首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our previous work has shown that non-toxic concentrations of peroxynitrite nevertheless commit U937 cells to mitochondrial permeability-transition (MPT)-dependent necrosis that is however prevented by a parallel survival signaling pathway involving cytosolic phospholipase A2 (cPLA2)-dependent arachidonic acid release and PKCalpha activation associated with the cytosolic translocation of Bad. The present study provides evidence of an early mitochondrial translocation of PKCalpha. Inhibition of the survival signaling at the level of either cPLA2, or PKC, was invariably associated with prevention of the mitochondrial localization of PKCalpha, with the mitochondrial translocation of Bad and Bax and with a very rapid lethal response. Collectively, the results presented in this study demonstrate that peroxynitrite, while committing U937 cells to necrosis, triggers a parallel signaling response leading to the cytosolic localization of two important members of the Bcl-2 family implicated in the onset of MPT.  相似文献   

2.
We have studied the relationships existing between delayed formation of H2O2 and activation of cytosolic phospholipase A2 (cPLA2), events respectively promoting toxicity or survival in U937 cells exposed to peroxynitrite. The outcome of an array of different approaches using phospholipase A2 inhibitors, or cPLA2 antisense oligonucleotides, as well as specific respiratory chain inhibitors and respiration-deficient cells led to the demonstration that H2O2 does not mediate toxicity by producing direct molecular damage. Rather, the effects of H2O2 were found to be upstream to the arachidonic acid (AA)-mediated cytoprotective signalling and in fact causally linked to inhibition of cPLA2. Thus, it appears that U937 cells exposed to nontoxic concentrations of peroxynitrite are nevertheless committed to death, which however is normally prevented by the activation of parallel pathways resulting in cPLA2-dependent release of AA. A rapid necrotic response, however, takes place when high concentrations of peroxynitrite promote formation of H2O2 at levels impairing the cPLA2 cytoprotective signalling.  相似文献   

3.
Peroxynitrite, a highly reactive nitrogen species, promotes in U937 cells (a promonocytic cell line) a mitochondrial permeability transition (MPT)-dependent necrosis. An initial event triggered by peroxynitrite (i.e., inhibition of complex III of the mitochondrial respiratory chain) is responsible for the time-dependent formation of H(2)O(2), essential for the occurrence of cell death. Otherwise non-toxic concentrations of peroxynitrite nevertheless commit cells to MPT-dependent necrosis, which is however prevented by a cytoprotective signaling driven by arachidonic acid (AA) released by the cytosolic PLA(2) isoform. Interestingly, the mechanism whereby delayed formation of H(2)O(2) promotes toxicity in cells exposed to intrinsically toxic concentrations of peroxynitrite is independent of the accumulation of additional damage. Cell death is in fact mediated by inhibition of the AA-dependent cytoprotective signaling. Exogenous AA, however, prevented toxicity also under these conditions. An additional point to be made is that the major findings obtained using U937 cells were reproduced in different cell types belonging to the monocyte/macrophage lineage. Hence, within the context of the inflammatory response, monocytes and macrophages may cope with peroxynitrite by using AA, a signaling molecule largely available at the inflammatory sites.  相似文献   

4.
A short-term growth of U937 cells in serum-free medium causes a prompt, mitochondrial permeability transition (MPT)-dependent necrotic response after exposure to an otherwise non-toxic concentration of peroxynitrite. This event is mediated by inhibition of extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation, essential for the cytosolic phospholipase A(2)-dependent arachidonic acid (AA) release evoked by peroxynitrite. Reduced availability of the lipid messenger would therefore limit the efficiency of the AA-dependent survival signalling and cause an MPT-based necrosis. Since peroxynitrite further reduces the extent of ERK1/2 phosphorylation, regardless of whether cells had been grown in serum-free or -containing medium, it appears that basal ERK1/2 phosphorylation is a critical determinant for the survival response of U937 cells to a non-toxic, but nevertheless MPT-committing, concentration of peroxynitrite.  相似文献   

5.
Sequential activation of cytosolic phospholipase A2 (cPLA2) and 5-lipoxygenase (5-LO), critically regulated by extracellular signal-regulated kinase 1 and 2 (ERK1/2)-dependent phosphorylation, mediates U937 cell survival to peroxynitrite. In contrast, a limiting factor is represented by the parallel mitochondrial formation of H2O2 leading to suppression of the survival signaling. We now report that the inhibitory effects of H2O2 are at the level of ERK1/2 phosphorylation and involve activation of orthovanadate-sensitive phosphotyrosine protein phosphatase(s). Under these conditions, the otherwise stimulatory effects of peroxynitrite on ERK1/2 phosphorylation are concealed by phosphatase-dependent dephosphorylation and the activities of cPLA2 and 5-LO are significantly reduced or suppressed, respectively. The ensuing inhibition of downstream events preventing mitochondrial permeability transition rapidly leads these cells to death. Thus, endogenous H2O2 limits U937 cell survival to peroxynitrite via activation of phosphotyrosine protein phosphatase(s) promoting upstream inhibition of the survival signaling critically regulated by the extent of ERK1/2 phosphorylation.  相似文献   

6.
The human undifferentiated histiocytic cell-line U937 can be induced to differentiate by incubation with 12-0-tetradecanoylphorbol-13-acetate (TPA) into macrophage-like cells. Dexamethasone reduced the prostaglandin production in TPA-differentiated U937 cells dose dependently, whereas undifferentiated U937 cells were dexamethasone insensitive. Concomitantly phospholipase A2, the enzyme liberating the prostaglandin precursor arachidonic acid, was inhibited by dexamethasone in TPA-differentiated but not in undifferentiated U937 cells. The activity of lysophosphatide acyltransferase, the key enzyme of fatty acid reacylation into phospholipids, remained unchanged both in undifferentiated and TPA-differentiated U937 cells. The data suggest that responsiveness to glucocorticoid-dependent regulation of prostanoid synthesis is acquired by cells of the monocyte-macrophage lineage late in differentiation.  相似文献   

7.
Phorbol esters induce morphologic and biochemical differentiation in U937 cells, a monocyte/macrophage-like line derived from a human histiocytic lymphoma. We are interested in the phorbol ester-stimulated release of arachidonic acid from cellular membranes and the subsequent synthesis of eicosanoids, as it may prove to correlate with the induced cellular differentiation. Undifferentiated log-phase U937 cells released little recently incorporated [3H]arachidonic acid, but phorbol 12-myristate 13-acetate increased its apparent rate of release to that of cells differentiated by exposure to phorbol myristate acetate for 3 days. Exposure of washed differentiated cells immediately prelabelled with [3H]arachidonic acid to additional phorbol myristate acetate did not augment the release of [3H]arachidonic acid. The basal release of nonradioactive fatty acids from differentiated cells was 5-10 times that of undifferentiated cells, and phorbol myristate acetate increased their release from both types of cell 2- to 3-fold. Differentiated cells immediately prelabelled with [3H]arachidonic acid exhibited greater incorporation into phosphatidylinositol and phosphatidylcholine, and contained more radioactive free arachidonic acid, compared with undifferentiated cells. Undifferentiated cells contained more radioactivity in phosphatidylserine, phosphatidylethanolamine and neutral lipids. Phorbol myristate acetate caused differentiated cells to release [3H]arachidonic acid from phosphatidylinositol, phosphatidylserine, phosphatidylcholine and phosphatidylethanolamine, but release from neutral lipids was reduced, and the content of [3H]arachidonic acid increased. In undifferentiated cells incubated with phorbol myristate acetate, radioactivity associated with phosphatidylserine, phosphatidylethanolamine and neutral lipid was reduced and [3H]arachidonic acid was unchanged. Synthesis of cyclooxygenase products exceeded that of lipoxygenase products in both differentiated and undifferentiated cells. Phorbol myristate acetate increased the synthesis of both types of product, cyclooxygenase-dependent more than lipoxygenase-dependent, especially in differentiated cells. The biological significance of these changes in lipid metabolism that accompany phorbol myristate acetate-induced differentiation are yet to be established.  相似文献   

8.
U937, THP-1, and J774 cells or human monocytes and macrophages display similar levels of sensitivity to peroxynitrite and exposure to an otherwise non-toxic concentration of the oxidant in the presence of a phospholipase A(2) inhibitor was invariably associated with the onset of mitochondrial permeability transition (MPT)-dependent toxicity. These events were prevented by exogenous arachidonic acid (AA). In general, the protective concentrations of AA were greater in those cell types releasing more AA. Thus, non-toxic concentrations of peroxynitrite commit cells belonging to the monocyte/macrophage lineage to MPT-dependent toxicity that is however prevented by endogenous AA.  相似文献   

9.
Peroxynitrite stimulates in U937 cells release of arachidonic acid (AA) sensitive to various phospholipase A(2) (PLA(2)) inhibitors, including arachidonyl trifluoromethyl ketone (AACOCF(3)), which specifically inhibits cytosolic PLA(2) (cPLA(2)). This response linearly increases using non toxic concentrations of the oxidant, and reaches a plateau at levels at which toxicity becomes apparent. Three separate lines of evidence are consistent with the notion that AA generated by cPLA(2) promotes survival in cells exposed to peroxynitrite. Firstly, toxicity was suppressed by nanomolar levels of exogenous AA, or by AA generated by the direct PLA(2) activator melittin. Secondly AACOCF(3), or other PLA(2) inhibitors, promoted cell death after exposure to otherwise non toxic concentrations of peroxynitrite; exogenous AA abolished the enhancing effects mediated by the PLA(2) inhibitors. Finally, U937 cells transfected with cPLA(2) antisense oligonucleotides were killed by concentrations of peroxynitrite that were non-toxic for cells transfected with nonsense oligonucleotides. This lethal response was insensitive to AACOCF(3) and prevented by exogenous AA.  相似文献   

10.
Monocytes/macrophages committed to death by peroxynitrite nevertheless survive with a signaling response promoting Bad phosphorylation, as well as its cytosolic localization, via upstream activation of cytosolic phospholipase A(2), 5-lipoxygenase, and protein kinase C alpha. We now report evidence for an alternative mechanism converging in Bad phosphorylation when the expression/activity of the above enzymes are suppressed. Under these conditions, also associated with peroxynitrite-dependent severe inhibition of Akt, an additional Bad kinase, Bad dephosphorylation promoted its accumulation in the mitochondria and a prompt lethal response. PGE(2) prevented toxicity via EP(2) receptor-mediated protein kinase A-dependent Bad phosphorylation. This notion was established in U937 cells by the following criteria: 1) there was a strong correlation between survival and cAMP accumulation, both in the absence and presence of phosphodiesterase inhibitors; 2) direct activation of adenylyl cyclase afforded cytoprotection; and 3) PGE(2) promoted loss of mitochondrial Bad and cytoprotection, mimicked by EP(2) receptor agonists, and prevented by EP(2) receptor antagonists or protein kinase A inhibitors. Finally, selected experiments performed in human monocytes/macrophages and in rat peritoneal macrophages indicated that the above cytoprotective pathway is a general response of cells belonging to the monocyte/macrophage lineage to both exogenous and endogenous peroxynitrite. The notion that two different pathways mediated by downstream products of arachidonic acid metabolism converge in Bad phosphorylation emphasizes the relevance of this strategy for the regulation of macrophage survival to peroxynitrite at the inflammatory sites.  相似文献   

11.
Eicosanoid production is reduced when the nitric oxide (NO·) pathway is inhibited or when the inducible NO synthase gene is deleted, indicating that the NO· and arachidonic acid pathways are linked. We hypothesized that peroxynitrite, formed by the reaction of NO· and superoxide anion, may cause signaling events leading to arachidonic acid release and subsequent eicosanoid generation. Western blot analysis of rat arterial smooth muscle cells demonstrated that peroxynitrite (100–500 µM) and 3-morpholinosydnonimine (SIN-1; 200 µM) stimulate phosphorylation of extracellular signal-regulated kinase (ERK), p38, and cytosolic phospholipase A2 (cPLA2). We found that peroxynitrite-induced arachidonic acid release was completely abrogated by the mitogen-activated protein/ERK kinase (MEK) inhibitor U0126 and by calcium chelators. With the p38 inhibitor SB-20219, we demonstrated that peroxynitrite-induced p38 phosphorylation led to minor arachidonic acid release, whereas U0126 completely blocked p38 phosphorylation. Addition of arachidonic acid caused p38 phosphorylation, suggesting that arachidonic acid or its metabolites are responsible for p38 activation. KN-93, a specific inhibitor of Ca2+/calmodulin-dependent kinase II (CaMKII), revealed no role for this kinase in peroxynitrite-induced arachidonic acid release in our cell system. Together, these results show that in response to peroxynitrite the cell initiates the MEK/ERK cascade leading to cPLA2 activation and arachidonic acid release. Thus studies investigating the role of the NO· pathway on eicosanoid production must consider the contribution of signaling pathways initiated by reactive nitrogen species. These findings may provide evidence for a new role of peroxynitrite as an important reactive nitrogen species in vascular disease. reactive nitrogen species; prostaglandin H2 synthase; extracellular signal-regulated kinase; p38; cytosolic phospholipase A2  相似文献   

12.
Treatment with dibutyryl cyclic AMP (dBcAMP) of the human, premonocytic U937 cell line results in differentiation toward a monocyte/granulocyte-like cell. This differentiation enables the cell to activate cytosolic phospholipase A2 (cPLA2) to release arachidonate upon stimulation. In contrast, undifferentiated cells are unable to release arachidonate even when stimulated with calcium ionophores. In the present research, a role for phospholipase D (PLD) in the regulation of cPLA2 was shown based on a number of observations. First, the ionomycin- and fMLP-stimulated production of arachidonate in differentiated cells was sensitive to ethanol (2% (v/v)). Ethanol acts as an alternate substrate in place of water for PLD producing phosphatidylethanol (PEt) instead of phosphatidic acid. Indeed, ionomycin stimulation of differentiated cells produced a 14-fold increase in PEt levels. Further evidence for the involvement of PLD in the regulation of cPLA2 came from the observation that the stimulated production of diacylglycerol (for which phosphatidic acid is a major source) was greatly diminished in undifferentiated cells as compared to differentiated cells. Moreover, the normally deficient activation of cPLA2 in undifferentiated cells could be stimulated to release arachidonate if the cells were electroporated in the presence of GTP[gamma]S and MgATP. This treatment stimulates phosphatidylinositol-4,5-bisphosphate (PIP2) production which appears to activate PLD and cPLA2 in subsequent steps. The phosphatidic acid (and diacylglycerol derived from phosphatidic acid) appears to greatly regulate the action of cPLA2 by an unknown mechanism, and undifferentiated cells lack the ability to stimulate PLD activity due to a dysfunction of PIP2 production.  相似文献   

13.
Cantoni O  Guidarelli A 《IUBMB life》2008,60(11):753-756
Eight years ago, we published in this journal the first evidence that peroxynitrite does not directly produce DNA single-strand breakage in intact U937 cells (Guidarelli et al., IUBMB Life, 50, 195-201). This event was rather attributed to the secondary reactive species produced at the mitochondrial level via a Ca2+-dependent reaction, in which ubisemiquinone serves as an electron donor. Under these conditions, electrons are directly transferred to molecular oxygen and superoxide/H2O2, and the ensuing DNA damage can therefore be produced in a time- dependent manner for at least 30 min. Formation of H2O2 and DNA single-strand breaks was therefore dependent on interference with electron transport at the complex III level as well as on mitochondrial Ca2+ accumulation. Further studies led to the demonstrations that peroxynitrite mobilizes Ca2+ from the ryanodine receptor. Finally, in U937 cells, a pro-monocytic cell line sharing with monocytes/macrophages the same signaling events to survive to peroxynitrite, mitochondrial H2O2 promotes inhibition of survival via tyrosine phosphatase activation, leading to ERK1/2 dephosphorylation and thus to upstream inhibition of the survival signaling.  相似文献   

14.
A short-term exposure of PC12 cells to tert-butylhydroperoxide promotes a rapid oxidation of dihydrorhodamine sensitive to nitric oxide synthase inhibitors and peroxynitrite scavengers. This response was not directly caused by peroxynitrite, but rather appeared to be mediated by peroxynitrite-dependent activation of phospholipase A(2). The following lines of evidence support this inference: (i) the peroxynitrite-dependent dihydrorhodamine fluorescence response was blunted by low concentrations of two structurally unrelated phospholipase A(2) inhibitors; (ii) under similar conditions, the phospholipase A(2) inhibitors prevented release of arachidonic acid; (iii) low levels of arachidonic acid restored the dihydrorhodamine fluorescence response in nitric oxide synthase- as well as phospholipase A(2)-inhibited cells; (iv) the dihydrorhodamine fluorescence response induced by authentic peroxynitrite was also blunted by phospholipase A(2) inhibitors and restored upon addition of reagent arachidonic acid. We conclude that endogenous, or exogenous, peroxynitrite does not directly oxidize dihydrorhodamine in intact cells. Rather, peroxynitrite appears to act as a signalling molecule promoting release of arachidonic acid, which in turn leads to formation of species causing the dihydrorhodamine fluorescence response.  相似文献   

15.
Helicobacter pylori initiates an inflammatory response and gastric diseases, which are more common in patients infected with H. pylori strains carrying the pathogenicity island, by colonizing the gastric epithelium. In the present study we investigated the mechanism of prostaglandin E(2) (PGE(2)) synthesis in response to H. pylori infection. We demonstrate that H. pylori induces the synthesis of PGE(2) via release of arachidonic acid predominately from phosphatidylinositol. In contrast to H. pylori wild type, an isogenic H. pylori strain with a mutation in the pathogenicity island exerts only weak arachidonic acid and PGE(2) synthesis. The H. pylori-induced arachidonic acid release was abolished by phospholipase A(2) (PLA(2)) inhibitors and by pertussis toxin (affects the activity of G alpha(i)/G alpha(o)). The role of phospholipase C, diacylglycerol lipase, or phospholipase D was excluded by using specific inhibitors. An inhibitor of the stress-activated p38 kinase (SB202190), but neither inhibitors of protein kinase C nor an inhibitor of the extracellular-regulated kinase pathway (PD98059), decreased the H. pylori-induced arachidonic acid release. H. pylori-induced phosphorylation of p38 kinase and cytosolic PLA(2) was blocked by SB202190. These results indicate that H. pylori induces the release of PGE(2) from epithelial cells by cytosolic PLA(2) activation via G alpha(i)/G alpha(o) proteins and the p38 kinase pathway.  相似文献   

16.
Previous studies have demonstrated that U937 cells are able to mobilize arachidonic acid (AA) and synthesize prostaglandins in response to receptor-directed and soluble stimuli by a mechanism that involves the activation of Group IV cytosolic phospholipase A(2)alpha. In this paper we show that these cells also mobilize AA in response to an oxidative stress induced by H(2)O(2) through a mechanism that appears not to be mediated by cytosolic phospholipase A(2)alpha but by the calcium-independent Group VI phospholipase A(2) (iPLA(2)). This is supported by the following lines of evidence: (i) the response is essentially calcium-independent, (ii) it is inhibited by bromoenol lactone, and (iii) it is inhibited by an iPLA(2) antisense oligonucleotide. Enzyme assays conducted under a variety of conditions reveal that the specific activity of the iPLA(2) does not change as a result of H(2)O(2) exposure, which argues against the activation of a specific signaling cascade ending in the iPLA(2). Rather, the oxidant acts to perturb membrane homeostasis in a way that the enzyme susceptibility/accessibility to its substrate increases, and this results in altered fatty acid release. In support of this view, not only AA, but also other fatty acids, were found to be liberated in an iPLA(2)-dependent manner in the H(2)O(2)-treated cells. Collectively, these studies underscore the importance of the iPLA(2) in modulating homeostatic fatty acid deacylation reactions and document a potentially important route under pathophysiological conditions for increasing free fatty acid levels during oxidative stress.  相似文献   

17.
The human cell line U937 was used as a model for differentiation along the mononuclear phagocyte lineage. Following treatment with the phorbol ester TPA, PGE2 and TxB2 secretion was induced 50-100-fold, and both PGF2 alpha and PGI2 levels became detectable in the supernatant of TPA-differentiated U937 cells. The content of the prostaglandin precursor, arachidonic acid, remained unchanged in the cellular phospholipids of undifferentiated and TPA-differentiated U937 cells. Of the enzymes involved in the availability and metabolism of arachidonic acid, phospholipase A2 activity was increased 2-fold in the membranes of TPA-differentiated U937 cells, whereas lysophosphatide acyltransferase activity remained unaltered. Cyclooxygenase activity, however, was enhanced 5-10-fold, which was due to enhanced expression of the enzyme as demonstrated by dot-blot analysis. The data suggest that the capacity to secrete prostaglandins is acquired during differentiation with TPA and results mainly from an increased cyclooxygenase activity. Despite the capacity of TPA-differentiated U937 cells to synthesize prostaglandins, none of the known monocytic stimuli further stimulated prostaglandin secretion in TPA-differentiated U937 cells. Generation of leukotrienes appears to represent a later state in the differentiation along the monocyte-macrophage lineage, since neither LTB4 nor cysteinyl-leukotrienes were detectable in the supernatants of either undifferentiated or TPA-differentiated U937 cells.  相似文献   

18.
To determine if lysophosphatidylcholine (lysoPC) is able to induce proinflammatory changes in monocytes, its ability to stimulate arachidonic acid (AA) release, a product of phospholipase A2 (PLA(2)) activity, has been analyzed. LysoPC increased AA release in THP-1 and Mono Mac6 cells in a time- and concentration-dependent manner. The monocytes expressed both secretory and cytosolic PLA(2) enzymes and AA release was strongly reduced by cellular pretreatment with different PLA(2) inhibitors and by pertussis toxin, an inhibitor of G(i)-protein activation. This indicates that both cytosolic and secretory PLA(2) enzymes regulate specific lysoPC receptor-induced AA release, suggesting lysoPC participation in monocyte proinflammatory activation.  相似文献   

19.
The rhizome of ginger (Zingiber officinale) is employed in Asian traditional medicine to treat mild forms of rheumatoid arthritis and fever. We have profiled ginger constituents for robust effects on proinflammatory signaling and cytokine expression in a validated assay using human whole blood. Independent of the stimulus used (LPS, PMA, anti-CD28 Ab, anti-CD3 Ab, and thapsigargin), ginger constituents potently and specifically inhibited IL-1β expression in monocytes/macrophages. Both the calcium-independent phospholipase A(2) (iPLA(2))-triggered maturation and the cytosolic phospholipase A(2) (cPLA(2))-dependent secretion of IL-1β from isolated human monocytes were inhibited. In a fluorescence-coupled PLA(2) assay, most major ginger phenylpropanoids directly inhibited i/cPLA(2) from U937 macrophages, but not hog pancreas secretory phospholipase A(2). The effects of the ginger constituents were additive and the potency comparable to the mechanism-based inhibitor bromoenol lactone for iPLA(2) and methyl arachidonyl fluorophosphonate for cPLA(2), with 10-gingerol/-shogaol being most effective. Furthermore, a ginger extract (2 μg/ml) and 10-shogaol (2 μM) potently inhibited the release of PGE(2) and thromboxane B2 (>50%) and partially also leukotriene B(4) in LPS-stimulated macrophages. Intriguingly, the total cellular arachidonic acid was increased 2- to 3-fold in U937 cells under all experimental conditions. Our data show that the concurrent inhibition of iPLA(2) and prostanoid production causes an accumulation of free intracellular arachidonic acid by disrupting the phospholipid deacylation-reacylation cycle. The inhibition of i/cPLA(2), the resulting attenuation of IL-1β secretion, and the simultaneous inhibition of prostanoid production by common ginger phenylpropanoids uncover a new anti-inflammatory molecular mechanism of dietary ginger that may be exploited therapeutically.  相似文献   

20.
H(2)O(2) is a reactive oxygen species that contracts or relaxes vascular smooth muscle, but the molecular basis of these effects remains obscure. We previously demonstrated that H(2)O(2) opens the large-conductance, calcium- and voltage-activated (BK(Ca)) potassium channel of coronary myocytes (2) and now report physiological and biochemical evidence that the effect of H(2)O(2) on coronary smooth muscle involves the phospholipase A(2) (PLA(2))/arachidonic acid (AA) signaling cascades. H(2)O(2) stimulation of BK(Ca) channel activity was inhibited by arachidonyl trifluoromethyl ketone, an inhibitor of cytosolic PLA(2). Furthermore, H(2)O(2) stimulated release of [(3)H]AA from coronary myocytes, and exogenous AA mimicked the effect of H(2)O(2) on BK(Ca) channels. Inhibitors of protein kinase C activity attenuated the effect of H(2)O(2) on BK(Ca) channels, [(3)H]AA release, or intact coronary arteries. In addition, the effect of H(2)O(2) or AA on BK(Ca) channels was inhibited by blockers of lipoxygenase metabolism. In contrast, inhibitors of cyclooxygenase or cytochrome P-450 had no effect. We propose that H(2)O(2) relaxes coronary arteries by stimulating BK(Ca) channels via the PLA(2)/AA signaling cascade and that lipoxygenase metabolites mediate this response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号