis. By varying the composition of the stimulating medium it was possible to alter the percentage of cells that were stimulated to proliferate. Measurement of the cellular polyamine content and 3H-thymidine (3H-TdR) incorporation into DNA at the time of the maximal rate of DNA synthesis showed that the magnitude of putrescine accumulation depended on the percentage of cells that were stimulated to proliferate. These results indicate that there may be a connection between polyamine synthesis and subsequent DNA replication.  相似文献   

10.
Kinetics of polyamine synthesis and degradation were studied in mouse fibroblasts growing in suspension culture. The approach was to prelabel cells with radioactive polyamines and to observe the rate of loss of radioactivity and the rate of decrease in specific activity of these compounds in cells. Radioactive putrescine declined with a half-life of 1.5–2h, whether derived directly from exogenous putrescine or indirectly from ornithine. Much of this turnover was due to excretion, the kinetics of which suggested that a steady-state was being established between putrescine inside and outside the cells. Within 5h of medium change, cells growing at a density of 5×105cells/ml had supplied putrescine to the medium to a concentration of about 1μm. When cells were prelabelled with either putrescine or spermidine, radioactivity in cell spermidine declined with a half-life of 60h. This rate of turnover is sufficient to provide all the spermine required by the cell. Spermine synthesis was the only observed reaction of spermidine, although some excretion into the growth medium was detected. Spermine was not degraded at a detectable rate as long as cells were growing exponentially; in stationary phase, degradation to spermidine, which was excreted, became significant. The half-lives of the specific activities of spermine, spermidine and putrescine were 24, 15 and 1.5h respectively. From these values, the rate of synthesis of each was calculated. Spermidine was synthesized at 6.8 times the rate of spermine, and putrescine was synthesized at 0.46nmol/106cells per h, twice the rate of spermidine. The significance of these kinetic parameters is discussed.  相似文献   

11.

1. 1.|When Chinese hamster ovary cells are treated with cycloheximide (10 μg/ml) or puromycin (100 μg/ml) for 2 h before and during heating at 43°C for 3 h, there is protection from hyperthermic killing; i.e. the plating efficiency increases 2000-fold from 3.7 × 10−5 to (6–9) × 10−2.

2. 2.|The total intracellular levels of spermidine and spermine are not altered by the hyperthermic or drug treatments.

3. 3.|The small 30% decrease in intracellular putrescine observed after heating is not altered by drug treatment.

4. 4.|Heat protection by treatment with cycloheximide or puromycin cannot be attributed to changes in levels of total intracellular polyamines.

Author Keywords: Heat protection; cycloheximide; puromycin; putrescine; spermidine; spermine  相似文献   


12.
Catabolism of polyamines   总被引:10,自引:0,他引:10  
Seiler N 《Amino acids》2004,26(3):217-233
Summary. Owing to the establishment of cells and transgenic animals which either lack or over-express acetylCoA:spermidine N1-acetyltransferase a major progress was made in our understanding of the role of polyamine acetylation. Cloning of polyamine oxidases of mammalian cell origin revealed the existence of several enzymes with different substrate and molecular properties. One appears to be identical with the polyamine oxidase that was postulated to catalyse the conversion of spermidine to putrescine within the interconversion cycle. The other oxidases are presumably spermine oxidases, because they prefer free spermine to its acetyl derivatives as substrate. Transgenic mice and cells which lack spermine synthase revealed that spermine is not of vital importance for the mammalian organism, but its transformation into spermidine is a vitally important reaction, since in the absence of active polyamine oxidase, spermine accumulates in blood and causes lethal toxic effects.Numerous metabolites of putrescine, spermidine and spermine, which are presumably the result of diamine oxidase-catalysed oxidative deaminations, are known as normal constituents of organs of vertebrates and of urine. Reasons for the apparent contradiction that spermine is in vitro a poor substrate of diamine oxidase, but is readily transformed into N8-(2-carboxyethyl)spermidine in vivo, will need clarification.Several attempts were made to establish diamine oxidase as a regulatory enzyme of polyamine metabolism. However, diamine oxidase has a slow turnover. This, together with the efficacy of the homeostatic regulation of the polyamines via the interconversion reactions and by transport pathways renders a role of diamine oxidase in the regulation of polyamine concentrations unlikely. 4-Aminobutyric acid, the product of putrescine catabolism has been reported to have antiproliferative properties. Since ornithine decarboxylase and diamine oxidase activities are frequently elevated in tumours, it may be hypothesised that diamine oxidase converts excessive putrescine into 4-aminobutyric acid and thus restricts tumour growth and prevents malignant transformation. This function of diamine oxidase is to be considered as part of a general defence function, of which the prevention of histamine and cadaverine accumulation from the gastrointestinal tract is a well-known aspect.  相似文献   

13.
The salt wash fraction removed from rabbit reticulocyte ribosomes with 0.5 m KCl contains dialyzable components required for maximum in vitro synthesis of globin peptides. The active substances were identified as spermidine and spermine. Rabbit reticulocyte ribosomes contain spermine and spermidine in a 1:3 ratio of which about 75% is removed in the 0.5 m KCl wash fraction. Dialyzed salt wash can be reactivated for in vitro protein synthesis by addition of either spermine, spermidine, or Mg2+ ion. A twofold higher leucine incorporation into protein was obtained with the optimum concentration of either polyamine than with Mg2+. Spermidine is effective in lowering the Mg2+ requirement for initiation of phenylalanine peptides in the poly(U)-directed system, apparently by formation of an initiation complex. Also, spermidine competitively interferes with edeine inhibition of globin chain initiation. These results indicate that spermidine may play a special role in peptide initiation.  相似文献   

14.
The polyamine content of the circulating erythrocyte population in the embryonic chick was studied during its development. Total cellular polyamine content fell dramatically between 5 and 7 days of development, paralleling the decrease in metabolic activity exhibited by these cells. Nuclei were isolated from the erythrocytes by a non-aqueous technique, which not only eliminated the polyamine loss that occurred with aqueous isolation, but also prevented redistribution of the polyamines from the cytoplasm. Nuclear spermidine and spermine contents decreased markedly between 5 and 6 days of development from 31 to 10 pmol/microgram of DNA and from 33 to 18 pmol/microgram of DNA respectively. Thereafter the spermine content remained constant, but the spermidine content continued to decline. Good correlations between spermidine and RNA contents were observed in both cells and nuclei, and similarly between spermine and RNA contents in cells, but no such correlation was observed between spermine and RNA in nuclei.  相似文献   

15.
Trypanothione reductase (TR) occurs exclusively in trypanosomes and leishmania, which are the etiological agents of many diseases. TR plays a vital role in the antioxidant defenses of these parasites and inhibitors of TR have potential as antitrypanosomal agents. We describe the syntheses of several spermine and spermidine derivatives and the inhibiting effects of these compounds on T. cruzi TR. All of the inhibiting compounds displayed competitive inhibition of TR-mediated reduction of trypanothione disulfide. The three most effective compounds studied were N4,N8-bis(3-phenylpropyl)spermine (12), N4,N8-bis(2-naphthylmethyl)spermine (14), and N1,N8-bis(2-naphthylmethyl)spermidine (21), with Ki values of 3.5, 5.5 and 9.5 μM, respectively. Compounds 12, 14, and 21 were found to be potent trypanocides in vitro with IC50 values ranging from 0.19 to 0.83 μM against four T. brucei ssp. strains. However, these compounds did not prolong the lives of mice infected with trypanosomes. This work indicates that certain polyamine derivatives which target a unique pathway in Trypanosomatidae have potential as antitrypanosomal agents.  相似文献   

16.
The apparent biological half-lives of spermidine and spermine in mouse brain and other organs were determined by measurement of the specific radioactivities of these compounds over long periods of time. The endogenous polyamine pools were labeled by repeated intraperitoneal injections of [1,4-14C]putrescine·2HCl, [2-14C]d,l-methionine, [2-3H]l-methionine, andS-adenosyl-[2-3H]l-methionine. Repeated injections were given to ensure labeling of both fast and slow polyamine pools. It was shown that the two parts of the polyamine molecules which derive from ornithine and methionine have significantly different life spans, especially in the brain. Actual turnover rates of polyamines could not be determined because of the active interconversion between spermine and spermidine, and between spermidine and putrescine. The observed reutilization of putrescine originating from spermidine degradation for spermidine biosynthesis, and the analogous reutilization of spermidine in spermine biosynthesis is discussed with respect to its physiological significance and its relationship to cellular organization.  相似文献   

17.
Many biological processes result from the coupling of metabolic pathways. Considering this, proliferation depends on adequate iron and polyamines, and although iron-depletion impairs proliferation, the metabolic link between iron and polyamine metabolism has never been thoroughly investigated. This is important to decipher, as many disease states demonstrate co-dysregulation of iron and polyamine metabolism. Herein, for the first time, we demonstrate that cellular iron levels robustly regulate 13 polyamine pathway proteins. Seven of these were regulated in a conserved manner by iron-depletion across different cell-types, with four proteins being down-regulated (i.e., acireductone dioxygenase 1 [ADI1], methionine adenosyltransferase 2α [MAT2α], Antizyme and polyamine oxidase [PAOX]) and three proteins being up-regulated (i.e., S-adenosyl methionine decarboxylase [AMD1], Antizyme inhibitor 1 [AZIN1] and spermidine/spermine-N1-acetyltransferase 1 [SAT1]). Depletion of iron also markedly decreased polyamine pools (i.e., spermidine and/or spermine, but not putrescine). Accordingly, iron-depletion also decreased S-adenosylmethionine that is essential for spermidine/spermine biosynthesis. Iron-depletion additionally reduced 3H-spermidine uptake in direct agreement with the lowered levels of the polyamine importer, SLC22A16. Regarding mechanism, the “reprogramming” of polyamine metabolism by iron-depletion is consistent with the down-regulation of ADI1 and MAT2α, and the up-regulation of SAT1. Moreover, changes in ADI1 (biosynthetic) and SAT1 (catabolic) partially depended on the iron-regulated changes in c-Myc and/or p53. The ability of iron chelators to inhibit proliferation was rescuable by putrescine and spermidine, and under some conditions by spermine. Collectively, iron and polyamine metabolism are intimately coupled, which has significant ramifications for understanding the integrated role of iron and polyamine metabolism in proliferation.  相似文献   

18.
The relationship between polyamine synthesis, growth and secretion in vivo was examined in ventral prostates from: (a) intact rats aged 3-60 weeks; (b) animals castrated for 7 days before injection with 5 alpha-dihydrotestosterone (17 beta-hydroxy-5-alpha-androstan-3-one), testosterone and 5 alpha-androstane-3 beta, 17 beta-diol for up to 10 days; (c) rats injected with the 3 beta, 17 beta-diol immediately after castration. Ornithine decarboxylase activity and the concentrations of putrescine, spermidine and spermine were measured. DNA-synthetic activity was monitored by measuring [125I]iododoxyuridine incorporation. An enhanced spermidine/spermine molar ratio reflected increased activity of the prostate. The ratio was higher (greater than 2) in prostates from sexually immature animals, than in the intact adult (1.5), suggesting that the ratio was indicative of the proliferative activity of the tissue. However, in the androgen-stimulated castrated rat, enhanced spermidine/spermine ratios tended to correlate with hypertrophy and secretion. In both sets of experiments there was a linear relationship between protein and spermidine content. High spermidine/spermine molar ratios were the consequence of a relatively low rate of accumulation of spermine relative to spermidine and protein. The relationship between polyamine synthesis and DNA-synthetic activity was investigated in cultured prostate. A combination of insulin (3 mug/ml) and testosterone (0.1 muM caused a stimulatory response in the incorporation of [125I]iododeoxyuridine and in cell division, despite a depleted polyamine content and low ornithine decarboxylase activity in the cultured tissue.  相似文献   

19.
The effects of secretin on polyamine metabolism in rat pancréas were investigated. Single injections of secretin increased ornithine decarboxylase activity only very slightly. However a substantial time- and dose-dependent increase of acetyl CoA: polyamine N1-acetyltransferase activity was observed. The concentrations of N1-acetylspermidine, putrescine and β-alanine increased concomitantly, but spermidine and spermine remained unchanged. These results suggest that, in this model, the accumulated putrescine was formed from spermidine, via its acetylation, rather than from ornithine.  相似文献   

20.
New procedures for determining putrescine, spermidine and spermine were first established here by the end point assay method using polyamine oxidase from Penicillium chrysogenum or Aspergillus terreus and putrescine oxidase from Micrococcus rubens. Method 1: Spermidine and spermine were first oxidized with polyamine oxidase (step A). To the reaction mixture, putrescine oxidase was added to oxidize putrescine (step B). Putrescine and spermidine in another reaction mixture were oxidized with putrescine oxidase (step C). Method 2 : Putrescine and spermidine were first oxidized with putrescine oxidase (step A). To the reaction mixture, polyamine oxidase was added to oxidize spermine (step B). Spermidine and spermine in another reaction mixture were oxidized with polyamine oxidase (step C). The amounts of putrescine, spermidine and spermine were determined from the absorbance values at each steps A, B and C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号