首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In site-directed spin labeling, the relative solvent accessibility of spin-labeled side chains is taken to be proportional to the Heisenberg exchange rate (W(ex)) of the nitroxide with a paramagnetic reagent in solution. In turn, relative values of W(ex) are determined by continuous wave power saturation methods and expressed as a proportional and dimensionless parameter Pi. In the experiments presented here, NiEDDA is characterized as a paramagnetic reagent for solvent accessibility studies, and it is shown that absolute values of W(ex) can be determined from Pi, and that the proportionality constant relating them is independent of the paramagnetic reagent and mobility of the nitroxide. Based on absolute exchange rates, an accessibility factor is defined (0 < rho < 1) that serves as a quantitative measure of side-chain solvent accessibility. The accessibility factors for a nitroxide side chain at 14 different sites in T4 lysozyme are shown to correlate with a structure-based accessibility parameter derived from the crystal structure of the protein. These results provide a useful means for relating crystallographic and site-directed spin labeling data, and hence comparing crystal and solution structures.  相似文献   

2.
3.
Columbus L  Hubbell WL 《Biochemistry》2004,43(23):7273-7287
In site-directed spin labeling, a nitroxide-containing side chain is introduced at selected sites in a protein. The EPR spectrum of the labeled protein encodes information about the motion of the nitroxide on the nanosecond time scale, which has contributions from the rotary diffusion of the protein, from internal motions in the side chain, and from backbone fluctuations. In the simplest model for the motion of noninteracting (surface) side chains, the contribution from the internal motion is sequence independent, as is that from protein rotary diffusion. Hence, differences in backbone motions should be revealed by comparing the sequence-dependent motions of nitroxides at structurally homologous sites. To examine this model, nitroxide side chains were introduced, one at a time, along the GCN4-58 bZip sequence, for which NMR (15)N relaxation experiments have identified a striking gradient of backbone mobility along the DNA-binding region [Bracken et al. (1999) J. Mol. Biol. 285, 2133]. Spectral simulation techniques and a simple line width measure were used to extract dynamical parameters from the EPR spectra, and the results reveal a mobility gradient similar to that observed in NMR relaxation, indicating that side chain motions mirror backbone motions. In addition, the sequence-dependent side chain dynamics were analyzed in the DNA/protein complex, which has not been previously investigated by NMR relaxation methods. As anticipated, the backbone motions are damped in the DNA-bound state, although a gradient of motion persists with residues at the DNA-binding site being the most highly ordered, similar to those of helices on globular proteins.  相似文献   

4.
A disulfide-linked nitroxide side chain (R1) used in site-directed spin labeling of proteins often exhibits an EPR spectrum characteristic of a weakly ordered z-axis anisotropic motion at topographically diverse surface sites, including those on helices, loops and edge strands of β-sheets. To elucidate the origin of this motion, the first crystal structures of R1 that display simple z-axis anisotropic motion at solvent-exposed helical sites (131 and 151) and a loop site (82) in T4 lysozyme have been determined. Structures of 131R1 and 151R1 determined at cryogenic or ambient temperature reveal an intraresidue Cα—H···Sδ interaction that immobilizes the disulfide group, consistent with a model in which the internal motions of R1 are dominated by rotations about the two terminal bonds (Columbus, Kálai, Jeko, Hideg, and Hubbell, Biochemistry 2001;40:3828–3846). Remarkably, the 131R1 side chain populates two rotamers equally, but the EPR spectrum reflects a single dominant dynamic population, showing that the two rotamers have similar internal motion determined by the common disulfide-backbone interaction. The anisotropic motion for loop residue 82R1 is also accounted for by a common disulfide-backbone interaction, showing that the interaction does not require a specific secondary structure. If the above observations prove to be general, then significant variations in order and rate for R1 at noninteracting solvent-exposed helical and loop sites can be assigned to backbone motion because the internal motion is essentially constant.  相似文献   

5.
Previous studies have shown that the mobility of nitroxide side chains in a protein, inferred from the electron paramagnetic resonance (EPR) spectra, can be used to classify particular sites as helix surface sites, tertiary contact sites, buried sites, or loop sites. In addition, the sequence dependence of mobility can identify regular secondary structure. However, in the most widely used side chain, an apparent interaction of the nitroxide ring with the protein at some helix surface sites gives rise to EPR spectra degenerate with those at tertiary contact sites. In the present study, we use selected sites in T4 lysozyme to evaluate novel nitroxide side chains designed to resolve this degeneracy. The results indicate that the reagent 3-(methanesulfonylthiomethyl)-2,2, 5,5-tetramethylpyrrolidin-1-yloxy reacts with cysteine to give a nitroxide side chain that has a high contrast in mobility between helix surface and tertiary contact sites, effectively resolving the degeneracy. The reagent 3-(iodomercuriomethyl)-2,2,5,5-tetramethyl-2, 5-dihydro-1H-pyrrol-1-yloxy reacts with cysteine to provide a mercury-linked nitroxide that also shows reduced interaction with the protein at most helix surface sites. Thus, these new side chains may be the preferred choices for structure determination using site-directed spin labeling.  相似文献   

6.
Site-directed spin labeling provides a means for exploring structure and dynamics in proteins. To interpret the complex EPR spectra that often arise, it is necessary to characterize the rotamers of the spin-labeled side chain and the interactions they make with the local environment in proteins of known structure. For this purpose, crystal structures have been determined for T4 lysozyme bearing a nitroxide side chain (R1) at the solvent-exposed helical sites 41 and 44 in the B helix. These sites are of particular interest in that the corresponding EPR spectra reveal two dynamic states of R1, one of which is relatively immobilized suggesting interactions of the nitroxide with the environment. The crystal structures together with the effect of mutagenesis of nearest neighbors on the motion of R1 suggest intrahelical interactions of 41R1 with the i + 4 residue and of 44R1 with the i + 1 residue. Such interactions appear to be specific to particular rotamers of the R1 side chain.  相似文献   

7.
Magnetic dipolar interactions between pairs of solvent-exposed nitroxide side chains separated by approximately one to four turns along an alpha-helix in T4 lysozyme are investigated. The interactions are analyzed both in frozen solution (rigid lattice conditions) and at room temperature as a function of solvent viscosity. At room temperature, a novel side chain with hindered internal motion is used, along with a more commonly employed nitroxide side chain. The results suggest that methods developed for rigid lattice conditions can be used to analyze dipolar interactions between nitroxides even in the presence of motion of the individual spins, provided the rotational correlation time of the interspin vector is sufficiently long. The distribution of distances observed for the various spin pairs is consistent with rotameric equilibria in the nitroxide side chain, as observed in crystal structures. The existence of such distance distributions places important constraints on the interpretation of internitroxide distances in terms of protein structure and structural changes.  相似文献   

8.
KcsA is a prokaryotic potassium channel. The present study employs cysteine scanning mutagenesis and site-directed spin labeling to investigate the structure of the second transmembrane segment (residues 82-120) in functional tetrameric channels reconstituted in lipid bilayers. Spin-spin interactions are observed between nitroxide side chains at symmetry-related sites close to the 4-fold axis of symmetry. To aid in quantitative analysis of these interactions, a new diamagnetic analogue of the nitroxide side chain is used to prepare magnetically dilute samples with constant structure. Using constraints imposed by the spin-spin interactions, a packing model for this segment is deduced that is in excellent agreement with the recently reported crystal structure [Doyle, D., et al. (1998) Science 280, 69-77]. The relatively immobilized state of the nitroxide side chains suggests that the channel is rigid on the electron paramagnetic resonance time scale. Moreover, the poor sulfhydryl reactivity of the cysteine at many locations indicates that the channel is not subject to the low-frequency fluctuations that permit reaction of buried cysteines. At sites expected to be located in the pore, the accessibility of the side chains to collision with O(2) or nickel(II) ethylenediaminediacetate is low. This inaccessibility, together with the generally low mobility of the side chains throughout the sequence, makes it difficult to detect the presence of the pore based on these measurements. However, the presence of a solvated pore can be directly demonstrated using a polarity parameter deduced from the EPR spectra recorded at low temperature. These measurements also reveal the presence of a polarity gradient in the phospholipid bilayer.  相似文献   

9.
T C Pochapsky  X M Ye 《Biochemistry》1991,30(16):3850-3856
Putidaredoxin (Pdx), a 106-residue globular protein consisting of a single polypeptide chain and a [2Fe-2S] cluster, is the physiological reductant of P-450cam, which in turn catalyzes the monohydroxylation of camphor by molecular oxygen. No crystal structure has been obtained for Pdx or for any closely homologous protein. The application of two-dimensional 1H NMR methods to the problem of structure determination in Pdx is reported. A beta-sheet consisting of five short strands and one beta-turn has been identified from distinctive nuclear Overhauser effect patterns. All of the backbone resonances and a majority of the side-chain resonances corresponding to protons in the beta-sheet have been assigned sequence specifically. The sheet contains one parallel and three antiparallel strand orientations. Hydrophobic side chains in the beta-sheet face primarily toward the protein interior, except for a group of three valine side chains that are apparently solvent exposed. The potential significance of this "hydrophobic patch" in terms of biological activity is discussed. The folding topology, as determined by the constraints of the beta-sheet, is compared with that of other [2Fe-2S] proteins for which folding topologies are known.  相似文献   

10.
Kim M  Xu Q  Murray D  Cafiso DS 《Biochemistry》2008,47(2):670-679
The binding and recognition of ligands by bacterial outer membrane transport proteins is mediated in part by interactions made through their extracellular loops. Here, site-directed spin labeling (SDSL) and electron paramagnetic resonance (EPR) spectroscopy were used to examine the effect of stabilizing solutes on the extracellular loops in BtuB, the vitamin B12 transporter, and FecA, the ferric citrate transporter. EPR spectra from the extracellular loops of FecA and BtuB arise from dynamic backbone segments, and distance measurements made by double electron-electron resonance indicate that the second extracellular loop in BtuB samples a wide range of conformations. These conformations are dramatically restricted upon substrate binding. In addition, the EPR spectra from nitroxide labels attached to the extracellular loops in BtuB and FecA are highly sensitive to solutes, and at every site examined the motion of the label is significantly reduced in the presence of stabilizing osmolytes, such as polyethylene glycols. For the second extracellular loop in BtuB, the solute-induced structural changes are small, but they are sufficient to bring spin-labeled side chains into tertiary contact with other portions of the protein. The spectroscopic changes seen by SDSL suggest that high concentrations of stabilizing solutes, such as those used to generate membrane protein crystals, result in a more compact and ordered state of the protein than is seen under more physiological conditions.  相似文献   

11.
We used site-directed spin labeling and electron paramagnetic resonance spectroscopy to investigate dynamics and helical packing in the four-helix transmembrane domain of the homodimeric bacterial chemoreceptor Trg. We focused on the first transmembrane helix, TM1, particularly on the nine-residue sequence nearest the periplasm, because patterns of disulfide formation between introduced cysteines had identified that segment as the region of closest approach among neighboring transmembrane helices. Along this sequence, mobility and accessibility of the introduced spin label were characteristic of loosely packed or solvent-exposed side chains. This was also the case for eight additional positions around the circumference and along the length of TM1. For the continuous nine-residue sequence near the periplasm, mobility and accessibility varied only modestly as a function of position. We conclude that side chains of TM1 that face the interior of the four-helix domain interact with neighboring helices but dynamic movement results in loose packing. Compared to transmembrane segments of other membrane proteins reconstituted into lipid bilayers and characterized by site-directed spin labeling, TM1 of chemoreceptor Trg is the most dynamic and loosely packed. A dynamic, loosely packed chemoreceptor domain can account for many experimental observations about the transmembrane domains of chemoreceptors.  相似文献   

12.
13.
D L Di Stefano  A J Wand 《Biochemistry》1987,26(23):7272-7281
The 1H resonances of human ubiquitin were studied by two-dimensional nuclear magnetic resonance techniques. A recently introduced assignment algorithm termed the main chain directed (MCD) assignment [Englander, S. W., & Wand, A. J. (1987) Biochemistry 26, 5953-5958] was applied. This approach relies on an ordered series of searches for prescribed patterns of connectivities in two-dimensional J-correlated and nuclear Overhauser effect spectra and centers on the dipolar interactions involving main-chain amide NH, alpha-CH, and beta-CH. Unlike the sequential assignment procedure, the MCD approach does not rest upon definition of side-chain J-coupled networks and is generally not sequential with the primary sequence of the protein. The various MCD patterns and the general algorithm are reiterated and applied to the analysis of human ubiquitin. With this algorithm, the vast majority of amino acid residue amide NH-C alpha H-C beta H J-coupled subspin systems could be associated with and aligned within units of secondary structure without any knowledge of the identity of the side chains. This greatly simplified recognition of side-chain spin systems by restricting their identity. Essentially complete resonance assignments are presented. The MCD method is compared with the sequential assignment method in some detail. The MCD method is highly amenable to automation. Human ubiquitin is found, at pH 5.8 and 30 degrees C, to be composed of an extensive beta-sheet structure involving five strands. Three of these strands form an antiparallel set sharing a common strand and have a parallel orientation to two antiparallel strands. Two helical segments were also observed. The largest, spanning 13 residues, shows dipolar interactions consistent with an alpha-helix while the smaller 4-residue helical segment appears, on the basis of observed nuclear Overhauser effects, to be a 3(10) helix. Five classical tight turns could be demonstrated.  相似文献   

14.
Five singly spin labeled side chains at surface sites in the C-terminal domain of RGL2 protein have been analyzed to investigate the general relationship between nitroxide side chain mobility and protein structure. At these sites, the structural perturbation produced by replacement of a native residue with a nitroxide side chain appears to be very slight at the level of the backbone fold. The primary determinants of the nitroxide side chain mobility are backbone dynamics and tertiary interactions. On the exposed surfaces of alpha-helices, the side chain mobility is not restricted by tertiary interactions but appears to be determined by backbone dynamics, while in loop sites, the side chain mobility is even higher. For a better understanding of the changes in the EPR spectral line shape, molecular dynamics simulations were performed and found in agreement with EPR spectral data.  相似文献   

15.
Kroncke BM  Horanyi PS  Columbus L 《Biochemistry》2010,49(47):10045-10060
Understanding the structure and dynamics of membrane proteins in their native, hydrophobic environment is important to understanding how these proteins function. EPR spectroscopy in combination with site-directed spin labeling (SDSL) can measure dynamics and structure of membrane proteins in their native lipid environment; however, until now the dynamics measured have been qualitative due to limited knowledge of the nitroxide spin label's intramolecular motion in the hydrophobic environment. Although several studies have elucidated the structural origins of EPR line shapes of water-soluble proteins, EPR spectra of nitroxide spin-labeled proteins in detergents or lipids have characteristic differences from their water-soluble counterparts, suggesting significant differences in the underlying molecular motion of the spin label between the two environments. To elucidate these differences, membrane-exposed α-helical sites of the leucine transporter, LeuT, from Aquifex aeolicus, were investigated using X-ray crystallography, mutational analysis, nitroxide side chain derivatives, and spectral simulations in order to obtain a motional model of the nitroxide. For each crystal structure, the nitroxide ring of a disulfide-linked spin label side chain (R1) is resolved and makes contacts with hydrophobic residues on the protein surface. The spin label at site I204 on LeuT makes a nontraditional hydrogen bond with the ortho-hydrogen on its nearest neighbor F208, whereas the spin label at site F177 makes multiple van der Waals contacts with a hydrophobic pocket formed with an adjacent helix. These results coupled with the spectral effect of mutating the i ± 3, 4 residues suggest that the spin label has a greater affinity for its local protein environment in the low dielectric than on a water-soluble protein surface. The simulations of the EPR spectra presented here suggest the spin label oscillates about the terminal bond nearest the ring while maintaining weak contact with the protein surface. Combined, the results provide a starting point for determining a motional model for R1 on membrane proteins, allowing quantification of nitroxide dynamics in the aliphatic environment of detergent and lipids. In addition, initial contributions to a rotamer library of R1 on membrane proteins are provided, which will assist in reliably modeling the R1 conformational space for pulsed dipolar EPR and NMR paramagnetic relaxation enhancement distance determination.  相似文献   

16.
The folding pattern of the alpha-crystallin domain, a conserved protein module encoding the molecular determinants of structure and function in the small heat-shock protein superfamily, was determined in the context of the lens protein alphaA-crystallin by systematic application of site-directed spin labeling. The sequence-specific secondary structure was assigned primarily from nitroxide scanning experiments in which the solvent accessibility and mobility of a nitroxide probe were measured as a function of residue number. Seven beta-strands were identified and their orientation relative to the aqueous solvent determined, thus defining the residues lining the hydrophobic core. The pairwise packing of adjacent strands in the primary structure was deduced from patterns of proximities in nitroxide pairs with one member on the exposed surface of each strand. In addition to identifying supersecondary structures, these proximities revealed that the seven strands are arranged in two beta-sheets. The overall packing of the two sheets was determined by application of the general rules of protein structure and from proximities in nitroxide pairs designed to distinguish between known all beta-sheet folds. Our data are consistent with an immunoglobulin-like fold consisting of two aligned beta-sheets. Comparison of this folding pattern to that of the evolutionary distant alpha-crystallin domain in Methanococcus jannaschii heat-shock protein 16.5 reveals a conserved core structure with the differences sequestered at one edge of the beta-sandwich. A beta-strand deletion in alphaA-crystallin disrupts a subunit interface and allows for a different dimerization motif. Putative substrate binding regions appear to include a buried loop and a buried turn, suggesting that the chaperone function involves a disassembly of the oligomer.  相似文献   

17.
A new approach for site-directed placement of nitroxide spin labels in chemically synthesized peptides and proteins is described. The scheme takes advantage of a novel diaminopropionic acid scaffold to independently control backbone and side chain elongation. The result is a spin-labeled side chain, referred to as Dap-SL, in which an amide bond forms a linker between the nitroxide and the peptide backbone. The method was demonstrated in a series of helical peptides. Circular dichroism and nuclear magnetic resonance showed that Dap-SL introduces only a minor perturbation in the helical structure. The electron paramagnetic resonance spectrum of the singly labeled species allowed for determination of the spin label rotational correlation time and suggests that the Dap-SL side chain is more flexible than the modified Cys side chain frequently used in site-directed spin label studies. Spectra of the doubly labeled peptides indicate a mixture of 3(10)-helix and alpha-helix, which parallels findings from previous studies. The scheme demonstrated here offers a fundamentally new approach for introducing spin labels into proteins and promises to significantly extend biophysical investigations of large proteins and receptors. In addition, the technique is readily modified for incorporation of any biophysical probe.  相似文献   

18.
Side chain mobility, accessibility, and backbone motion were studied by site-directed spin labeling of sequential cysteine mutants of the G strand in tear lipocalins (TL). A nitroxide scan between residues 98 and 105 revealed the alternating periodicity of mobility and accessibility to NiEDDA and oxygen, characteristic of a beta-strand. Residue 99 was the most inaccessible to NiEDDA and oxygen. EPR spectra with the fast relaxing agent, K(3)Fe(CN)(6), exhibited two nitroxide populations for most residues. The motionally constrained population was relatively less accessible to K(3)Fe(CN)(6) because of dynamic tertiary contact, probably with side chain residues of adjacent strands. With increasing concentrations of sucrose, the spectral contribution of the immobile component was greater, indicating a larger population with tertiary contact. Increased concentrations of sucrose also resulted in a restriction of mobility of spin-labeled fatty acids which were bound within the TL cavity. The data suggest that sucrose enhanced ligand affinity by slowing the backbone motion of the lipocalin. The correlation time of an MTSL derivative (I) attached to F99C resulted in the lack of side chain motion and therefore reflects the overall rotation of the TL complex. The correlation time of F99C in tears (13.5 ns) was the same as that in buffer and indicates that TL exists as a dimer under native conditions. TL-spin-labeled ligand complexes have a shorter correlation time than the protein alone, indicating that the fatty acids are not rigidly anchored in the cavity, but move within the pocket. This segmental motion of the ligand was modulated by protein backbone fluctuations. Accessibility studies with oxygen and NiEDDA were performed to determine the orientation and depth of a series of fatty acid derivatives in the cavity of TL. Fatty acids are oriented with the hydrocarbon tail buried in the cavity and the carboxyl group oriented toward the mouth. In general, the mobility of the nitroxide varied according to position such that nitroxides near the mouth had greater mobility than those located deep in the cavity. Nitroxides positioned up to 16 carbon units from the hydrocarbon tail of the ligand are motionally restricted and inaccessible, indicating the cavity extends to at least this depth. EPR spectra obtained with and without sucrose showed that the intracavitary position of lauric acid in TL is similar to that in beta-lactoglobulin. However, unlike beta-lactoglobulin, TL binds 16-doxyl stearic acid, suggesting less steric hindrance and greater promiscuity for TL.  相似文献   

19.
20.
Site-directed spin labeling is a general method for investigating structure and conformational switching in soluble and membrane proteins. It will also be an important tool for exploring protein backbone dynamics. A semi-empirical analysis of nitroxide sidechain dynamics in spin-labeled proteins reveals contributions from fluctuations in backbone dihedral angles and rigid-body (collective) motions of alpha helices. Quantitative analysis of sidechain dynamics is sometimes possible, and contributions from backbone modes can be expressed in terms of relative order parameters and rates. Dynamic sequences identified by site-directed spin labeling correlate with functional domains, and so nitroxide scanning could provide an efficient strategy for identifying such domains in high-molecular weight proteins, supramolecular complexes and membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号