首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase from porcine submaxillary glands was purified to electrophoretic homogeneity. IgG prepared from antisera against the pure enzyme immunoprecipitated the transferase in Triton X-100 extracts of submaxillary glands. The submaxillary transferase is a membrane-bound enzyme in contrast to the pure bovine colostrum enzyme, which is soluble in the absence of detergents. Both transferases have similar properties but also differ significantly. Examination of the acceptor substrate specificity of the submaxillary gland transferase showed that it specifically transferred N-acetylgalactosamine from UDP-GalNAc to the hydroxyl group of threonine and was devoid of transferase activity toward serine-containing peptides. These results imply that more than one transferase is involved in forming the GalNAc-threonine and the GalNAc-serine linkages found in O-linked oligosaccharides in glycoproteins. The amino acid sequence adjacent to glycosylated threonine residues may influence the rate of glycosylation by the pure transferase. For example, the second threonine residue in the sequence, Thr-Thr, appears to be glycosylated about twice as fast as the first and more rapidly than single, isolated threonine residues. However, no unique consensus sequence for glycosylation of threonine residues is evident, and any accessible threonine residue appears to be a potential acceptor substrate.  相似文献   

2.
A synthetic peptide ArgThrProProProSerGly with sequence similar to the threonine sites of phosphorylation in both myelin basic protein and simian virus 40 T antigen could be phosphorylated in vitro by a purified rat brain Ca2+-activated and phospholipid-dependent protein kinase, protein kinase C. The apparent Km and Vm values of this heptapeptide for the enzyme were determined to be 240 microM and 60 nmol/min/mg, respectively. Up to 0.8 mol 32P could be incorporated into the peptide, mainly at the threonine residue. Substitution of the L-threonine residue in the heptapeptide by its D-enantiomer abolished the phosphorylatability of the peptide by protein kinase C. However, this (D)Thr-containing peptide could act as a competitive inhibitor for the kinase with an apparent Ki value of approximately 320 microM. These findings suggest that a triprolyl sequence may act as a recognition site for protein kinase C.  相似文献   

3.
Nine synthetic peptides containing sequences in the region of a threonine residue at position 98 of bovine basic myelin protein were prepared by the Merrifield solid-phase method and tested for their ability to be glycosylated with [14C]uridinediphospho-N-acetylgalactosamine and a crude detergent-solubilized preparation of uridinediphospho-N-acetylgalactosamine:mucin polypeptide N-acetylgalactosaminyltransferase obtained from porcine submaxillary glands. The tetrapeptide Thr-Pro-Pro-Pro and all larger peptides containing this sequence were glycosylated. The glycosylation was greater for peptides containing residues N-terminal to the Thr-Pro-Pro-Pro. Under the conditions used, the peptide Val-Thr-Pro-Arg-Thr-Pro-Pro-Pro was glycoslyated twice as much as bovine basic myelin protein. Thr-Pro and Thr-Pro-Pro, as well as 10 other synthetic peptides which did not contain the Thr-Pro-Pro-Pro sequence, were not glycosylated. Treatment of the glycopeptide of Phe-Lys-Asn-Leu-Val-Thr-Pro-Arg-Thr-Pro-Pro-Pro-Ser with an alpha-N-acetylgalactosaminidase released N-acetylgalactosamine from the peptide, indicating that the hexosamine was covalently bonded to the peptide in an alpha linkage.  相似文献   

4.
We have previously purified and characterized a Dictyostelium myosin II heavy chain kinase which phosphorylates threonine residues (C?té, G. P., and Bukiejko, U. (1987) J. Biol. Chem. 262, 1065-1072). The phosphorylated threonines are located within a 34-kDa fragment which can be selectively cleaved from the carboxyl terminal end of the Dictyostelium myosin II tail. Tryptic and chymotryptic digests of the 34-kDa fragment phosphorylated with the kinase have now been performed and the resulting phosphopeptides isolated and sequenced. Two phosphorylated threonine residues have been identified, corresponding to residues 1833 and 2029 in the complete amino acid sequence of the Dictyostelium myosin II heavy chain. These amino acids are 87 and 283 residues, respectively, distant from the carboxyl terminus of the Dictyostelium myosin II heavy chain and are present in sections of the tail which seem to be alpha-helical coiled coils. In contrast, the three Acanthamoeba myosin II heavy chain phosphorylation sites are located within 10 residues of each other in a small globular domain at the carboxyl terminal tip of the tail (C?té, G. P., Robinson, E. A., Appella, E., and Korn, E. D. (1984) J. Biol. Chem. 259, 12781-12787). This suggests that the mechanism by which heavy chain phosphorylation inhibits the actin-activated ATPase activity and filament-forming properties of the two myosins may be quite different.  相似文献   

5.
Gerken TA  Tep C  Rarick J 《Biochemistry》2004,43(30):9888-9900
A large family of uridine 5'-diphosphate (UDP)-alpha-N-acetylgalactosamine (GalNAc):polypeptide N-acetylgalactosaminyl transferases (ppGalNAc Ts) initiates mucin-type O-glycan biosynthesis at serine and threonine. The peptide substrate specificities of individual family members are not well characterized or understood, leaving an inability to rationally predict or comprehend sites of O-glycosylation. Recently, a kinetic modeling approach demonstrated neighboring residue glycosylation as a major factor modulating the O-glycosylation of the porcine submaxillary gland mucin 81 residue tandem repeat by ppGalNAc T1 and T2 [Gerken et al. (2002) J. Biol. Chem. 277, 49850-49862]. To confirm the general applicability of this model and its parameters, the ppGalNAc T1 and T2 glycosylation kinetics of the 80+ residue tandem repeat from the canine submaxillary gland mucin was obtained and characterized. To reproduce the glycosylation patterns of both mucins (comprising 50+ serine/threonine residues), specific effects of neighboring peptide sequence, in addition to the previously described effects of neighboring residue glycosylation, were required of the model. Differences in specificity of the two transferases were defined by their sensitivities to neighboring proline and nonglycosylated hydroxyamino acid residues, from which a ppGalNAc T2 motif was identified. Importantly, the model can approximate the previously reported ppGalNAc T2 glycosylation kinetics of the IgA1 hinge domain peptide [Iwasaki, et al. (2003) J. Biol. Chem. 278, 5613-5621], further validating both the approach and the ppGalNAc T2 positional weighting parameters. The characterization of ppGalNAc transferase specificity by this approach may prove useful for the search for isoform-specific substrates, the creation of isoform-specific inhibitors, and the prediction of mucin-type O-glycosylation sites.  相似文献   

6.
NMR titration curves are reported for the 4 histidine residues of ribonuclease A in sodium acetate and for ribonuclease S in sodium acetate, phosphate, and sulfate solutions. Evidence is presented that the imidazole side chain of histidine residue 48 undergoes a conformational change, probably also involving the carboxyl side chain of aspartic acid residue 14. This group is considered to be responsible for the low pH inflection with pKa 4.2 present in the NMR titration curve of the C-2 proton resonance of histidine 48. The NMR titration curves of the active site histidine residues 12 and 119 also exhibit inflections at low pH values, although there is no carboxyl group within 9 A of the imidazole side chain of histidine residue 12 in the structure of ribonuclease S determined by x-ray crystallography (Wyckoff, H. W., Tsernoglou, D., Hanson, A. W. Knox, J. R., Lee, B., and Richards, F. M. (1970) J. Biol. Chem. 245, 305-328). Curve fitting was carried out on 11 sets of NMR titration data using a model in which the 3 histidine residues 12, 119, and 48 are assumed to be affected by a common carboxyl group. The results obtained indicate that such a model with fewer parameters gives as good a representation of the data as the model in which each histidine residue is assumed to interact separately with a different carboxyl group. Therefore, it is concluded that the ionization of aspartic acid residue 14 is indirectly experienced by the active site histidine residues through the conformational change at histidine 48. A model assuming mutual interaction of the active site histidine residues does not account for the low pH inflections in these curves.  相似文献   

7.
8.
Amino acid sequence of porcine spleen cathepsin D light chain   总被引:5,自引:0,他引:5  
The complete amino acid sequence of the light chain of cathepsin D from porcine spleen has been determined. The light chain consists of a single polypeptide chain with 97 amino acid residues. The sequence is: (formula; see text) The molecular weight of the light chain was calculated from this sequence to be 10,548 (without carbohydrates). A single disulfide bond links two half-cystine residues between positions 46 and 53. A cysteine residue is located at position 27. The light chain sequence is extensively homologous to the NH2-terminal sequence of other aspartyl proteases. It shows a 59% identity with the sequence of mouse submaxillary gland renin and a 49% identity with that of porcine pepsin. A single glycosylation site is located at residue 70 of the cathepsin D light chain. This site corresponds to position 67 of pepsin by homology. The active site aspartyl residue, corresponding to Asp-32 of pepsin, is located at residue 33 in the cathepsin D light chain.  相似文献   

9.
The possibility that isoaspartyl residues contribute to the substrate specificity of eucaryotic protein carboxyl methyltransferases and/or tyrosine protein kinases has been investigated with two synthetic oligopeptides, Lys-Gln-Val-Val-Asp/isoAsp-Ser-Ala-Tyr-Glu-Val-Ile-Lys, which correspond to amino acids 231-242 of lactate dehydrogenase. One version of the peptide contains the normal amino acid sequence of the chicken muscle M4 isozyme. The other version contains an isoaspartyl residue in position 235 in place of the normal aspartyl residue; i.e., Asp-235 is linked to Ser-236 via its side-chain beta-carboxyl group, rather than via the usual alpha-carboxyl linkage. The normal peptide corresponds to the sequence around Tyr-238 that is phosphorylated in Rous sarcoma virus infected chick embryo fibroblasts [Cooper, J. A., Esch, F. S., Taylor, S. S., & Hunter, T. (1984) J. Biol Chem. 259, 7835]. Using protein carboxyl methyltransferase purified from bovine brain, we found that the normal peptide did not serve as a methyl-accepting substrate but that the isopeptide served as an excellent substrate, exhibiting a stoichiometry of one methyl group per peptide and Km of 0.54 microM. With tyrosine protein kinase partially purified from normal rat spleen both peptides were found to serve as phosphate acceptors at Tyr-238, exhibiting Km values of 4.7 and 8.9 mM for the normal and isopeptide versions, respectively. These results support the idea that protein carboxyl methyltransferase selectively methylates the alpha-carboxyl group of atypical isoaspartyl residues. In contrast, the presence of isoaspartate had a modest negative effect on substrate activity for a tyrosine protein kinase from rat spleen.  相似文献   

10.
Ganglioside GD3 was converted at room temperature to two stable lactones, denoted as GD3 lactones I and II. The reaction sequence was presumed to be GD3----GD3 lactone I----GD3 lactone II based on the time course of their production. Lactone I behaved as a monosialoganglioside and lactone II as a neutral species. The two lactones were isolated by DEAE-Sephadex column chromatography. The positions of the inner ester linkages were investigated by two-dimensional J-correlated proton NMR spectroscopy. An ester linkage was most likely formed between the carboxyl group of the external sialic acid residue and C9-OH of the internal sialic acid residue in lactone I. In addition to this ester linkage, a second ester linkage between the carboxyl group of the internal sialic acid and C2-OH of the galactose residue was likely formed in lactone II. The structural changes induced by lactonization were further examined by their reactivity with the monoclonal antibody R24 (Puckel, C. S., Lloyd, K. O., Travassos, L. R., Dippold, W. G., Oettgen, H. F., and Old, L. J. (1982) J. Exp. Med. 155, 1133-1147), which reacted with GD3. R24 was found to bind weakly to GD3 lactone I, but not to GD3 lactone II. The results suggest that the monoclonal antibody requires both sialic acid residues for high affinity binding, and the complete lactonization results in a loss of negative charges and/or a change in the overall conformation of the oligosaccharide moiety which may account for the loss of binding.  相似文献   

11.
Four hexapeptides of sequence L-Val-L-Tyr-L-Pro-(Asp)-Gly-L-Ala containing D- or L-aspartyl residues in normal or isopeptide linkages have been synthesized by the Merrifield solid-phase method as potential substrates of the erythrocyte protein carboxyl methyltransferase. This enzyme has been shown to catalyze the methylation of D-aspartyl residues in proteins in red blood cell membranes and cytosol. Using a new vapor-phase methanol diffusion assay, we have found that the normal hexapeptides containing either D- or L-aspartyl residues were not substrates for the human erythrocyte methyltransferase. On the other hand, the L-aspartyl isopeptide, in which the glycyl residue was linked in a peptide bond to the beta-carboxyl group of the aspartyl residue, was a substrate for the enzyme with a Km of 6.3 microM and was methylated with a maximal velocity equal to that observed when ovalbumin was used as a methyl acceptor. The enzyme catalyzed the transfer of up to 0.8 mol of methyl groups/mol of this peptide. Of the four synthetic peptides, only the L-isohexapeptide competitively inhibits the methylation of ovalbumin by the erythrocyte enzyme. This peptide also acts as a substrate for both of the purified protein carboxyl methyltransferases I and II which have been previously isolated from bovine brain (Aswad, D. W., and Deight, E. A. (1983) J. Neurochem. 40, 1718-1726). The L-isoaspartyl hexapeptide represents the first defined synthetic substrate for a eucaryotic protein carboxyl methyltransferase. These results demonstrate that these enzymes can not only catalyze the formation of methyl esters at the beta-carboxyl groups of D-aspartyl residues but can also form esters at the alpha-carboxyl groups of isomerized L-aspartyl residues. The implications of these findings for the metabolism of modified proteins are discussed.  相似文献   

12.
The epidermal growth factor (EGF) can be isolated from the submaxillary gland of the adult male mouse as part of a high molecular weight complex (HMW-EGF). This complex can be reversibly dissociated into its subunits, EGF AND EGF-binding protein, an arginine esteropeptidase (Taylor, J. M., Cohen, S., and Mitchell, W. M. (1970) Proc. Natl. Acad. Sci. U. S. A. 67, 164-171). The COOH-terminal arginine residue of EGF was quantitatively removed by digestion with carboxypeptidase B...  相似文献   

13.
Glutactin, a new acidic sulfated glycoprotein, was isolated from Drosophila Kc cell culture media. Immunofluorescence microscopy located it to embryonic basement membranes, particularly to the sequentially invaginated envelope of the central nervous system, muscle apodemes and dorsal median cell processes. Its chromosome locus is 29D. The nucleic acid sequence coding for the 1023 residue long polypeptide contains one intron and was confirmed by partial amino acid sequencing. Glutactin has a signal peptide and an amino domain of greater than 500 residues that strongly resembles acetylcholine esterases and other serine esterases, but lacks the catalytically critical serine residue. The amino and carboxyl domains of glutactin are separated by 13 contiguous threonine residues. Glutamine and glutamic acid make up 44% of glutactin's very acidic carboxyl domain. Glutactin preferentially binds Ca2+ in the presence of excess Mg2+ and four of its tyrosines are O-sulfated. Several similarities with mammalian entactin caused our previous, preliminary mention of glutactin as a putative Drosophila entactin, but sequence comparison now shows them to be different proteins.  相似文献   

14.
Surgical removal of submaxillary gland in immature rats causes a large increase in size and about three to four fold increase in dry and wet weight of uterus compared to that of the sham operated animals of the same age group. Histological examination reveals a significant increase in the diameter of the uterus with considerable elongation of the luminal epithelium from cubical to columnar in the experimental group. Biochemical studies show that the uterine peroxidase (donor: hydrogen-peroxide oxidoreductase, EC 1.11.1.7), a marker enzyme for uterine growth, increases by ten to fifteen fold on submaxillariectomy and returns almost to the normal level on administration of submaxillary gland extract (105,000 X g supernatant) to the submaxillariectomized animals. Estrogen estimation by radioimmunoassay shows a similar increase of three to four fold on removal of submaxillary glands and decrease almost to the normal value on administration of the submaxillary extract.  相似文献   

15.
The effect of rat submaxillary extract on the growth of rat C6 glioma cells in serum-free culture has been examined. Extracts (10-15 microgram/ml) of submaxillary glands from both male and female rats markedly enhanced the growth of serum-deprived C6 cells and, in combination with insulin, transferrin, and NIH-LH (a source of fibroblast growth factor), were able to stimulate C6 cell growth to an extent comparable to that achieved with an optimal amount of fetal calf serum. The mitogenic activity of rat submaxillary extracts was found to be heat-labile, acid-stable, and partially inactivated by protease and 2-mercaptoethanol. Under our assay conditions, biologically active preparations of purified mouse submaxillary gland epidermal growth factor (EGF) or nerve growth factor (NGF) were not mitogenic for C6 cells, nor was the mitogenic activity of rat submaxillary extracts inhibited by antiserum to these mouse submaxillary gland growth factors. These results suggest that the active component(s) of rat submaxillary extracts is unrelated to either EGF or NGF. The growth-enhancing effect also appears unrelated to esteropeptidase activity present in these extracts since the mitogenic activity was unaffected by several protease inhibitors. Moreover, two purified mouse submaxillary gland arginylesteropeptidases, EGF-binding protein and gamma-subunit of 7 S NGF, were unable to elicit a comparable growth response even when added to cell culture medium at unreasonably high concentrations. The C6 cell mitogenic activity of crude submaxillary extracts could be separated into two biologically similar components by either gel filtration on Sephadex G-100, preparative isoelectric focusing in a pH gradient of 3-10, or adsorption to DEAE-cellulose followed by elution with a sodium chloride gradient. One of the active components was acidic in nature and had an apparent molecular weight of 40,000, while the other was near neutral in charge and possessed a molecular weight of approximately 20,000. The relationship between these two C6 cell mitogenic components and the rat submaxillary gland component responsible for stimulating Balb/c-3T3 cell growth in serum-free, factor supplemented medium (McClure et al., 1979, J. Cell Biol. 83:96a) is also discussed.  相似文献   

16.
Recent studies have shown that selection of proteins for degradation by the ubiquitin system occurs most probably by binding to specific sites of the ubiquitin-protein ligase, E3. A free alpha-NH2 residue of the substrate is one important determinant recognized by the ligase. Selective binding sites have been described for basic and bulky-hydrophobic NH2 termini (Reiss, Y., Kaim, D., and Hershko, A. (1988) J. Biol. Chem. 263, 2693-2698) and for alanine, serine, and threonine at the NH2-terminal position (Gonda, D. K., Bachmair, A., Wünning, I., Tobias, J. W., Lane, W. S., and Varshavsky, A. (1989) J. Biol. Chem. 264, 16700-16712). Proteins with acidic NH2-terminal residues are degraded by the ubiquitin system only following conversion of the acidic residue to a basic residue by the addition of an arginine moiety (Ferber, S., and Ciechanover, A. (1987) Nature 326, 808-811). Although the enzymes involved in this post-translational modification have been characterized, the underlying mechanism has been obscure. By using a chemical cross-linking technique, we demonstrate that proteins with acidic NH2 termini do not bind to E3 without prior modification of this residue by the addition of arginine. In contrast, proteins with a basic NH2-terminal residue bind to the ligase without any modification. The recognition of acidic NH2-terminal substrates by E3 is dependent upon the addition of all the components of the modifying machinery, arginyl-tRNA-protein transferase, arginyl-tRNA synthetase, tRNA, and arginine. The ligase-bound modified proteins are converted to ubiquitin conjugates in a "pulse-chase" experiment, indicating that the binding is functional and that the enzyme-substrate complex is an obligatory intermediate in the conjugation process. Chemical modification of the carboxyl groups, which results in their neutralization, generates substrates that bind to E3 without modification. This finding suggests that the amino-terminal binding site of E3 is negatively charged, and only positively charged amino-terminal residues may bind to it. Negatively charged (acidic) NH2-terminal residues will bind only following neutralization or reversal of the charge.  相似文献   

17.
Chemical modification and site-specific mutagenesis approaches were used in this study to identify the active site serine residue of pancreatic cholesterol esterase. In the first approach, purified porcine pancreatic cholesterol esterase was covalently modified by incubation with [3H]diisopropylfluorophosphate (DFP). The radiolabeled cholesterol esterase was digested with CNBr, and the peptides were separated by high performance liquid chromatography. A single 3H-containing peptide was obtained for sequence determination. The results revealed the binding of DFP to a serine residue within the serine esterase homologous domain of the protein. Furthermore, the DFP-labeled serine was shown to correspond to serine residue 194 of rat cholesterol esterase (Kissel, J. A., Fontaine, R. N., Turck, C. W., Brockman, H. L., and Hui, D. Y. (1989) Biochim. Biophys. Acta 1006, 227-236). The codon for serine 194 in rat cholesterol esterase cDNA was then mutagenized to ACT or GCT to yield mutagenized cholesterol esterase with either threonine or alanine, instead of serine, at position 194. Expression of the mutagenized cDNA in COS-1 cells demonstrated that substitution of serine 194 with threonine or alanine abolished enzyme activity in hydrolyzing the water-soluble substrate, p-nitrophenyl butyrate, and the lipid substrates cholesteryl [14C]oleate and [14C] lysophosphatidylcholine. These studies definitively identified serine 194 in the catalytic site of pancreatic cholesterol esterase.  相似文献   

18.
19.
Doolittle RF  Chen A  Pandi L 《Biochemistry》2006,45(47):13962-13969
The beta-chain amino-terminal sequences of all known mammalian fibrins begin with the sequence Gly-His-Arg-Pro- (GHRP-), but the homologous sequence in chicken fibrin begins with the sequence Ala-His-Arg-Pro- (AHRP-). Nonetheless, chicken fibrinogen binds the synthetic peptide GHRPam, and a previously reported crystal structure has revealed that the binding is in exact conformance with that observed for the human GHRPam-fragment D complex. We now report that human fibrinogen, which is known not to bind APRP, binds the synthetic peptide AHRPam. Moreover, a crystal structure of AHRPam complexed with fragment D from human fibrinogen shows that AHRPam binds exclusively to the beta-chain hole and, unlike GHRPam, not at all to the homologous gamma-chain hole. The difference can be attributed to the methyl group of the alanine residue clashing with a critical carboxyl group in the gammaC hole but being accommodated in the roomier betaC hole where the equivalent carboxyl is situated more flexibly.  相似文献   

20.
At relatively high concentrations of myosin light chain kinase, a second site on the 20,000-dalton light chain of smooth muscle myosin is phosphorylated (Ikebe, M., and Hartshorne, D. J. (1985) J. Biol. Chem. 260, 10027-10031). In this communication the site is identified and kinetics associated with its phosphorylation and dephosphorylation are described. The doubly phosphorylated 20,000-dalton light chain from turkey gizzard myosin was hydrolyzed with alpha-chymotrypsin and the phosphorylated peptide was isolated by reverse phase chromatography. Following amino acid analyses and partial sequence determinations the second site of phosphorylation is shown to be threonine 18. This site is distinct from the threonine residue phosphorylated by protein kinase C. The time courses of phosphorylation of serine 19 and threonine 18 in isolated light chains follow a single exponential indicating a random process, although the phosphorylation rates differ considerably. The values of kcat/Km for serine 19 and threonine 18 for isolated light chains are 550 and 0.2 min-1 microM-1, respectively. With intact myosin, phosphorylation of serine 19 is biphasic; kcat/Km values are 22.5 and 7.5 min-1 microM-1 for the fast and slow phases, respectively. In contrast, phosphorylation of threonine 18 in intact myosin is a random, but markedly slower process, kcat/Km = 0.44 min-1 microM-1. Dephosphorylation of doubly phosphorylated myosin (approximately 4 mol of phosphate/mol of myosin) and isolated light chains (approximately 2 mol of phosphate/mol of light chain) follows a random process and dephosphorylation of the serine 19 and threonine 18 sites occurs at similar rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号