首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Bacteriophage T7 expresses a serine/threonine-specific protein kinase activity during Infection of Its host, Escherichia coli. The protein kinase (gpO.7 PK), encoded by the T7 early gene 0.7, enhances phage reproduction under sub-optimal growth conditions. It was previously shown that ribosomal protein S1 and translation initiation factors IF1, IF2, and IF3 are phosphoryiated in T7-infected cells, and it was suggested that phosphorylation of these proteins may serve to stimulate translation of the phage late mRNAs. Using high-resolution two-dimensional gel electrophoresis and specific immunoprecipitation, we show that elongation factor G and ribosomal protein S6 are phosphorylated following T7 infection. The gel electro-phoretic data moreover indicate that elongation factor P is phosphorylated in T7-infected cells. T7 early and late mRNAs are processed by ribonuclease III, whose activity is stimulated through phosphorylation by gp0.7 PK. Specific overexpression and phosphorylation was used to locate the RNase III polypeptide in the standard two-dimensional gel pattern, and to confirm that serine is the phosphate-accepting amino acid. The two-dimensional gels show that the in vivo expression of gp0.7 PK results in the phosphorylation of over 90 proteins, which Is a significantly higher number than previous estimates. The protein kinase activities of the T7-related phages T3 and BA14 produce essentially the same pattern of phosphorylated proteins as that of T7. Finally, several experimental variables are analysed which influence the production and pattern of phosphorylated proteins in both uninfected and T7-rnfected cells.  相似文献   

4.
Escherichia coli has a unique enzyme, deoxyguanosine triphosphate triphosphohydrolase (dGTPase) that cleaves dGTP into deoxyguanosine and tripolyphosphate. An E. coli mutant, optA1, has a 50-fold increased level of the dGTPase (Beauchamp, B.B., and Richardson, C.C. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 2563-2567). Successful infection of E. coli optA1 by bacteriophage T7 is dependent on a 10-kDa protein encoded by gene 1.2 of the phage. In this report we show that the gene 1.2 protein is a specific inhibitor of the E. coli dGTPase. Gene 1.2 protein inhibits dGTPase activity by forming a complex with the dGTPase with an apparent stoichiometry of two monomers of gene 1.2 protein/tetramer of dGTPase. The interaction is reversible with a half-life of the complex of 30 min and an apparent binding constant Ki of 35 nM. The binding of inhibitor of dGTPase is cooperative, indicating allosteric interactions between dGTPase subunits with a Hill coefficient of 1.7. The interaction is modulated differentially by DNA, RNA, and deoxyguanosine mono-, di-, and triphosphate. Both the binding of the substrate dGTP and of the inhibitor gene 1.2 protein induce conformational changes in dGTPase. The conformation of the enzyme in the presence of saturating concentrations of dGTP virtually prevents the association with, and the dissociation from, gene 1.2 protein.  相似文献   

5.
6.
7.
Alkylation of T7 bacteriophage considerably delayed phage development and reduced the phage's killing action on host cells. Only a small fraction of infected cells produced phage. For these phages, the latent period was markedly prolonged but the burst was equivalent to or only slightly lower than that of untreated phage. In the progeny of alkylated phage, there was an increase in the fraction of defective particles as well as a change in their morphology. These data show that infection with alkylated T7 bacteriophage is to a large degree abortive; hence, biological consequences of this infection are very different from those characteristic of a normal virus infection.  相似文献   

8.
9.
Quantitative analysis of DNA replication, in E. coli B cells infected by methyl methanesulfonate-treated bacteriophage T7, showed that production of phage DNA was delayed and decreased. The cause of the delay appeared to be a delay in host-DNA breakdown, the process which provides nucleotides for phage-DNA synthesis. In addition, reutilisation of host-derived nucleotides was impaired. These observations can be accounted for by a model in which methyl groups on phage DNA slow down DNA injection and also reduce the replicational template activity of the DNA once it has entered the cell. Repair of alkylated phage DNA may be required not only for replication but also for normal injection of DNA.  相似文献   

10.
Eukaryotic translation initiation factor 4E (eIF4E) binds to the mRNA 5' cap and brings the mRNA into a complex with other protein synthesis initiation factors and ribosomes. The activity of mammalian eIF4E is important for the translation of capped mRNAs and is thought to be regulated by two mechanisms. First, eIF4E is sequestered by binding proteins, such as 4EBP1, in quiescent cells. Mitogens induce the release of eIF4E by stimulating the phosphorylation of 4EBP1. Second, mitogens and stresses induce the phosphorylation of eIF4E at Ser 209, increasing the affinity of eIF4E for capped mRNA and for an associated scaffolding protein, eIF4G. We previously showed that a mitogen- and stress-activated kinase, Mnk1, phosphorylates eIF4E in vitro at the physiological site. Here we show that Mnk1 regulates eIF4E phosphorylation in vivo. Mnk1 binds directly to eIF4G and copurifies with eIF4G and eIF4E. We identified activating phosphorylation sites in Mnk1 and developed dominant-negative and activated mutants. Expression of dominant-negative Mnk1 reduces mitogen-induced eIF4E phosphorylation, while expression of activated Mnk1 increases basal eIF4E phosphorylation. Activated mutant Mnk1 also induces extensive phosphorylation of eIF4E in cells overexpressing 4EBP1. This suggests that phosphorylation of eIF4E is catalyzed by Mnk1 or a very similar kinase in cells and is independent of other mitogenic signals that release eIF4E from 4EBP1.  相似文献   

11.
Rabbit skeletal muscle protein kinase catalyzes the phosphorylation of DNA-dependent RNA polymerase of Escherichia coli in the presence of adenosine 3′,5′-monophosphate and ATP. The phosphorylation occurs on one (or more) serine residue(s) in the σ-factor under reaction conditions similar to those employed for RNA synthesis. The phosphorylation of RNA polymerase and its stimulation by protein kinase are inhibited by a specific heat-stable inhibitor from rabbit skeletal muscle. With conditions more favorable for the protein kinase reaction, phosphorylation of RNA polymerase also occurs on the β subunit of the core enzyme, but this reaction occurs at a much slower rate than the phosphorylation of the σ-factor.  相似文献   

12.
The penetration of bacteriophage T7 DNA into F plasmid-containing Escherichia coli cells was determined by measuring Dam methylation of the entering genome. T7 strains that cannot productively infect F-containing cells fail to completely translocate their DNA into the cell before the infection aborts. The entry of the first 44% of the genome occurs normally in an F-containing cell, but the entry of the remainder is aberrant. Bypassing the normal mode of entry of the T7 genome by transfecting naked DNA into competent cells fails to suppress F exclusion of phage development. However, overexpression of various nontoxic T7 1.2 alleles from a high-copy-number plasmid or expression of T3 1.2 from a T7 genome allows phage growth in the presence of F.  相似文献   

13.
Summary Mutant ribosome binding sites of the bacteriophage T4 rIIB gene, resident on an 873 bp DNA fragment, were cloned into a plasmid vector as in-frame fusions to a reporter gene, beta-galactosidase. The collection of mutations included changes in the region 5 to the Shine/Dalgarno sequence, a mutation of the Shine/Dalgarno sequence, the alternate initiation codons GUG, AUA and ACG, and mutants in which several closely spaced initiation codons compete with each other on the same mRNA. The results show that the secondary structure variations we have installed 5 to the Shine/Dalgarno sequence have little effect on translation. GUG is essentially as good an initiator of translation as AUG when they are assayed on separate messages, but is outcompeted at least 50-fold in the sequence AUGUG. AUA and ACG are poor start codons, and are temperature sensitive. The initiation codon pair AUGAUA, in which the AUG is only two nucleotides from the Shine/Dalgarno sequence, displays a novel cold-sensitive phenotype.  相似文献   

14.
3-Decynoyl-N-acetylcysteamine (3-decynoyl-NAC) is an analog which specifically causes the immediate cessation of the biosynthesis of unsaturated fatty acids in Escherichia coli, whereas the synthesis of saturated fatty acids is actually stimulated. As a result, the cell membrane accumulates saturated fatty acids in its phospholipid. Addition of the inhibitor at the time of infection of E. coli by T4 phage had no effect on normal phage replication and development, implying that the synthesis of unsaturated fatty acids per se has little effect on T4 DNA replication. However, if the integrity and composition of the bacterial membrane was grossly perturbed by first treating the cells with the inhibitor for 60 min before infection, the proper initiation and the attainment of a rapid rate of T4 DNA synthesis were not observed. Under these conditions, a full complement of T4 early proteins was synthesized. The membrane associability of the known DNA delay proteins induced by wild-type T4 phage in the treated cells resembled that expected of a culture of untreated cells infected with a DNA delay mutant. When any one of three DNA delay mutants was used to infect 3-decynoyl-NAC-treated cells, T4 DNA replication was aborted. These findings suggest that some kind of specific interactions among the initiation proteins defined by the DNA delay mutants and the bacterial membrane may be necessary to facilitate the normal initiation and rapid rate of T4 DNA replication. A model for the involvement of the three different initiation proteins and the subsequent attainment of rapid DNA synthesis is discussed.  相似文献   

15.
16.
17.
18.
Many T4-induced proteins were found associated with the Escherichia coli membrane during infection. Some of these were apparently ionically bound, but many could be identified as integral parts of the inner and outer bacterial membranes by their selective solubilities in guanidine or Sarkosyl. The synthesis and insertion of these proteins into the bacterial membrane were temporally controlled and, once in the membrane, these proteins were stably integrated. Host membrane protein synthesis continued after infection of non-UV-irradiated cells, but was not present, if the cells were irradiated. There were no major redistribution or loss of bacterial proteins from E. coli membranes as a consequence of T4 infection.  相似文献   

19.
Gene 1 of bacteriophage T7 early region--the RNA polymerase gene--is very actively translated during the infectious cycle of this phage. A 29 base pair fragment of its ribosome binding site containing the initiation triplet, the Shine-Dalgarno sequence (S-D), 10 nucleotides (nt) upstream and 6 nt downstream of these central elements was cloned into a vector to control the expression of the mouse dihydrofolate reductase gene (dhfr). Although all essential parts of this translation initiation region (TIR) should be present, this fragment showed only very low activity. Computer analysis revealed a potentially inhibitory hairpin binding the S-D sequence into its stem base paired to vector-derived upstream sequences. Mutational alterations demonstrated that this hairpin was not responsible for the low activity. However, addition of 21 nt of the T7 gene 1 upstream sequence to the 29 base pair fragment were capable of increasing the translational efficiency by one order of magnitude. Computer analysis of this sequence, including nucleotide shuffling, revealed that it contains a highly unstructured region lacking mRNA secondary structures but with a hairpin at its 5' end, here formed solely by T7 sequences. There was not much difference in activity whether the mRNA included or lacked vector-derived sequences upstream of the hairpin. Such highly unstructured mRNA regions were found in all very efficiently expressed T7 genes without any obvious sequence homologies. The delta G values of these regions were higher, i.e. potential secondary structural elements were fewer, than in TIR of genes from E. coli. This is likely due to the fact that T7 as a lytic phage is relying for successful infection on much stronger signals which a cell cannot afford because of the indispensable balanced equilibria of its interdependent biochemical processes. When the 5' ends of efficient T7 gene mRNA are formed by the action of RNase III they generally start with an unstructured region. Efficiently expressed T7 genes within a polycistronic mRNA, however, always contain a hairpin preceding the structure free sequence. We suggest that the formation of this 5' hairpin is releasing enough energy to keep the unstructured regions free of secondary RNA structures for sufficient time to give ribosomes and factors a good chance for binding to the TIR. In addition, sequences further downstream of the start codon give rise to an additional increase in efficiency of the TIR by almost two orders of magnitude.  相似文献   

20.
In a genetic selection designed to isolate Escherichia coli mutations that increase expression of the IS 10 transposase gene ( tnp ), we unexpectedly obtained viable mutants defective in translation initiation factor 3 (IF3). Several lines of evidence led us to conclude that transposase expression, per se , was not increased. Rather, these mutations appear to increase expression of the tnp'–'lacZ gene fusions used in this screen, by increasing translation initiation at downstream, atypical initiation codons. To test this hypothesis we undertook a systematic analysis of start codon requirements and measured the effects of IF3 mutations on initiation from various start codons. Beginning with an efficient translation initiation site, we varied the AUG start codon to all possible codons that differed from AUG by one nucleotide. These potential start codons fall into distinct classes with regard to translation efficiency in vivo : Class I codons (AUG, GUG, and UUG) support efficient translation; Class IIA codons (CUG, AUU, AUC, AUA, and ACG) support translation at levels only 1–3% that of AUG; and Class IIB codons (AGG and AAG) permit levels of translation too low for reliable quantification. Importantly, the IF3 mutations had no effect on translation from Class I codons, but they increased translation from Class II codons 3–5-fold, and this same effect was seen in other gene contexts. Therefore, IF3 is generally able to discriminate between efficient and inefficient codons in vivo , consistent with earlier in vitro observations. We discuss these observations as they relate to IF3 autoregulation and the mechanism of IF3 function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号