首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The activity of glucose dehydrogenase present in resting spores of Bacillus subtilis varied strikingly with the conditions for disrupting the spores by sonic treatment, namely, the time and strength of sonication, and the type and pH of the solution used for suspending the spores. When the resting spores were sonicated for 30 min at a current of 1.45 A in 100 mM phosphate buffer in the range of pH 6.0 to 6.6 or in deionized water, the enzyme activity of the former suspension was approximately 10 times higher than that of the latter suspension. However, the enzyme activity of the latter was markedly stimulated in the presence of sodium chloride. The glucose dehydrogenase from resting spores disrupted in 100 mM phosphate buffer (pH 6.6) was a salt-independent, active enzyme with a molecular weight of about 120,000, whereas the enzyme from resting spores disrupted in deionized water was a salt-dependent, inactive one with a molecular weight of about 55,000. A high concentration of dipicolinic acid strongly inhibited activation by a salt of inactive glucose dehydrogenase from resting spores in deionized water, suggesting one of its several important roles in vivo.  相似文献   

2.
Glucose-6-phosphate dehydrogenase [D-glucose-6-phosphate: NADP oxidoreductase, EC. 1. 1. 1. 49] obtained from spores of Bacillus subtilis PCI 219 strain was partially purified by filtration on Sephadex G-200, ammonium sulfate fractionation and chromatography on DEAE-Sephadex A-25 (about 54-fold). The optimum pH for stability of this enzyme was about 6.3 and the optimum pH for the reaction about 8.3. The apparent Km values of the enzyme were 5.7 X 10(-4) M for glucose-6-phosphate and 2.4 X 10(-4) M for nicotinamide adenine dinucleotide phosphate (NADP). The isoelectric point was about pH 3.9. The enzyme activity was unaffected by the addition of Mg++ or Ca++. The inactive glucose-6-phosphate dehydrogenase obtained from the spores heated at 85 C for 30 min was not reactivated by the addition of ethylenediaminetetraacetic acid, dipicolinic acid or some salts unlike inactive glucose dehydrogenase.  相似文献   

3.
When heated at 55 degrees C for 30 or 60 minutes protoplasts of auxotrophic mutants of Streptomyces sp. 26-115 producer of actinomycin C (active and inactive variants) lost their capacity for regeneration. The protoplasts heated at at 55 degrees C for 30 minutes and not for 60 minutes maintained some ability to yield recombinants on fusion under the effect of PEG 6000. Unlike the parent active strain, the colonies formed by the spores of the prototrophs yielding on fusion of the intact protoplasts showed wide ranges of antibiotic activity against M. flavus while a significant part of the colonies was inactive. The use of the inactive variant protoplasts heated at 55 degrees C for 30 minutes in the fusion procedure increased the proportion of the inactive variants.  相似文献   

4.
Inactivation rates for nine enzymes extracted from Bacillus cereus spores were measured at several temperatures, and the temperature at which each enzyme had a half-life of 10 min (inactivation temperature) was determined. Inactivation temperatures ranged from 47 degrees C for glucose 6-phosphate dehydrogenase to 70 degrees C for leucine dehydrogenase, showing that spore enzymes were not unusually heat stable. Enzymes extracted from vegetative cells of B. cereus had heat stabilities similar to the respective enzymes from spores. When spores were heated and the enzymes were subsequently extracted and assayed, inactivation temperatures for enzymes within the spore ranged from 86 degrees C for glucose 6-phosphate dehydrogenase to 96 degrees C for aldolase. The internal environment of the spore raised the inactivation temperature of most enzymes by approximately 38 degrees C. Loss of dipicolinic acid from spores was initially slow compared with enzyme inactivation but increased rapidly with longer heating. Viability loss was faster than loss of most enzyme activities and faster than dipicolinic acid release.  相似文献   

5.
Glucose-6-phosphate dehydrogenase [d-glucose-6-phosphate: NADP oxidoreductase, EC. 1. 1. 1. 49] obtained from spores of Bacillus subtilis PCI 219 strain was partially purified by filtration on Sephadex G-200, ammonium sulfate fractionation and chromatography on DEAE-Sephadex A-25 (about 54-fold). The optimum pH for stability of this enzyme was about 6.3 and the optimum pH for the reaction about 8.3. The apparent Km values of the enzyme were 5.7 × 10–4 M for glucose-6-phosphate and 2.4 × 10–4 M for nicotinamide adenine dinucleotide phosphate (NADP). The isoelectric point was about pH 3.9. The enzyme activity was unaffected by the addition of Mg++ or Ca++. The inactive glucoses-6-phosphate dehydrogenase obtained from the spores heated at 85 C for 30 min was not reactivated by the addition of ethylenediaminetetraacetic acid, dipicolinic acid or some salts unlike inactive glucose dehydrogenase.  相似文献   

6.
Both a salt-dependent form and an active form of glucose dehydrogenase [EC 1.1.1.47] were isolated from germinated spores of Bacillus subtilis disrupted in deionized water and 100 mM phosphate buffer (pH 6.6), and most of the enzyme isolated from young vegetative cells was the active form regardless of the conditions for breakage by sonication. The molecular weight of the salt-dependent form of the enzyme was about 55,000 and that of the active form was about 120,000. From the above results and the results on the glucose dehydrogenase extracted from resting spores disrupted in deionized water and 100 mM phosphate buffer (pH 6.6) reported in a previous paper, we propose that glucose dehydrogenase is present in resting spores as a monomeric form and is activated with association in vivo during germination and outgrowth.  相似文献   

7.
S V Pronin 《Mikrobiologiia》1987,56(6):956-962
The elevated resistance of a Bacillus cereus spore suspension against the action of UV was found to depend on the quantity of resting forms initiated in the suspension prior to an irradiation. The resistance against UV increased 80-50 times if 60-90% of spores were initiated in the suspension as compared to that of the original resting forms. When suspensions containing 40% of non-germinated B. cereus spores were kept at 4 degrees C for 14 days, the latter became 10 and 14 times more resistant to elevated temperature (90 degrees C) and chloramine (2.5%), respectively, as compared to control intact spores. The higher resistance of non-germinated spores against the action of physical and chemical damaging agents was registered within the entire period of experiments (over three months). This phenomenon was not observed if ca. 100% of spores were initiated in a suspension. The resistance of initiated spores against the action of UV was 40 times lower than that of B. cereus resting forms.  相似文献   

8.
Less than 50% of theoretical oxygen uptake was observed when glucose was dissimilated by resting cells of Pseudomonas natriegens. Low oxygen uptakes were also observed when a variety of other substrates were dissimilated. When uniformly labeled glucose-(14)C was used as substrate, 56% of the label was shown to accumulate in these resting cells. This material consisted, in part, of a polysaccharide which, although it did not give typical glycogen reactions, yielded glucose after its hydrolysis. Resting cells previously cultivated on media containing glucose completely catabolized glucose and formed a large amount of pyruvate within 30 min. Resting cells cultivated in the absence of glucose catabolized glucose more slowly and produced little pyruvate. Pyruvate disappeared after further incubation. In this latter case, experimental results suggested (i) that pyruvate was converted to other acidic products (e.g., acetate and lactate) and (ii) that pyruvate was further catabolized via the tricarboxylic acid cycle. Growth on glucose repressed the level of key enzymes of the tricarboxylic acid cycle and of lactic dehydrogenase. Growth on glycerol stimulated the level of these enzymes. A low level of isocitratase, but not malate synthetase, was noted in extracts of glucose-grown cells. Isocitric dehydrogenase was shown to require nicotinamide adenine dinucleotide phosphate (NADP) as cofactor. Previous experiments have shown that reduced NADP (NADPH(2)) cannot be readily oxidized and that pyridine nucleotide transhydrogenase could not be detected in extracts. It was concluded that acetate, lactate, and pyruvate accumulate under growing conditions when P. natriegens is cultivated on glucose (i) because of a rapid initial catabolism of glucose via an aerobic glycolytic pathway and (ii) because of a sluggishly functioning tricarboxylic acid cycle due to the accumulation of NADPH(2) and to repressed levels of key enzymes.  相似文献   

9.
Alcohol dehydrogenase (ADH) of acetic acid bacteria is a membrane-bound quinohemoprotein-cytochrome c complex involved in vinegar production. In Gluconobacter suboxydans grown under acidic growth conditions, it was found that ADH content in the membranes was largely increased but the activity was not much changed, suggesting that such a condition produces an inactive form of ADH (inactive ADH). A similar phenomenon could be also observed in Acetobacter aceti, another genus of acetic acid bacteria. Furthermore, aeration conditions were also shown to affect ADH production; the ADH level was increased and was present as an active form under low-aeration conditions, while the ADH level was decreased and was present mainly as an inactive form under high-aeration conditions. Inactive ADH was solubilized from the membranes of G. suboxydans grown in acidic and high-aeration conditions and was purified separately from the normal, active form of ADH (active ADH). In spite of having 10 times less enzyme activity than active ADH, inactive ADH could not be distinguished from active ADH with respect to their subunit compositions, molecular sizes, and prosthetic groups. Inactive ADH, however, had a relatively loose conformation with a partially oxidized state, while active ADH had a tight conformation with a completely reduced state, suggesting that inactive ADH may lack a right subunit's interaction and that one of the heme c components may be inactivated. Reactivation from such an inactive ADH occurred either by shifting of the pH of the culture medium up during the cultivation or by incubation of the resting cells at the neutral pH region in the presence of an energy source such as D-sorbitol. Such an activation of ADH was repressed by the addition of a proton uncoupler and could not occur in the spheroplasts. Thus, the results suggest that inactive ADH could be generated abundantly under acidic growth conditions and converted to the active form at a neutral culture pH. The data also suggest that some periplasmic component may be involved in the conversion of inactive ADH into the active form by consuming some forms of energy.  相似文献   

10.
Spores heated in water at 54 C for up to 1 hr were plated on nutrient agar immediately or held for 3 days in aerated water at 23 C and then plated. Under these conditions, holding was optimal for recovery, increasing survival percentage up to 20-fold over values for immediate plating. Recovery was prevented partially or completely, however, when spores were held in any of the following solutions: glucose, potassium phosphate, ammonium or sodium acetate, sodium azide, or 2,4-dinitrophenol, or in the sodium or potassium salts of pyruvate, and tricarboxylic acid cycle acids. Both anaerobiosis and incubation at 0 C prevented recovery. Survivors of a heat treatment were more sensitive to gamma radiation than were unheated spores. Conditions which affected the recovery of viability had the same effect on restoration of radiation resistance. Thus, many of the processes for restoration of radiation resistance seem involved also in recovery of viability after heating. After a 99% inactivating treatment (about 30 min at 54 C), heated spores respired as fast as unheated spores, or faster. Malate, citrate, succinate, and acetate stimulated respiration in unheated spores and inhibited it in heated spores.  相似文献   

11.
Spores of Bacillus subtilis MD2 and var. niger were dry-heat damaged at 150°, 160° and 170°C and recovered on media of increasing complexity. The greater the heat dose the more marked was the effect of amino acid supplements on recovery. For strain MD2 maximum germination and outgrowth of unheated spores could be obtained on a minimal salts + glucose medium with alanine, aspartic acid, glycine and methionine; the latter three amino acids served to enhance growth, not germination. The recovery of heat-damaged spores was significantly increased by adding valine plus isoleucine or arginine or glutamine. The increase was probably due to the use of valine and isoleucine as substrates of NAD-linked dehydrogenases to generate reducing power and serve as NH3-donor, initiating germination in spores which were unable to germinate as a result of inactivation of alanine dehydrogenase. Valine or isoleucine added singly suppressed recovery by feedback inhibition of the pathways to both these amino acids during outgrowth.  相似文献   

12.
1. Monochloroacetate, dichloroacetate, trichloroacetate, difluoroacetate, 2-chloropropionate, 2,2'-dichloropropionate and 3-chloropropionate were inhibitors of pig heart pyruvate dehydrogenase kinase. Dichloroacetate was also shown to inhibit rat heart pyruvate dehydrogenase kinase. The inhibition was mainly non-competitive with respect to ATP. The concentration required for 50% inhibition was approx. 100mum for the three chloroacetates, difluoroacetate and 2-chloropropionate and 2,2'-dichloropropionate. Dichloroacetamide was not inhibitory. 2. Dichloroacetate had no significant effect on the activity of pyruvate dehydrogenase phosphate phosphatase when this was maximally activated by Ca(2+) and Mg(2+). 3. Dichloroacetate did not increase the catalytic activity of purified pig heart pyruvate dehydrogenase. 4. Dichloroacetate, difluoroacetate, 2-chloropropionate and 2,2'-dichloropropionate increased the proportion of the active (dephosphorylated) form of pyruvate dehydrogenase in rat heart mitochondria with 2-oxoglutarate and malate as respiratory substrates. Similar effects of dichloroacetate were shown with kidney and fat-cell mitochondria. Glyoxylate, monochloroacetate and dichloroacetamide were inactive. 5. Dichloroacetate increased the proportion of active pyruvate dehydrogenase in the perfused rat heart, isolated rat diaphragm and rat epididymal fat-pads. Difluoroacetate and dichloroacetamide were also active in the perfused heart, but glyoxylate, monochloroacetate and trichloroacetate were inactive. 6. Injection of dichloroacetate into rats starved overnight led within 60 min to activation of pyruvate dehydrogenase in extracts from heart, psoas muscle, adipose tissue, kidney and liver. The blood concentration of lactate fell within 15 min to reach a minimum after 60 min. The blood concentration of glucose fell after 90 min and reached a minimum after 120 min. There was no significant change in plasma glycerol concentration. 7. In epididymal fatpads dichloroacetate inhibited incorporation of (14)C from [U-(14)C]glucose, [U-(14)C]fructose and from [U-(14)C]lactate into CO(2) and glyceride fatty acid. 8. It is concluded that the inhibition of pyruvate dehydrogenase kinase by dichloroacetate may account for the activation of pyruvate dehydrogenase and pyruvate oxidation which it induces in isolated rat heart and diaphragm muscles, subject to certain assumptions as to the distribution of dichloroacetate across the plasma membrane and the mitochondrial membrane. 9. It is suggested that activation of pyruvate dehydrogenase by dichloroacetate could contribute to its hypoglycaemic effect by interruption of the Cori and alanine cycles. 10. It is suggested that the inhibitory effect of dichloroacetate on fatty acid synthesis in adipose tissue may involve an additional effect or effects of the compound.  相似文献   

13.
The DNA in dormant spores of Bacillus species is saturated with a group of nonspecific DNA-binding proteins, termed alpha/beta-type small, acid-soluble spore proteins (SASP). These proteins alter DNA structure in vivo and in vitro, providing spore resistance to UV light. In addition, heat treatments (e.g., 85 degrees C for 30 min) which give little killing of wild-type spores of B. subtilis kill > 99% of spores which lack most alpha/beta-type SASP (termed alpha - beta - spores). Similar large differences in survival of wild-type and alpha - beta - spores were found at 90, 80, 65, 22, and 10 degrees C. After heat treatment (85 degrees C for 30 min) or prolonged storage (22 degrees C for 6 months) that gave > 99% killing of alpha - beta - spores, 10 to 20% of the survivors contained auxotrophic or asporogenous mutations. However, alpha - beta - spores heated for 30 min at 85 degrees C released no more dipicolinic acid than similarly heated wild-type spores (< 20% of the total dipicolinic acid) and triggered germination normally. In contrast, after a heat treatment (93 degrees C for 30 min) that gave > or = 99% killing of wild-type spores, < 1% of the survivors had acquired new obvious mutations, > 85% of the spore's dipicolinic acid had been released, and < 1% of the surviving spores could initiate spore germination. Analysis of DNA extracted from heated (85 degrees C, 30 min) and unheated wild-type spores and unheated alpha - beta - spores revealed very few single-strand breaks (< 1 per 20 kb) in the DNA. In contrast, the DNA from heated alpha- beta- spores had more than 10 single-strand breaks per 20 kb. These data suggest that binding of alpha/beta-type SASP to spore DNA in vivo greatly reduces DNA damage caused by heating, increasing spore heat resistance and long-term survival. While the precise nature of the initial DNA damage after heating of alpha- beta- spores that results in the single-strand breaks is not clear, a likely possibility is DNA depurination. A role for alpha/beta-type SASP in protecting DNA against depurination (and thus promoting spore survival) was further suggested by the demonstration that these proteins reduce the rate of DNA depurination in vitro at least 20-fold.  相似文献   

14.
Freshly cooked luncheon meat in a plastic (PVDC) casing had an aerobic plate count of about 102/g. The flora was composed of approximately equal numbers of Bacillus and Micrococcus spp. Storage at 10°C for 42 d produced little increase in bacterial numbers, or changes in pH value or glucose content at either the surface or core of the luncheon meat. Storage at 25°C allowed Bacillus spp. to proliferate at the surface. The inhibitory effect of salt and nitrite on the growth of heated Bacillus spores at low redox potentials probably accounts for the absence of growth within the product. Growth at the surface was accompanied by a fall in pH (6.8 to 6.2) and an increase in glucose (1.6 to 3.6 mg/g) and L(+)-lactic acid (1.2 to 2.3 mg/g). By day 14 the Bacillus spp. had been displaced by a Streptococcus sp. (107/g) which remained the dominant organism until the experiment ended on day 28. The pH continued to fall from 5.7 on day 14 to 5.2 on day 28, the L(+)-lactic acid rose to 6.1 mg/g, but the glucose remained constant at the day 7 level (3.6 mg/g). This indicates that glucose converted to lactic acid was largely replaced by hydrolysis of the starch portion of the luncheon meat mediated by amylases produced by the Bacillus microflora. It appears that growth of the Streptococcus is dependent upon the denitrifying activities of the initial Bacillus flora reducing the concentration of nitrite ion to non-inhibitory levels.  相似文献   

15.
Germination of the decoated spores of Bacillus megaterium   总被引:3,自引:0,他引:3  
Decoated spores of Bacillus megaterium ATCC 12872 were prepared by extracting the inner coat components with an alkaline solution containing sodium dodecyl sulfate and dithiothreitol (SDS-DTT) from outer coat-deficient mutant spores, which were produced from one of the mutants isolated and named MAE-05 by us. The decoated mutant spores germinated as well as the intact spores of the mutant and the parent, indicating that the outer and inner spore cats cannot be essential structures for the initiation of germination. When the SDS-DTT-treated MAE-05 spores were converted to H-spores by incubation in citrate-phosphate buffer (pH 3.5) at 30 C for 3 hr, they lost their germinability by glucose and KNO3. Ca-spores, prepared by treating H-spores with 10 mM calcium acetate at 37 C for 60 min, regained the germinability. Experiments on the interaction of 45Ca with the cortex and the inner membrane isolated from H-spores suggested that the calcium present in the inner membrane might be related to germinability.  相似文献   

16.
In the absence of any other oxidizable substrate, the perfused rat heart oxidizes [1-14C]leucine to 14CO2 at a rapid rate and releases only small amounts of α-[1-14C]ketoisocaproate into the perfusion medium. The branched-chain α-keto acid dehydrogenase complex, assayed in extracts of mitochondria prepared from such perfused hearts, is very active. Under such perfusion conditions, dichloroacetate has almost no effect on [1-14C]leucine oxidation, α-[1-14C]ketoisocaproate release, or branched-chain α-keto acid dehydrogenase activity. Perfusion of the heart with some other oxidizable substrate, e.g., glucose, pyruvate, ketone bodies, or palmitate, results in an inhibition of [1-14C]leucine oxidation to 14CO2 and the release of large amounts of α-[1-14C]ketoisocaproate into the perfusion medium. The branched-chain α-keto acid dehydrogenase complex, assayed in extracts of mitochondria prepared from such hearts, is almost completely inactivated. The enzyme can be reactivated, however, by incubating the mitochondria at 30 °C without an oxidizable substrate. With hearts perfused with glucose or ketone bodies, dichloroacetate greatly increases [1-14C]leucine oxidation, decreases α-[1-14C]ketoisocaproate release into the perfusion medium, and activates the branched-chain α-keto acid dehydrogenase complex. Pyruvate may block dichloroacetate uptake because dichloroacetate neither stimulates [1-14C]leucine oxidation nor activates the branched-chain α-keto acid dehydrogenase complex of pyruvate-perfused hearts. It is suggested that leucine oxidation by heart is regulated by the activity of the branched-chain α-keto acid dehydrogenase complex which is subject to interconversion between active and inactive forms. Oxidizable substrates establish conditions which inactivate the enzyme. Dichloroacetate, known to activate the pyruvate dehydrogenase complex by inhibition of pyruvate dehydrogenase kinase, causes activation of the branched-chain α-keto acid dehydrogenase complex, suggesting the existence of a kinase for this complex.  相似文献   

17.
H T Truong  E A Pratt  G S Rule  P Y Hsue  C Ho 《Biochemistry》1991,30(44):10722-10729
A combination of site-specific mutagenesis and 19F nuclear magnetic resonance has been used to investigate the structural properties of D-lactate dehydrogenase, a membrane-associated enzyme of Escherichia coli. The protein (65,000 Da) has been labeled with 5-fluorotryptophan for 19F nuclear magnetic resonance studies. Tryptophan has been substituted for individual phenylalanine, tyrosine, isoleucine, and leucine residues at various positions throughout the enzyme molecule, and the fluorinated native and substituted tryptophan residues have been used as probes of the local environment. All 24 mutants thus generated are expressed in E. coli. Ten are fully active and purfiable following the usual procedure, while 14 either are inactive or produce low levels of activity. The amount of active enzyme produced from the low-yield mutants is dependent on the temperature at which synthesis is carried out, with more active enzyme produced at 18 degrees C than at 27, 35, or 42 degrees C. Cells grown at 27 degrees C and then incubated at 42 degrees C retain 90-100% of their activity. All of the expressed protein from the inactive mutants is Triton-insoluble, aggregated, and not readily purfiable; the inactive mutant protein appears to be improperly folded. Most of the expressed D-lactate dehydrogenase from the partially active mutants is also Triton-insoluble; a small fraction, however, is soluble in Triton and can be purified to yield active enzyme. All the purified enzymes from these low-yield mutants of D-lactate dehydrogenase have essentially normal VmaxS, and all but two have normal KmS. Once purified, the low-yield mutant enzymes are stable at 42 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
1. The incorporation of labelled glucose into lipid by liver slices from sheep and cows is considerably less than that by liver slices from the rat, although oxidation to carbon dioxide occurs to a similar extent. ATP citrate lyase and NADP malate dehydrogenase are inactive in both sheep and cow liver but active in rat liver. The absence of the citrate-cleavage pathway of lipogenesis in ruminant liver has been confirmed by the negligible amounts of C-3 of aspartate incorporated into fatty acids. 2. Considerable amounts of [(14)C]acetate are incorporated into fatty acids and non-saponifiable lipid in rat and ruminant liver. Acetyl-CoA synthetase, the initial enzyme in the metabolism of acetate, has a high activity in liver from rat and ruminants. 3. In adipose tissue from ruminants more acetate than glucose is converted into lipids, whereas the converse is true in rat adipose tissue. The greater incorporation of [(14)C]acetate into fatty acids in adipose tissue from the ruminant as compared with the non-ruminant may be caused, in part, by the higher activity of acetyl-CoA synthetase activity in the ruminant. 4. The results suggest that, in both liver and adipose tissue from ruminants, acetate is a more important source of lipid than glucose. 5. Two enzymes of the hexose monophosphate shunt, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase, are active in both tissues and from the three species.  相似文献   

19.
The soluble form of the homogeneous quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus is reversibly inactivated at temperatures above 35 degrees C. An equilibrium is established between active and denatured enzyme, this depending on the protein concentration and the inactivation temperature used. Upon thermal inactivation the enzyme dissociates into the prosthetic group pyrroloquinoline quinone and the apo form of glucose dehydrogenase. After inactivation at 50 degrees C active enzyme is re-formed again at 25 degrees C. Ca2+ ions are necessary for the re-activation process. The velocity of re-activation depends on the protein concentration, the concentration of the prosthetic group pyrroloquinoline quinone and the Ca2+ concentration. The apo form of glucose dehydrogenase can be isolated, and in the presence of pyrroloquinoline quinone and Ca2+ active holoenzyme is formed. Even though native glucose dehydrogenase is not inactivated in the presence of EDTA or trans-1,2-diaminocyclohexane-NNN'NH-tetra-acetic acid, Ca2+ stabilizes the enzyme against thermal inactivation. Two Ca2+ ions are found per subunit of glucose dehydrogenase. The data suggest that pyrroloquinoline quinone is bound at the active site via a Ca2+ bridge. Mn2+ and Cd2+ can replace Ca2+ in the re-activation mixture.  相似文献   

20.
Pathways of glutamine metabolism in resting and proliferating rat thymocytes were evaluated by in vitro incubations of freshly prepared or 60-h cultured cells for 1-2 h with [U14C]glutamine. Complete recovery of glutamine carbons utilized in products allowed quantification of the pathways of glutamine metabolism under the experimental conditions. Partial oxidation of glutamine via 2-oxoglutarate in a truncated citric acid cycle to CO2 and oxaloacetate, which then was converted to aspartate, accounted for 76 and 69%, respectively, of the glutamine metabolized beyond the stage of glutamate by resting and proliferating thymocytes. Complete oxidation to CO2 in the citric acid cycle via 2-oxoglutarate dehydrogenase and isocitrate dehydrogenase accounted for 25 and 7%, respectively. In proliferating cells a substantial amount of glutamine carbons was also recovered in pyruvate, alanine, and especially lactate. The main route of glutamine and glutamate entrance into the citric acid cycle via 2-oxoglutarate in both cells is transamination by aspartate aminotransferase rather than oxidative deamination by glutamate dehydrogenase. In the presence of glucose as second substrate, glutamine utilization and aspartate formation markedly decreased, but complete oxidation of glutamine carbons to CO2 increased to 37 and 23%, respectively, in resting and proliferating cells. The dipeptide, glycyl-L-glutamine, which is more stable than free glutamine, can substitute for glutamine in thymocyte cultures at higher concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号