首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Therapeutic proteins with molecular weights lower than 40 kDa often have short serum half-lives due to their susceptibility to serum proteases and rapid renal clearance. Chemical derivatization, such as PEGylation, or expression as serum albumin fusions increases molecular mass and overcome these problems but at the expense of decreased bioactivity. Here we applied a new method that yields biologically potent recombinant human growth hormone (rhGH) with increased serum half-life when expressed as an arabinogalactan-protein (AGP) in tobacco BY-2 cells. Thus, rhGH was expressed with 10 repeats of the AGP glycomodule Ser-Hyp (SO) at the C-terminus (rhGH-(SO)10). We also expressed rhGH as an AGP-enhanced green fluorescent protein (EGFP) fusion, designated rhGH-(SO)10-EGFP, to assess the cellular distribution of the glycoprotein, which was mainly extracellular. Recombinant hGH-(SO)10 bound the hGH receptor with an affinity similar to that of a rhGH standard, stimulated the same intracellular signaling pathway as hGH, but possessed an in vivo serum half-life more than sixfold that of the hGH control. Furthermore, rhGH-(SO)10 gave a 500 fold greater secreted yield than the non-glycosylated control rhGH that was also targeted for secretion. Detailed analysis of the rhGH-(SO)10 glycans indicated a conserved structure with relatively little microheterogeneity and an average size of 25 monosaccharide residues. These results were consistent with earlier work expressing interferon α2b as an AGP chimera and further demonstrate the feasibility of this approach to the production of long-acting, biologically potent therapeutic proteins by plant cells.  相似文献   

2.
为了延长IFNα2b在血浆中的半衰期,构建了编码HSA和hIFNα2b的融合基因并在毕赤酵母中获得高效表达,工程菌经5L发酵罐培养后获得的含融合蛋白的培养液经超滤浓缩、蓝色葡聚糖凝胶层析、疏水柱层析以及阴离子柱层析,融合蛋白的纯度达到95%以上。该融合蛋白能与干扰素抗体和人血清白蛋白抗体结合,并表现出与重组干扰素α2b相似的抗病毒活性。以猕猴为动物模型,分别从静脉和皮下单剂量给药,给药浓度为90μg/kg时,在336h后血浆中仍可检测到融合蛋白。其静脉注射的血浆半衰期为101h,皮下注射的半衰期为68.2h。皮下注射的生物利用度为67.9%。IFNα2b与HSA融合后,明显的延长了血浆半衰期,显现了其良好的临床应用前景。  相似文献   

3.
All alpha-interferons (IFNalpha) bind the IFNAR1 receptor subunit with low affinity. Increasing the binding affinity was shown to specifically increase the antiproliferative potency of IFNalpha2. Here, we constructed a phage display library by randomizing three positions on IFNalpha2 previously shown to confer weak binding to IFNAR1. The tightest binding variant selected, comprised of mutations H57Y, E58N, and Q61S (YNS), was shown to bind IFNAR1 60-fold tighter compared with wild-type IFNalpha2, and 3-fold tighter compared with IFNbeta. Binding of YNS to IFNAR2 was comparable with wild-type IFNalpha2. The YNS mutant conferred a 150-fold higher antiproliferative potency in WISH cells compared with wild-type IFNalpha2, whereas its antiviral activity was increased by only 3.5-fold. The high antiproliferative activity was related to an induction of apoptosis, as demonstrated by annexin V binding assays, and to specific gene induction, particularly TRAIL. To determine the potency of the YNS mutant in a xenograft cancer model, we injected it twice a week to nude mice carrying transplanted MDA231 human breast cancer cells. After 5 weeks, no tumors remained in mice treated with YNS, whereas most mice treated with wild-type IFNalpha2 showed visible tumors. Histological analysis of these tumors showed a significant anti-angiogenic effect of YNS, compared with wild-type IFNalpha2. This work demonstrates the application of detailed biophysical understanding in the process of protein engineering, yielding an interferon variant with highly increased biological potency.  相似文献   

4.
A method based on a surface plasmon resonance technique for detection of changes in concentration and glycosylation of proteins in cell culture supernatant is described. The method was used to analyze alpha(1)-acid glycoprotein (AGP) produced by a human hepatoma cell line (HepG2). Cell culture supernatant was injected to a BIACORE 2000 instrument and AGP was captured on the sensor chip by immobilized antibodies. The captured glycoprotein was then analyzed for content of carbohydrate epitopes using three different lectins, Aleuria aurantia lectin (AAL), Sambucus nigra agglutinin (SNA), and Triticum vulgaris agglutinin (wheat germ agglutinin, WGA). The method was used to analyze changes in concentration and glycosylation of AGP produced by HepG2 cells grown with or without three different cytokines, interleukin-1 beta (IL-1 beta), interleukin-6 (IL-6), and transforming growth factor beta-1 (TGF beta(1)). Using the described method it was shown that when HepG2 cells were grown in the presence of IL-6 both AGP concentration and fucosylation increased. When HepG2 cells instead were grown in the presence of TGF beta(1) AGP fucosylation increased whereas AGP concentration decreased.  相似文献   

5.
Single proteins, when analyzed with 2-D-PAGE, often show multiple spots due to PTMs. In gels of human body fluids, the spot patterns facilitate the assignment and identification of the proteins. We analyzed serums from patients with congenital disorders of glycosylation (CDG) in which glycoproteins are strongly impacted and exhibit highly distinguishable spot patterns compared to healthy controls. We detected a typical protein pattern for alpha1-acid glycoprotein (AGP) and transferrin (Trf) that are markers for CDG. AGP contains five glycosylation sites which results in a complex microheterogeneity of the glycoprotein. On the other hand, in Trf, a glycoprotein with only two glycosylation sites, mainly biantennary complex-type-N-linked glycans are bound. We used 2-D-PAGE, MALDI-TOF-MS, and ESI-MS for the analysis of these glycoproteins and their corresponding glycans. In AGP, the heterogenic glycosylation of the different glycosylation sites is responsible for the complex spot pattern. In contrast to AGP, the protein spots of Trf cannot be explained by glycosylation. We found strong evidence that oxidation of cysteine is responsible for the spot pattern. This study contradicts the commonly accepted assumption that the multiple protein spots of Trf observed in 2-D-PAGE are due, as in AGP, to the glycosylation of the protein.  相似文献   

6.
Type I interferons (IFNs) are a family of homologous helical cytokines that exhibit pleiotropic effects on a wide variety of cell types, including antiviral activity and antibacterial, antiprozoal, immunomodulatory, and cell growth regulatory functions. Consequently, IFNs are the human proteins most widely used in the treatment of several kinds of cancer, hepatitis C, and multiple sclerosis. All type I IFNs bind to a cell surface receptor consisting of two subunits, IFNAR1 and IFNAR2, associating upon binding of interferon. The structure of the extracellular domain of IFNAR2 (R2-EC) was solved recently. Here we study the complex and the binding interface of IFNalpha2 with R2-EC using multidimensional NMR techniques. NMR shows that IFNalpha2 does not undergo significant structural changes upon binding to its receptor, suggesting a lock-and-key mechanism for binding. Cross saturation experiments were used to determine the receptor binding site upon IFNalpha2. The NMR data and previously published mutagenesis data were used to derive a docking model of the complex with an RMSD of 1 Angstrom, and its well-defined orientation between IFNalpha2 and R2-EC and the structural quality greatly improve upon previously suggested models. The relative ligand-receptor orientation is believed to be important for interferon signaling and possibly one of the parameters that distinguish the different IFN I subtypes. This structural information provides important insight into interferon signaling processes and may allow improvement in the development of therapeutically used IFNs and IFN-like molecules.  相似文献   

7.
S Pervaiz  K Brew 《FASEB journal》1987,1(3):209-214
Although the serum protein alpha 1-acid glycoprotein (AGP) or orosomucoid has been extensively studied, its relationships with other proteins have been controversial and its precise physiological function has remained unclear. It is shown here that AGP is significantly similar in amino acid sequence and in the locations of introns in its structural gene to members of a protein superfamily that includes serum retinol-binding protein (RBP), beta-lactoglobulin (LG), alpha 2u-globulin, and protein HC (alpha 1-microglobulin). The view that the three-dimensional structure of AGP is closely similar to the published structures of RBP and LG is supported by its homology with these proteins, similarities in disulfide bond arrangements, and its secondary structure profile, predicted from the amino acid sequence. The relationship of AGP with this particular protein family indicates that its well-characterized ability to bind lipophilic drugs and certain steroids is a reflection of its true biological role. It is proposed that AGP and the other members of this extensive group of proteins should be designated lipocalins to reflect a common ability to bind lipophiles by enclosure within their structures in a manner that minimizes solvent contact.  相似文献   

8.
A new, simplified technique for the synthesis of polyethylene glycol (PEG) derivatives of proteins utilizing 1,1'-carbonyldiimidazole for PEG activation, is described. PEG derivatives of superoxide dismutase, alpha 2-macroglobulin, alpha 2-macroglobulin-trypsin, and lactoferrin were prepared and studied. Superoxide dismutase coupled to PEG preserved 95% of its original activity while its plasma half-life increased from 3.5 min to 9 or more hours depending on the PEG derivative studied. PEG-derivatized alpha 2-macroglobulin showed decreased protease binding activity but PEG derivatives of performed alpha 2-macroglobulin-trypsin demonstrated no loss of activity. The plasma clearance of PEG-alpha 2-macroglobulin-trypsin was prolonged significantly compared to native alpha 2-macroglobulin-trypsin, particularly when a high-molecular-weight PEG was coupled to the protease inhibitor complex. The plasma clearance half-life of lactoferrin was increased 5- to 20-fold by this modification. Trinitrobenzenesulfonic acid titration studies demonstrated that epsilon-amino groups of lysine residues are modified by the coupling of carbonyldiimidazole-activated PEG to proteins.  相似文献   

9.
The response of rat hepatocytes co-cultured with rat liver epithelial cells to conditioned medium (CM) from lipopolysaccharide (LPS)-activated monocytes was investigated by measuring the concentration of alpha 2-macroglobulin (alpha 2M), alpha 1-acid glycoprotein (AGP), albumin and transferrin, as well as the changes in glycosylation of alpha 1-acid glycoprotein. During an initial 8-day treatment with CM, concentrations of alpha 2M and AGP increased markedly over those of control culture, whereas concentrations of albumin and transferrin decreased. The glycosylation pattern of AGP indicated an important relative increase of the concanavalin A-strongly-reactive (SR) variant upon treatment. When CM addition to hepatocyte culture medium was stopped, the concentrations of the four proteins and the glycosylation pattern of AGP reverted to those of control cultures. Further addition (on day 15) to cultures of CM increased the concentration of alpha 2M and decreased albumin and transferrin concentrations. Although AGP concentrations did not increase above those of controls, the appearance of the SR variant was again stimulated by CM. These results show that, in co-culture, rat hepatocytes remain able to respond to repeated inflammatory stimuli.  相似文献   

10.
Cover Image     
The immunoglobulin G (IgG) molecule has a long circulating serum half-life (~3 weeks) through pH- dependent FcRn binding-mediated recycling. To hijack the intracellular trafficking and recycling mechanism of IgG as a way to extend serum persistence of non-antibody therapeutic proteins, we have evolved the ectodomain of a low-affinity human FcγRIIa for enhanced binding to the lower hinge and upper CH2 region of IgG, which is very far from the FcRn binding site (CH2–CH3 interface). High-throughput library screening enabled isolation of an FcγRIIa variant (2A45.1) with 32-fold increased binding affinity to human IgG1 Fc (equilibrium dissociation constant: 9.04 × 10−7 M for wild type FcγRIIa and 2.82 × 10−8 M for 2A45.1) and significantly improved affinity to mouse serum IgG compared to wild type human FcγRIIa. The in vivo pharmacokinetic profile of PD-L1 fused with engineered FcγRIIa (PD-L1–2A45.1) was compared with that of PD-L1 fused with wild type FcγRIIa (PD-L1–wild type FcγRIIa) and human PD-L1 in mice. PD-L1–2A45.1 showed 11.7- and 9.7-fold prolonged circulating half-life (t1/2) compared to PD-L1 when administered intravenously and intraperitoneally, respectively. In addition, the AUCinf of PD-L1–2A45.1 was two-fold higher compared to that of PD-L1–wild type FcγRIIa. These results demonstrate that engineered FcγRIIa fusion offers a novel and successful strategy for prolonging serum half-life of therapeutic proteins.  相似文献   

11.
We measured serum interleukin-6 (IL-6) and acute-phase proteins, alpha 1-acid glycoprotein (AGP) and alpha 2-macroglobulin (alpha 2M), after a retrograde intrabiliary bacterial infection in rats with biliary obstruction. Maximum serum IL-6 was obtained at 6 h in rats following inoculation of bacteria (10(6) CFU/ml E. Coli) in the bile duct and it was higher than that observed in rats undergoing a bile duct ligation or a laparotomy. There was a strict relationship between the level of IL-6 at 6 h and the modified levels of AGP and alpha 2M at 48 h. AGP and alpha 2M levels were the highest in sera of rats with bile duct infection as compared with those found in sera of rats with bile duct ligation or laparotomy. After inoculation of E. Coli or E. Fecalis, blood IL-6 level was always higher at 6 h in inferior vena cava as compared with that found in the supra hepatic vein. These results indicate that IL-6 is synthesized after a biliary sepsis and that its blood level is higher in the systemic circulation than in the local circulation.  相似文献   

12.
13.
Vibrational circular dichroism (VCD) spectra for the glycoproteins alpha1-acid glycoprotein (AGP) and bovine submaxillary mucin (BSM), have been measured in D2O solutions and for the films prepared from aqueous (H2O) buffer solutions in the 1800 to 900 cm(-1) region. The solution VCD results revealed that AGP has beta-sheet structure, along with a significant amount of alpha-helix as evidenced from a W pattern in the amide I region. The VCD of BSM solution suggested a polyproline II type structure, characterized by the appearance of strong negative couplet in the amide I region. The film VCD results on AGP and BSM suggested that the secondary structures of polypeptide fold in the film state are similar to those in the solution. The absence of any significant film VCD in the low frequency region (1200-900 cm(-1)), suggested that the dominant linkage for carbohydrate residues is likely to be a beta linkage. VCD spectroscopy gains importance in the secondary structural analysis of polypeptide fold in glycoproteins due to the absence of interfering VCD from the carbohydrate residues in the conformationally sensitive amide I region. Also, film VCD studies permit measurements in the low wavenumber region (1200-900 cm(-1)) that reveal the dominant type of linkage for carbohydrate residues. Such clear structural information is unlike that from ECD, where ECD bands of acylated amino sugar residues interfere with those of polypeptide backbone in the conformationally sensitive far-UV region.  相似文献   

14.
Several signaling pathways are activated by interferon alpha (IFNalpha) in hematopoietic cells, including the Jak-Stat and the insulin receptor substrate (IRS) pathways. It has been previously shown that IFNalpha activates the phosphatidylinositol (PI) 3'-kinase via an interaction of the p85 subunit of PI 3'-kinase with IRS proteins. Other studies have proposed that Stat-3 also functions as an adapter for p85. We sought to identify the major pathway that regulates IFNalpha activation of the PI3'-kinase in hematopoietic cells. Our data demonstrate that IFNalpha induces the interaction of p85 with IRS-1 or IRS-2, but not Stat-3, in various hematopoietic cell lines in which IRS-1 and/or IRS-2 and Stat-3 are activated by IFNalpha. In addition, inhibition of PI 3'-kinase activity by preincubation of cells with the PI 3'-kinase inhibitor LY294002 does not affect IFN-dependent formation of SIF complexes that contain Stat-3. To determine whether phosphorylation of tyrosine residues in the IFN receptor is required for activation of the PI 3'-kinase, we performed studies using mouse L929 fibroblasts transfected with mutated human IFNAR1 and/or IFNAR2 subunits of the Type I IFN receptor, lacking tyrosine phosphorylation sites. The serine kinase activity of the PI-3K was activated by human IFNalpha in these cells, suggesting that phosphorylation of the Type I IFN receptor is not essential for PI3K activation. We then determined whether IFNalpha activates the Akt kinase, a known downstream target for PI 3'-kinase that mediates anti-apoptotic signals. Akt was activated by insulin or IGF-1, but not IFNalpha, in the IFNalpha-sensitive U-266 myeloma cell line. Altogether, our data establish that the IRS pathway and not the Stat pathway, is the major pathway regulating engagement of PI 3'-kinase in hematopoietic cells. Furthermore, the selective activation of Akt by insulin/IGF-1 suggests the existence of distinct regulatory activities of PI3'-kinase in growth factor versus interferon signaling.  相似文献   

15.
The hormone-sensitive adenylyl cyclase system is under dual control, receiving both stimulatory and inhibitory inputs. Guanine nucleotide-binding regulatory proteins (G-proteins) transduce signals from cell surface receptors to effectors such as adenylyl cyclase. Hormonal stimulation is propagated via Gs, inhibition by Gi. Persistent (24-h) activation of the stimulatory pathway of adenylyl cyclase by the diterpene forskolin or the beta-adrenergic agonist isoproterenol in S49 mouse lymphoma cells enhanced the effects of somatostatin mediated via the inhibitory pathway of adenylyl cyclase. Stimulating cells with forskolin or isoproterenol for 24 h resulted in a 3-fold increase in the steady-state levels of Gi alpha 2 and a 25% decline in Gs alpha, as quantified by immunoblotting. Within 12 h of stimulation of adenylyl cyclase, Gi alpha 2 mRNA levels increased 4-fold, measured by DNA-excess solution hybridization. Gs alpha mRNA levels, in contrast, increased initially (25%), but then declined to 75% of control. In S49 variants that lack functional protein kinase A (kin-), stimulation by isoproterenol failed to alter Gi alpha 2 expression at either the protein or the mRNA levels. A 3-fold increase in relative synthesis rate and no change in the half-life (approximately 80 h) of Gi alpha 2 was observed in response to forskolin stimulation. Although Gs alpha synthesis increased (70%) modestly in response to forskolin stimulation, the half-life of Gs alpha actually decreased from 55 h in naive cells to 34 h in treated cells. Thus, the two G-protein-mediated pathways controlling adenylyl cyclase display "cross-regulation." Persistent activation of the stimulatory pathway increases Gi alpha 2 mRNA and expression. Transiently elevated Gs alpha mRNA levels are counterbalanced by a reduction in the half-life of the protein.  相似文献   

16.
17.
Tumor therapy by the preferential activation of a prodrug at tumor cells targeted with an antibody-enzyme conjugate may allow improved treatment efficacy with reduced side effects. We examined antibody-mediated clearance of poly(ethylene glycol)-modified beta-glucuronidase (betaG-sPEG) as a method to reduce serum concentrations of enzyme and minimize systemic prodrug activation. Enzyme-linked immunosorbent assay and immunoblot analysis of two monoclonal antibodies generated by immunization of BALB/c mice with an antibody-betaG-sPEG conjugate showed that mAb 1E8 (IgG1) bound betaG and betaG-sPEG whereas mAb AGP3 (IgM) bound poly(ethylene glycol). Neither antibody affected the betaG activity. mAb 1E8 and AGP3 were modified with 36 and 208 galactose residues (1E8-36G and AGP3-208G) with retention of 72 and 48% antigen-binding activity, respectively, to target immune complexes to the asialoglycoprotein receptor on liver cells. mAb 1E8 and AGP3 cleared betaG-PEG from the circulation of mice as effectively as 1E8-36G and AGP3-208G, respectively. mAb AGP3, however, cleared betaG-sPEG more completely and rapidly than 1E8, reducing the serum concentration of betaG-sPEG by 38-fold in 8 h. AGP3 also reduced the concentration of an antibody-betaG-sPEG conjugate in blood by 280-fold in 2 h and 940-fold in 24 h. AGP3-mediated clearance did not produce obvious damage to liver, spleen, or kidney tissues. In addition, AGP3 clearance of betaG-sPEG before administration of BHAMG, a glucuronide prodrug of p-hydroxyaniline mustard, prevented toxicity associated with systemic activation of the prodrug based on mouse weight and blood cell numbers. AGP3 should be generally useful for accelerating the clearance of PEG-modified proteins as well as for improving the tumor/blood ratios of antibody-betaG-PEG conjugates for glucuronide prodrug therapy of cancer.  相似文献   

18.
Acute phase proteins (APP) are synthesised in the liver in response to the systemic presence of high levels of pro-inflammatory cytokines. Bacteria are considered to be strong inducers of APP whereas viruses are weak or non-inducers of APP. Very few reports have been published on APP induction by parasites. Here, we report that the tick-borne protozoan parasite of cattle, Theileria annulata, induced an atypical acute phase response in cattle. Following experimental infection, serum amyloid A (SAA) appeared first, followed by a rise in alpha(1) acid glycoprotein (alpha(1)AGP) in all animals, whereas haptoglobin, which is a major APP in cattle, only appeared in some of the animals, and generally at a low level. All three APP only became elevated around or after the appearance of schizonts in draining lymph nodes and after the first observed temperature rise. Increased alpha(1)AGP levels coincided with the appearance of piroplasms. The production of SAA and alpha(1)AGP correlated strongly with each other, and also with some clinical measures of disease severity including the time to fever, development of leucopaenia, parasitaemia and mortality. These results are consistent with the hypothesis that T. annulata causes severe pathology in susceptible cattle by inducing high levels of pro-inflammatory cytokines.  相似文献   

19.
Changes in serum and cerebrospinal fluid (CSF) proteins following generalized acute inflammation induced by fermented yeast in the rat was examined by concanavalin A-blotting, immunoblotting, and radioimmunoassay. Using alpha2-macroglobulin (alpha2-M) and hemopexin (HPX) as marker proteins, the concentration alpha2-M was found to increase in serum and CSF by 150- and 5-fold, respectively, whereas the concentration of HPX increased by about 4-fold in both fluids following yeast-induced inflammation. The lesser increase in alpha2-M in the CSF versus the systemic circulation is not likely to be the result of changes in the permeability of the blood--brain barrier, since no change in the total protein content of CSF was detected in inflamed rats when compared to control animals. These results, however, illustrate the regulation of the same protein, such as alpha2-M, in two separate organs within the same animal can be drastically different. These results also suggest a possible protective role of alpha2-M in the brain during acute inflammation. Moreover, these observations are consistent with the previous observation that there is a differential response in the level of alpha2-M between the testis and the systemic circulation during inflammation.  相似文献   

20.
Chicken blastodermal cells (BCs) from stage X embryos produce both somatic and germline chimeras when injected into the subgerminal cavity of recipient embryos. Transfection of the donor cells in vitro could lead to the production of chimeras capable of transmitting the transgene to their offspring. The aim of this study was to transfer and express foreign genes under control of the ovalbumin promoter in the BCs. The results showed that luciferase activity in the BCs reached a plateau value with a 2.0:1.0 or 5.0:1.0 liposome-DNA ratio and using 1 microg of DNA. Under this same condition, no difference was found in relative activity between the pGL-control and pOVALUC plasmid. The expression of other exogenous genes (green fluorescent protein and interferon alpha2a) driven by the chicken ovalbumin promoter in cultured chicken blastodermal cells in vitro is possible by this assay. Hatchability of recipient embryos after injection of 1,500 or 800 transfected BCs was compared. The advantage of using a smaller number (800) of injected transfected BCs was that early embryonic mortality was reduced and resulted in higher (P<0.01) hatchability (24.5%) than in the case of 1,500 BCs injected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号