首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MOTIVATION: A common objective of microarray experiments is the detection of differential gene expression between samples obtained under different conditions. The task of identifying differentially expressed genes consists of two aspects: ranking and selection. Numerous statistics have been proposed to rank genes in order of evidence for differential expression. However, no one statistic is universally optimal and there is seldom any basis or guidance that can direct toward a particular statistic of choice. RESULTS: Our new approach, which addresses both ranking and selection of differentially expressed genes, integrates differing statistics via a distance synthesis scheme. Using a set of (Affymetrix) spike-in datasets, in which differentially expressed genes are known, we demonstrate that our method compares favorably with the best individual statistics, while achieving robustness properties lacked by the individual statistics. We further evaluate performance on one other microarray study.  相似文献   

2.
This paper introduces a novel generic approach for classification problems with the objective of achieving maximum classification accuracy with minimum number of features selected. The method is illustrated with several case studies of gene expression data. Our approach integrates filter and wrapper gene selection methods with an added objective of selecting a small set of non-redundant genes that are most relevant for classification with the provision of bins for genes to be swapped in the search for their biological relevance. It is capable of selecting relatively few marker genes while giving comparable or better leave-one-out cross-validation accuracy when compared with gene ranking selection approaches. Additionally, gene profiles can be extracted from the evolving connectionist system, which provides a set of rules that can be further developed into expert systems. The approach uses an integration of Pearson correlation coefficient and signal-to-noise ratio methods with an adaptive evolving classifier applied through the leave-one-out method for validation. Datasets of gene expression from four case studies are used to illustrate the method. The results show the proposed approach leads to an improved feature selection process in terms of reducing the number of variables required and an increased in classification accuracy.  相似文献   

3.
DNA microarray experiments have generated large amount of gene expression measurements across different conditions. One crucial step in the analysis of these data is to detect differentially expressed genes. Some parametric methods, including the two-sample t-test (T-test) and variations of it, have been used. Alternatively, a class of non-parametric algorithms, such as the Wilcoxon rank sum test (WRST), significance analysis of microarrays (SAM) of Tusher et al. (2001), the empirical Bayesian (EB) method of Efron et al. (2001), etc., have been proposed. Most available popular methods are based on t-statistic. Due to the quality of the statistic that they used to describe the difference between groups of data, there are situations when these methods are inefficient, especially when the data follows multi-modal distributions. For example, some genes may display different expression patterns in the same cell type, say, tumor or normal, to form some subtypes. Most available methods are likely to miss these genes. We developed a new non-parametric method for selecting differentially expressed genes by relative entropy, called SDEGRE, to detect differentially expressed genes by combining relative entropy and kernel density estimation, which can detect all types of differences between two groups of samples. The significance of whether a gene is differentially expressed or not can be estimated by resampling-based permutations. We illustrate our method on two data sets from Golub et al. (1999) and Alon et al. (1999). Comparing the results with those of the T-test, the WRST and the SAM, we identified novel differentially expressed genes which are of biological significance through previous biological studies while they were not detected by the other three methods. The results also show that the genes selected by SDEGRE have a better capability to distinguish the two cell types.  相似文献   

4.
MOTIVATION: Recent studies have shown that microarray gene expression data are useful for phenotype classification of many diseases. A major problem in this classification is that the number of features (genes) greatly exceeds the number of instances (tissue samples). It has been shown that selecting a small set of informative genes can lead to improved classification accuracy. Many approaches have been proposed for this gene selection problem. Most of the previous gene ranking methods typically select 50-200 top-ranked genes and these genes are often highly correlated. Our goal is to select a small set of non-redundant marker genes that are most relevant for the classification task. RESULTS: To achieve this goal, we developed a novel hybrid approach that combines gene ranking and clustering analysis. In this approach, we first applied feature filtering algorithms to select a set of top-ranked genes, and then applied hierarchical clustering on these genes to generate a dendrogram. Finally, the dendrogram was analyzed by a sweep-line algorithm and marker genes are selected by collapsing dense clusters. Empirical study using three public datasets shows that our approach is capable of selecting relatively few marker genes while offering the same or better leave-one-out cross-validation accuracy compared with approaches that use top-ranked genes directly for classification. AVAILABILITY: The HykGene software is freely available at http://www.cs.dartmouth.edu/~wyh/software.htm CONTACT: wyh@cs.dartmouth.edu SUPPLEMENTARY INFORMATION: Supplementary material is available from http://www.cs.dartmouth.edu/~wyh/hykgene/supplement/index.htm.  相似文献   

5.
6.
7.
High throughput technologies, such as gene expression arrays and protein mass spectrometry, allow one to simultaneously evaluate thousands of potential biomarkers that could distinguish different tissue types. Of particular interest here is distinguishing between cancerous and normal organ tissues. We consider statistical methods to rank genes (or proteins) in regards to differential expression between tissues. Various statistical measures are considered, and we argue that two measures related to the Receiver Operating Characteristic Curve are particularly suitable for this purpose. We also propose that sampling variability in the gene rankings be quantified, and suggest using the "selection probability function," the probability distribution of rankings for each gene. This is estimated via the bootstrap. A real dataset, derived from gene expression arrays of 23 normal and 30 ovarian cancer tissues, is analyzed. Simulation studies are also used to assess the relative performance of different statistical gene ranking measures and our quantification of sampling variability. Our approach leads naturally to a procedure for sample-size calculations, appropriate for exploratory studies that seek to identify differentially expressed genes.  相似文献   

8.
MOTIVATION: One major area of interest in analyzing oligonucleotide gene array data is identifying differentially expressed genes. A challenge to biostatisticians is to develop an approach to summarizing probe-level information that adequately reflects the true expression level while accounting for probe variation, chip variation and interaction effects. Various statistical tools, such as MAS and RMA, have been developed to address this issue. In these approaches, the probe level expression data are summarized into gene level data, which are then used for downstream statistical analysis. Since probe variation is often larger than chip variation and there is also a potential interaction effect between probe affinity and treatment effect, strategies such as a gene level analysis, may not be optimal. In this study, we propose a procedure to analyze probe level data for selecting differentially expressed genes under two treatment conditions (groups) with a small number of replicates. The probe level discrepancy between two groups can be measured by a difference of the percentiles of probe perfect-match (PM) ranks or of probe PM weighted ranks. The difference is then compared with a pre-specified threshold to determine differentially expressed genes. The probe level approach takes into account non-homogenous treatment effects and reduces possible cross-hybridization effects across a set of probes. RESULTS: The proposed approach is compared with MAS and RMA using two benchmark gene array datasets. Positive predictivity and sensitivity are used for evaluation. Results show the proposed approach has higher positive predictivity and higher sensitivity. AVAILABILITY: Available on request from the authors. CONTACT: dtchen@uab.edu.  相似文献   

9.

Background  

This paper presents a unified framework for finding differentially expressed genes (DEGs) from the microarray data. The proposed framework has three interrelated modules: (i) gene ranking, ii) significance analysis of genes and (iii) validation. The first module uses two gene selection algorithms, namely, a) two-way clustering and b) combined adaptive ranking to rank the genes. The second module converts the gene ranks into p-values using an R-test and fuses the two sets of p-values using the Fisher's omnibus criterion. The DEGs are selected using the FDR analysis. The third module performs three fold validations of the obtained DEGs. The robustness of the proposed unified framework in gene selection is first illustrated using false discovery rate analysis. In addition, the clustering-based validation of the DEGs is performed by employing an adaptive subspace-based clustering algorithm on the training and the test datasets. Finally, a projection-based visualization is performed to validate the DEGs obtained using the unified framework.  相似文献   

10.
11.
12.
High-throughput genomic technologies enable researchers to identify genes that are co-regulated with respect to specific experimental conditions. Numerous statistical approaches have been developed to identify differentially expressed genes. Because each approach can produce distinct gene sets, it is difficult for biologists to determine which statistical approach yields biologically relevant gene sets and is appropriate for their study. To address this issue, we implemented Latent Semantic Indexing (LSI) to determine the functional coherence of gene sets. An LSI model was built using over 1 million Medline abstracts for over 20,000 mouse and human genes annotated in Entrez Gene. The gene-to-gene LSI-derived similarities were used to calculate a literature cohesion p-value (LPv) for a given gene set using a Fisher's exact test. We tested this method against genes in more than 6,000 functional pathways annotated in Gene Ontology (GO) and found that approximately 75% of gene sets in GO biological process category and 90% of the gene sets in GO molecular function and cellular component categories were functionally cohesive (LPv<0.05). These results indicate that the LPv methodology is both robust and accurate. Application of this method to previously published microarray datasets demonstrated that LPv can be helpful in selecting the appropriate feature extraction methods. To enable real-time calculation of LPv for mouse or human gene sets, we developed a web tool called Gene-set Cohesion Analysis Tool (GCAT). GCAT can complement other gene set enrichment approaches by determining the overall functional cohesion of data sets, taking into account both explicit and implicit gene interactions reported in the biomedical literature. Availability: GCAT is freely available at http://binf1.memphis.edu/gcat.  相似文献   

13.
In response to the rapid development of DNA Microarray Technologies, many differentially expressed genes selection algorithms have been developed, and different comparison studies of these algorithms have been done. However, it is not clear how these methods compare with each other, especially when we used different developments tools. Here, we considered three commonly used differentially expressed genes selection approaches, namely: Fold Change, T-test and SAM, using Bioinformatics Matlab Toolbox and R/BioConductor. We used two datasets, issued from the affymetrix technology, to present results of used methods and software''s in gene selection process. The results, in terms of sensitivity and specificity, indicate that the behavior of SAM is better compared to Fold Change and T-test using R/BioConductor. While, no practical differences were observed between the three gene selection methods when using Bioinformatics Matlab Toolbox. In face of our result, the ROC curve shows that: on the one hand R/BioConductor using SAM is favored for microarray selection compared to the other methods. And, on the other hand, results of the three studied gene selection methods using Bioinformatics Matlab Toolbox are still comparable for the two datasets used.  相似文献   

14.
MOTIVATION: The field of microarray data analysis is shifting emphasis from methods for identifying differentially expressed genes to methods for identifying differentially expressed gene categories. The latter approaches utilize a priori information about genes to group genes into categories and enhance the interpretation of experiments aimed at identifying expression differences across treatments. While almost all of the existing approaches for identifying differentially expressed gene categories are practically useful, they suffer from a variety of drawbacks. Perhaps most notably, many popular tools are based exclusively on gene-specific statistics that cannot detect many types of multivariate expression change. RESULTS: We have developed a nonparametric multivariate method for identifying gene categories whose multivariate expression distribution differs across two or more conditions. We illustrate our approach and compare its performance to several existing procedures via the analysis of a real data set and a unique data-based simulation study designed to capture the challenges and complexities of practical data analysis. We show that our method has good power for differentiating between differentially expressed and non-differentially expressed gene categories, and we utilize a resampling based strategy for controlling the false discovery rate when testing multiple categories. AVAILABILITY: R code (www.r-project.org) for implementing our approach is available from the first author by request.  相似文献   

15.
The level of differential gene expression may be defined as a fold change, a frequency of upregulation, or some other measure of the degree or extent of a difference in expression across groups of interest. On the basis of expression data for hundreds or thousands of genes, inferring which genes are differentially expressed or ranking genes in order of priority introduces a bias in estimates of their differential expression levels. A previous correction of this feature selection bias suffers from a lack of generality in the method of ranking genes, from requiring many biological replicates, and from unnecessarily overcompensating for the bias. For any method of ranking genes on the basis of gene expression measured for as few as three biological replicates, a simple leave-one-out algorithm corrects, with less overcompensation, the bias in estimates of the level of differential gene expression. In a microarray data set, the bias correction reduces estimates of the probability of upregulation or downregulation from 100% to as low as 60%, even for genes with estimated local false discovery rates close to 0. A simulation study quantifies both the advantage of smoothing estimates of bias before correction and the degree of overcompensation.  相似文献   

16.
MOTIVATION: Logistic regression is a standard method for building prediction models for a binary outcome and has been extended for disease classification with microarray data by many authors. A feature (gene) selection step, however, must be added to penalized logistic modeling due to a large number of genes and a small number of subjects. Model selection for this two-step approach requires new statistical tools because prediction error estimation ignoring the feature selection step can be severely downward biased. Generic methods such as cross-validation and non-parametric bootstrap can be very ineffective due to the big variability in the prediction error estimate. RESULTS: We propose a parametric bootstrap model for more accurate estimation of the prediction error that is tailored to the microarray data by borrowing from the extensive research in identifying differentially expressed genes, especially the local false discovery rate. The proposed method provides guidance on the two critical issues in model selection: the number of genes to include in the model and the optimal shrinkage for the penalized logistic regression. We show that selecting more than 20 genes usually helps little in further reducing the prediction error. Application to Golub's leukemia data and our own cervical cancer data leads to highly accurate prediction models. AVAILABILITY: R library GeneLogit at http://geocities.com/jg_liao  相似文献   

17.
18.
Global gene expression analysis using microarrays and, more recently, RNA-seq, has allowed investigators to understand biological processes at a system level. However, the identification of differentially expressed genes in experiments with small sample size, high dimensionality, and high variance remains challenging, limiting the usability of these tens of thousands of publicly available, and possibly many more unpublished, gene expression datasets. We propose a novel variable selection algorithm for ultra-low-n microarray studies using generalized linear model-based variable selection with a penalized binomial regression algorithm called penalized Euclidean distance (PED). Our method uses PED to build a classifier on the experimental data to rank genes by importance. In place of cross-validation, which is required by most similar methods but not reliable for experiments with small sample size, we use a simulation-based approach to additively build a list of differentially expressed genes from the rank-ordered list. Our simulation-based approach maintains a low false discovery rate while maximizing the number of differentially expressed genes identified, a feature critical for downstream pathway analysis. We apply our method to microarray data from an experiment perturbing the Notch signaling pathway in Xenopus laevis embryos. This dataset was chosen because it showed very little differential expression according to limma, a powerful and widely-used method for microarray analysis. Our method was able to detect a significant number of differentially expressed genes in this dataset and suggest future directions for investigation. Our method is easily adaptable for analysis of data from RNA-seq and other global expression experiments with low sample size and high dimensionality.  相似文献   

19.
MOTIVATION: Currently most of the methods for identifying differentially expressed genes fall into the category of so called single-gene-analysis, performing hypothesis testing on a gene-by-gene basis. In a single-gene-analysis approach, estimating the variability of each gene is required to determine whether a gene is differentially expressed or not. Poor accuracy of variability estimation makes it difficult to identify genes with small fold-changes unless a very large number of replicate experiments are performed. RESULTS: We propose a method that can avoid the difficult task of estimating variability for each gene, while reliably identifying a group of differentially expressed genes with low false discovery rates, even when the fold-changes are very small. In this article, a new characterization of differentially expressed genes is established based on a theorem about the distribution of ranks of genes sorted by (log) ratios within each array. This characterization of differentially expressed genes based on rank is an example of all-gene-analysis instead of single gene analysis. We apply the method to a cDNA microarray dataset and many low fold-changed genes (as low as 1.3 fold-changes) are reliably identified without carrying out hypothesis testing on a gene-by-gene basis. The false discovery rate is estimated in two different ways reflecting the variability from all the genes without the complications related to multiple hypothesis testing. We also provide some comparisons between our approach and single-gene-analysis based methods. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号