首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 974 毫秒
1.
2.
During Drosophila melanogaster oogenesis, the proper localization of gurken (grk) mRNA and protein is required for the establishment of the dorsal-ventral axis of the egg and future embryo. Squid (Sqd) is an RNA-binding protein that is required for the correct localization and translational regulation of the grk message. We show that Cup and polyA-binding protein (PABP) interact physically with Sqd and with each other in ovaries. We show that cup mutants lay dorsalized eggs, enhance dorsalization of weak sqd alleles, and display defects in grk mRNA localization and Grk protein accumulation. In contrast, pAbp mutants lay ventralized eggs and enhance grk haploinsufficiency. PABP also interacts genetically and biochemically with Encore. These data predict a model in which Cup and Sqd mediate translational repression of unlocalized grk mRNA, and PABP and Enc facilitate translational activation of the message once it is fully localized to the dorsal-anterior region of the oocyte. These data also provide the first evidence of a link between the complex of commonly used trans-acting factors and Enc, a factor that is required for grk translation.  相似文献   

3.
The heterogeneous nuclear ribonucleoprotein (hnRNP) Squid (Sqd) is a highly abundant protein that is expected to bind most cellular RNAs. Nonetheless, Sqd plays a very specific developmental role in dorsoventral (DV) axis formation during Drosophila oogenesis by localizing gurken (grk) RNA. Here, we report that Sqd is also essential for anteroposterior (AP) axis formation. We identified sqd in a screen for modifiers of the Protein Kinase A (PKA) oogenesis polarity phenotype. The AP defects of sqd mutant oocytes resemble those of PKA mutants in several ways. In both cases, the cytoskeletal reorganization at mid-oogenesis, which depends on a signal from the posterior follicle cells, does not produce a correctly polarized microtubule (MT) network. This causes the posterior determinant, oskar (osk) RNA, to localize to central regions of the oocyte, where it is ectopically translated. Additionally, MT-dependent anterior movement of the oocyte nucleus and the grk-dependent specification of posterior follicle cells are unaffected in both mutants. However, in contrast to PKA mutants, sqd mutants do not retain a discrete posterior MT organizing center (MTOC) capable of supporting ectopic posterior localization of bicoid (bcd) RNA. sqd mutants also display several other phenotypes not seen in PKA mutants; these probably result from the disruption of MT polarity in earlier stages of oogenesis. Loss of Sqd does not affect polarity in follicle cells, wings or eyes, indicating a specific role in the determination of MT polarity within the germline.  相似文献   

4.
The anteroposterior and dorsoventral axes of the Drosophila embryo are established during oogenesis through the activities of Gurken (Grk), a Tgfalpha-like protein, and the Epidermal growth factor receptor (Egfr). spn-F mutant females produce ventralized eggs similar to the phenotype produced by mutations in the grk-Egfr pathway. We found that the ventralization of the eggshell in spn-F mutants is due to defects in the localization and translation of grk mRNA during mid-oogenesis. Analysis of the microtubule network revealed defects in the organization of the microtubules around the oocyte nucleus. In addition, spn-F mutants have defective bristles. We cloned spn-F and found that it encodes a novel coiled-coil protein that localizes to the minus end of microtubules in the oocyte, and this localization requires the microtubule network and a Dynein heavy chain gene. We also show that Spn-F interacts directly with the Dynein light chain Ddlc-1. Our results show that we have identified a novel protein that affects oocyte axis determination and the organization of microtubules during Drosophila oogenesis.  相似文献   

5.
6.
7.
8.
9.
The Drosophila melanogaster ovarian tumor (otu) gene encodes two novel protein isoforms that are required at multiple stages of oogenesis. We have examined the activity of a set of C-terminal truncation Otu proteins as well as a GFP-tagged Otu (Otu-GFP). These experiments have shown that a putative Tudor domain in the central region of the large Otu isoform and a separate domain in the C-terminal region are required for regulation of cyst formation and oocyte maturation, respectively. We also present evidence that a portion of Otu co-fractionates with mRNA/protein complexes (mRNPs) and show that Otu-GFP associates with cytoplasmic aggregates at periphery of the nucleus at an intermediate stage of oogenesis. This study substantially clarifies the relationship between Otu structure and function and reveals new clues about interacting components.  相似文献   

10.
We have examined cytoskeletal requirements for bicoid (bcd) RNA localization during Drosophila oogenesis. bcd is an anterior morphogen whose proper function relies on the localization of its messenger RNA to the anterior cortex of the egg. Drugs that depolymerize microtubules perturb all aspects of bcd RNA localization. During recovery from drug treatment, bcd RNA relocalizes to the oocyte cortex, suggesting that the localization machinery is a component of the cortical cytoskeleton. Taxol, a drug that stabilizes microtubules, also effectively disrupts bcd RNA localization, and the effects of taxol treatments on exuperantia and swallow mutants suggest general roles for these gene products in the multi-step bcd RNA localization process.  相似文献   

11.
The deadlock gene is required for a number of key developmental events in Drosophila oogenesis. Females homozygous for mutations in the deadlock gene lay few eggs and those exhibit severe patterning defects along both the anterior-posterior and dorsal-ventral axis. In this study, we analyzed eggs and ovaries from deadlock mutants and determined that deadlock is required for germline maintenance, stability of mitotic spindles, localization of patterning determinants, oocyte growth and fusome biogenesis in males and females. Deadlock encodes a novel protein which colocalizes with the oocyte nucleus at midstages of oogenesis and with the centrosomes of early embryos. Our genetic and immunohistological experiments point to a role for Deadlock in microtubule function during oogenesis.  相似文献   

12.
13.
BACKGROUND: Motor proteins of the minus end-directed cytoplasmic dynein and plus end-directed kinesin families provide the principal means for microtubule-based transport in eukaryotic cells. Despite their opposing polarity, these two classes of motors may cooperate in vivo. In Drosophila circumstantial evidence suggests that dynein acts in the localization of determinants and signaling factors during oogenesis. However, the pleiotropic requirement for dynein throughout development has made it difficult to establish its specific role. RESULTS: We analyzed dynein function in the oocyte by disrupting motor activity through temporally restricted expression of the dynactin subunit, dynamitin. Our results indicate that dynein is required for several processes that impact patterning; such processes include localization of bicoid (bcd) and gurken (grk) mRNAs and anchoring of the oocyte nucleus to the cell cortex. Surprisingly, dynein function is sensitive to reduction in kinesin levels, and germ line clones lacking kinesin show defects in dorsal follicle cell fate, grk mRNA localization, and nuclear attachment that are similar to those resulting from the loss of dynein. Significantly, dynein and dynactin localization is perturbed in these animals. Conversely, kinesin localization also depends on dynein activity. CONCLUSIONS: We demonstrate that dynein is required for nuclear anchoring and localization of cellular determinants during oogenesis. Strikingly, mutations in the kinesin motor also disrupt these processes and perturb dynein and dynactin localization. These results indicate that the activity of the two motors is interdependent and suggest a model in which kinesin affects patterning indirectly through its role in the localization and recycling of dynein.  相似文献   

14.
15.
Alternative splicing is used by metazoans to increase protein diversity and to alter gene expression during development. However, few factors that control splice site choice in vivo have been identified. Here we describe a factor, Half pint (Hfp), that regulates RNA splicing in Drosophila. Females harboring hypomorphic mutations in hfp lay short eggs and show defects in germline mitosis, nuclear morphology, and RNA localization during oogenesis. We find that hfp encodes the Drosophila ortholog of human PUF60 and functions in both constitutive and alternative splicing in vivo. In particular, hfp mutants display striking defects in the developmentally regulated splicing of ovarian tumor (otu). Furthermore, transgenic expression of the missing otu splice form can rescue the ovarian phenotypes of hfp.  相似文献   

16.
The RRM protein NonA, an ubiquitous nuclear protein present in puffs on polytene chromosomes, has been immunopurified as a RNA-protein complex from Drosophila Kc cells. Three other proteins present in the complex have been identified: X4/PEP (protein on ecdysone puffs), a 100-kDa zinc finger RNA-binding protein; the 70-kDa S5 protein, an as yet uncharacterized RNA-binding protein; and P11/Hrb87F, a 38-kDa RRM protein homologous to hnRNP protein A1 from mammals. Monoclonal antibodies against any of the protein components coprecipitate all four proteins although at different ratios. NonA does not coprecipitate with the hrp40 hnRNP proteins and immunolocalizes in a pattern distinct of major hnRNP proteins. Like NonA, X4/PEP, S5, and P11/Hrb87F are present on active sites on polytene chromosomes. The precipitated NonA complex is enriched for certain protein encoding RNAs, notably, histone H3 and H4 RNA.  相似文献   

17.
18.
We have isolated cDNAs coding for a ribonucleoprotein of Drosophila melanogaster that is distinguished by its nearly exclusive presence at only one of the several heat shock puffs in polytene chromosomes of third instar larvae. We determined the nucleotide sequence and deduced the corresponding amino acid sequence. Its coding capacity for a 39 kDa protein is consistent with the size of the protein detected by the monoclonal antibody P11 used for expression cloning. Our results show that the P11 protein belongs to the category of hnRNP proteins of bipartite structure: the amino-terminal half contains two RNA binding domains and the carboxyterminal half is rich in glycine residues. Analysis of the genomic structure revealed two introns located within the coding portion of the gene and a third one in the 3'untranslated region. We detect two different polyadenylation sites as a result of alternative termination-polyadenylation. Its strong sequence homology with hnRNP A1 protein and its previously shown association with snRNP particles indicates that a typical hnRNP protein may also exist in a complex with snRNP particles. The P11 sequence corresponds to the Hrb87F sequence that was recently described by Haynes et al. (1) as hnRNP A related gene.  相似文献   

19.
The Drosophila embryonic body plan is specified by asymmetries that arise in the oocyte during oogenesis. These asymmetries are apparent in the subcellular distribution of key mRNAs and proteins and in the organization of the microtubule cytoskeleton. We present evidence that the Drosophila oocyte also contains important asymmetries in its membrane trafficking pathways. Specifically, we show that alpha-adaptin and Rab11, which function critically in the endocytic pathways of all previously examined animal cells, are localized to neighboring compartments at the posterior pole of stage 8-10 oocytes. Rab11 and alpha-adaptin localization occurs in the absence of a polarized microtubule cytoskeleton, i.e. in grk null mutants, but is later reinforced and/or refined by Osk, the localization of which is microtubule dependent. Analyses of germline clones of a rab11 partial loss-of-function mutation reveal a requirement for Rab11 in endocytic recycling and in the organization of posterior membrane compartments. Such analyses also reveal a requirement for Rab11 in the organization of microtubule plus ends and osk mRNA localization and translation. We propose that microtubule plus ends and, possibly, translation factors for osk mRNA are anchored to posterior membrane compartments that are defined by Rab11-mediated trafficking and reinforced by Rab11-Osk interactions.  相似文献   

20.
Mutations in the encore (enc) gene of Drosophila melanogaster cause one extra round of mitosis in the germline, resulting in the formation of egg chambers with extra nurse cells. In addition, enc mutations affect the accumulation of Gurken protein within the oocyte, leading to the production of ventralized eggs. Here we show that enc mutants also exhibit abnormalities in karyosome morphology, similar to other ventralizing mutants such as okra and spindle B. Unlike these mutants, however, the defects in Gurken accumulation and karyosome formation do not result from activation of a meiotic checkpoint. Furthermore, we demonstrate that the requirement for enc in these processes is temporally distinct from its role in germline mitosis. Cloning of the enc locus and generation of anti-Enc antibodies reveal that enc encodes a large novel protein that accumulates within the oocyte cytoplasm and colocalizes with grk mRNA. We argue that the enc mutant phenotypes reflect a role for Enc in the regulation of several RNA targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号