首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A cDNA library produced from mRNA isolated from the pericarp of wild-type tomato fruit (Lycopersicon esculentum Mill. cv Ailsa Craig) at the first visible sign of fruit ripening was differentially screened to identify clones whose homologous mRNAs were present at reduced levels in fruit of the tomato ripening mutant, ripening inhibitor,rin. Five clones were isolated (pERT 1, 10, 13, 14, 15). Accumulation of mRNA homologous to each of these clones increased during the ripening of wild-type fruit and showed reduced accumulation in ripening rin fruit. The levels of three of them (homologous to ERT 1, 13 and 14) were increased by ethylene treatment of the mutant fruit. A further clone, ERT 16 was identified for a mRNA present at a high level in both normal and mutant fruit at early stages of ripening. Database searches revealed no significant homology to the DNA sequence of ERT 14 and 15; however, DNA and derived amino acid sequence of ERT 1 both contain regions of homology with several reported UDP-glucosyl and glucuronosyl transferases (UDPGT) and with a conserved UDPGT motif. A derived amino acid sequence from the ERT 10 cDNA contains a perfect match to a consensus sequence present in a number of dehydrogenases. The ERT 13 DNA sequence has homology with an mRNA present during potato tuberisation. The presence of these mRNAs in tomato fruit is unreported and their role in ripening is unknown. The ERT 16 DNA sequence has homology with a ripening/stress-related cDNA isolated from tomato fruit pericarp.  相似文献   

2.
3.
Fruit ripening is a complex, developmentally regulated process. A series of genes have been isolated from various ripening fruits encoding enzymes mainly involved in ethylene and cell wall metabolism. In order to aid our understanding of the molecular basis of this process in a tropical fruit, a cDNA library was prepared from ripe mango (Mangifera indica L. cv. Manila). By differential screening with RNA poly(A)+ from unripe and ripe mesocarp a number of cDNAs expressing only in ripe fruit have been isolated. This paper reports the characterization of one such cDNA (pTHMF 1) from M. indica which codes for a protein highly homologous to cucumber, rat and human peroxisomal thiolase (EC 2.3.1.16), the catalyst for the last step in the -oxidation pathway.The cDNA for the peroxisomal mango thiolase is 1305 bp in length and codes for a protein of 432 amino acids with a predicted molecular mass of 45 532 Da. Mango thiolase is highly homologous to cucumber thiolase (80%), the only other plant thiolase whose cloning has been reported, and to rat and human thiolases (55% and 55% respectively).It is shown by northern analysis that during fruit ripening THMF 1 is up-regulated. A similar pattern of expression was detected in tomato fruit. Wounding and pathogen infection do not appear to affect THMF 1 expression. The possible involvement of thiolase in fatty acid metabolism during fruit ripening will be discussed. To our knowledge this is the first report cloning of a plant gene involved in fatty acid metabolism showing an induction during fruit ripening.  相似文献   

4.
根据已报道的甜瓜CMe-ERF1和CMe-ERF2基因cDNA序列设计合成特异性引物,应用RT-PCR技术从甜瓜品种‘河套蜜瓜’成熟果实中克隆得到CMe-ERF1和CMe-ERF2基因cDNA全长编码区序列,分别为498bp和822bp.序列比对分析表明,得到的cDNA序列与已报道的Andes甜瓜相应基因的cDNA序列完全一致.果实不同发育时期实时定量PCR检测结果表明,CMe-ERF1、CMe-ERF2基因表达与甜瓜果实成熟及乙烯生成量显著相关,表明该基因可能对果实成熟起重要作用.  相似文献   

5.
Expressed sequence tags from persimmon at different developmental stages   总被引:1,自引:0,他引:1  
Persimmon (Diospyros kaki Thunb.) is an important fruit in Asian countries, where it is eaten as a fresh fruit and is also used for many other purposes. To understand the molecular mechanism of fruit development and ripening in persimmon, we generated a total of 9,952 expressed sequence tags (ESTs) from randomly selected clones of two different cDNA libraries. One cDNA library was derived from fruit of “Saijo” persimmon at an early stage of development, and the other from ripening fruit. These ESTs were clustered into 6,700 non-redundant sequences. Of the 6,700 non-redundant sequences evaluated, the deduced amino acid sequences of 4,356 (65%) showed significant homology to known proteins, and 2,344 (35%) showed no significant similarity to any known proteins in Arabidopsis databases. We report comparison of genes identified in the two cDNA libraries and describe some putative genes involved in proanthocyanidin and carotenoid synthesis. This study provides the first global overview of a set of genes that are expressed during fruit development and ripening in persimmon.  相似文献   

6.
7.
Changes in gene expression during foliar senescence and fruit ripening in tomato (Lycopersicon esculentum Mill.) were examined using in-vitro translation of isolated RNA and hybridization against cDNA clones.During the period of chlorophyll loss in leaves, changes occurred in mRNA in-vitro translation products, with some being reduced in prevalence, whilst others increased. Some of the translation products which changed in abundance had similar molecular weights to those known to increase during tomato fruit ripening. By testing RNA from senescing leaves against a tomato fruit ripening-related cDNA library, seven cDNA clones were identified for mRNAs whose prevalence increased during both ripening and leaf senescence. Using dot hybridization, the pattern of expression of the mRNAs corresponding to the seven clones was examined. Maximal expression of the majority of the mRNAs coincided with the time of greatest ethylene production, in both leaves and fruit. Treatment of mature green leaves or unripe fruit with the ethylene antagonist silver thiosulphate prevented the onset of senescence or ripening, and the expression of five of the seven ripening- and senescence-related genes.The results indicate that senescence and ripening in tomato involve the expression of related genes, and that ethylene may be an important factor in controlling their expression.Abbreviations cDNA copy-DNA - MW molecular weight - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulphate  相似文献   

8.
A tomato fruit cDNA library was differentially screened to identify mRNAs present at higher levels in fruit of the tomato ripening mutant rin (ripening inhibitor). Complete sequencing of a unique clone ERT D1 revealed an open reading frame with homology to several glutamate decarboxylases. The deduced polypeptide sequence has 80% overall amino acid sequence similarity to a Petunia hybrida glutamate decarboxylase (petGAD) which carries a calmodulin-binding site at its carboxyl terminus and ERT D1 appears to have a similar domain. ERT D1 mRNA levels peaked at the first visible sign of fruit colour change during normal tomato ripening and then declined, whereas in fruit of the ripening impaired mutant, rin, accumulation of this mRNA continued until at least 14 days after the onset of ripening. This mRNA was present at much lower levels in other tissues, such as leaves, roots and stem, and was not increased by wounding. Possible roles for GAD, and its product -aminobutyric acid (GABA) in fruit, are discussed.  相似文献   

9.
10.
Phosphoenolpyruvate carboxykinase (PEPCK) is present in ripening tomato fruits. A cDNA encoding PEPCK was identified from a PCR-based screen of a cDNA library from ripe tomato fruit. The sequence of the tomato PEPCK cDNA and a cloned portion of the genomic DNA shows that the complete cDNA sequence contains an open reading frame encoding a peptide of 662 amino acid residues in length and predicts a polypeptide with a molecular mass of 73.5 kDa, which corresponds to that detected by western blotting. Only one PEPCK gene was identified in the tomato genome. PEPCK is shown to be present in the pericarp of ripening tomato fruits by activity measurements, western blotting and mRNA analysis. PEPCK abundance and activity both increased during fruit ripening, from an undetectable amount in immature green fruit to a high amount in ripening fruit. PEPCK mRNA, protein and activity were also detected in germinating seeds and, in lower amounts, in roots and stems of tomato. The possible role of PEPCK in the pericarp of tomato fruit during ripening is discussed.  相似文献   

11.
Using theArabidopsis ethylene receptorETR1 as a probe, we have isolated a tomato homologue (tETR) from a ripening cDNA library. The predicted amino acid sequence is 70% identical toETR1 and homologous to a variety of bacterial two component response regulators over the histidine kinase domain. Sequencing of four separate cDNAs indicates that tETR lacks the carboxyl terminal response domain and is identical to that encoded by the tomatoNever ripe gene. Ribonuclease protection showed tETR mRNA was undetectable in unripe fruit or pre-senescent flowers, increased in abundance during the early stages of ripening, flower senescence, and in abscission zones, and was greatly reduced in fruit of ripening mutants deficient in ethylene synthesis or response. These results suggest that changes in ethylene sensitivity are mediated by modulation of receptor levels during development.  相似文献   

12.
Summary Gene expression during the ripening of tomato fruit was investigated by cDNA cloning and hybrid-select translation. A cDNA library was prepared from poly(A)-containing mRNA from ripe tomato fruit and sreened by differential hybridization. 146 ripening-related cDNA clones were found. Eleven groups and eight unique clones have been identified so far. The sizes of the cloned cDNA inserts were determined and type-members for seven groups were used in hybrid selection experiments. Six of the seven clones encode translation products corresponding to six ripening related polypeptides detected previously by in vitro translation of total cytoplasmic RNA (14). One cDNA group codes for a Mr 48 000 protein that was identified as polygalacturonase on the basis of immunoprecipitation with specific antiserum raised against tomato polygalacturonase. re]19840918 rv]19850613 ac]19850618  相似文献   

13.
14.
15.
16.
A cDNA and genomic clone (CuLEA5) encoding a group 5 late embryogenesis abundant protein (Lea5) was isolated from citrus fruit cDNA and genomic libraries. Sequence analysis indicated that the clone contains an open reading frame of 97 amino acids, and that the genomic structure is composed of two exons and one intron. A comparison of its amino sequence with other plant proteins showed that Lea5 proteins can be classified into two types - gymnosperm and angiosperm — based on a P-segment sequence designated by this study. Examination of its expression patterns indicated thatCuLEA5 has important roles during the development or ripening of seedless fruits and leaves inCitrus. The 5′-flanking region of the genomic DNA contains a number of putative hormonal- and stress-responsive elements. This is the first report that describes the expression ofLea5 during fruit ripening, as well as the sequence characteristics of its promoter region.  相似文献   

17.
18.
19.
20.
Summary The alc mutation affects the ripening and storability of tomato fruit. The alteration of fruit color in alc lines is due to a reduction in total pigment and a reduction in lycopene relative to total carotinoids. Polygalacturonase (PG) activity is reduced to less than 5% of normal, and the isozymes PG2a and PG2b are absent in alc fruit. The level of anti-PG precipitable proteins is also reduced to less than 5% of normal. Total polyA + mRNA is not significantly reduced in ripening alc fruit, but hybridization of polyA + mRNA to different ripening-related cDNA clones showed that specific mRNAs are present at reduced levels in the mutant. Specific mRNA levels were reduced to 10%–80% of normal levels, depending on the cDNA clone used as the probe. PG mRNA was present at 5%–10% of the normal level.All effects of alc on fruit ripening are relived in the line Alcobaca-red, which arose spontaneously from the original alc line, Alcobaca. The Alcobaca-red trait segregates as a single dominant trait at or very near the alc locus, and it is probably the result of a reverse mutation at the alc locus.The chromosomal locations of regions homologous to 5 ripening-related cDNA probes were determined. Regions homologous to 4 of these probes map to chromosomes other than chromosome 10, indicating that the effects of alc are transactive. A cDNA clone for PG was homologous to only one chromosomal region. This region is located on chromosome 10, which is also the chromosome on which alc and nor are located.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号