首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 699 毫秒
1.
Exposure of proteins to radicals in the presence of O(2) results in side-chain oxidation and backbone fragmentation; the interrelationship between these processes is not fully understood. Recently, initial attack on Ala side-chains was shown to give alpha-carbon radicals (and hence backbone cleavage) and formaldehyde, via the formation and subsequent beta-scission, of C-3 alkoxyl radicals. We now show that this side-chain to backbone damage transfer, is a general mechanism for aliphatic side-chains. Oxidation of Val, Leu, and Asp residues by HO(*)/O(2) results in the release of a family of carbonyls (including formaldehyde, acetone, isobutyraldehyde, and glyoxylic acid) via the formation, and subsequent beta-scission of alkoxyl radicals. The concentration of these products increases with the HO(*) flux. The release of multiple carbonyls confirms the occurrence of oxidation at C-3 and C-4 for Val, and these sites, plus C-5, for Leu. The detection of glyoxylic acid and CO(2)(-*) from Asp demonstrates the occurrence of competing beta-scission processes for the Asp C-3 alkoxyl radical. The yield of hydroperoxides and released carbonyls account for 10-145% of the initial HO(*). The greater than 100% yields confirm the occurrence of chain reactions in peptide/protein oxidation, with more than one residue being damaged per initiating radical.  相似文献   

2.
Proteins are a major target for oxidation due to their abundance and high reactivity. Despite extensive investigation over many years, only limited quantitative data exist on the contributions of different pathways to the oxidation of peptides and proteins. This study was designed to obtain quantitative data on the nature and yields of oxidation products (alcohols, carbonyls, hydroperoxides, fragment species) formed by a prototypic oxidant system (HO?/O2) on small peptides of limited, but known, amino acid composition. Peptides composed of Gly, Ala, Val, and Pro were examined with particular emphasis on the peptide Val-Gly-Val-Ala-Pro-Gly, a repeat motif in elastin with chemotactic activity and metalloproteinase regulation properties. The data obtained indicate that hydroperoxide formation occurs nonrandomly (Pro > Val > Ala > Gly) with this inversely related to carbonyl yields (both peptide-bound and released). Multiple alcohols are generated at both side-chain and backbone sites. Backbone fragmentation has been characterized at multiple positions, with sites adjacent to Pro residues being of major importance. Summation of the product concentrations provides clear evidence for the occurrence of chain reactions in peptides exposed to HO?/O2, with the overall product yields exceeding that of the initial HO? generated.  相似文献   

3.
Activated eosinophils, and hypobromous acid (HOBr) generated by these cells, have been implicated in the tissue injury in asthma, allergic reactions, and some infections. Proteins are major targets for this oxidant, but limited information is available on the mechanisms of damage and intermediates formed. Reaction of HOBr with proteins is shown to result in the formation of bromamines and bromamides, from side-chain and backbone amines and amides, and 3-bromo- and 3,5-dibromo-Tyr, from Tyr residues; these materials account for ca. 70% of the oxidant consumed. Protein carbonyls, dityrosine, and 3,4-dihydroxyphenylalanine are also formed, though these are minor products (<5% of HOBr added). With BSA, extensive (selective and nonspecific) protein fragmentation and limited aggregation are also observed. The bromamines/bromamides are unstable and induce further oxidation and free radical formation as detected by EPR spin trapping. Evidence was obtained for the generation of nitrogen-centered radicals on side-chain and backbone amide groups of amino acids, peptides, and proteins. These radicals readily undergo rearrangement reactions to give carbon-centered radicals. With proteins, alpha-carbon (backbone) radicals are detected, which may play a role in protein fragmentation. A novel damage transfer pathway from Gln side-chain amide groups to backbone sites was also observed.  相似文献   

4.
The reactions of hydroxyl radicals with 30 dipeptides and several larger peptides were studied in aqueous solutions. The OH radicals were generated by U.V. photolysis of H2O2. The short-lived peptide radicals were spin-trapped using t-nitrosobutane and identified by e.s.r. For dipeptides containing the amino terminal residues glycine, alanine and phenylalanine, abstraction of the hydrogen from the carbon adjacent to the peptide nitrogen was the major process leading to the spin-adducts. Such radicals will be referred to as backbone radicals. Dipeptides with a carbonyl terminal serine residue and also glycylglutamic acid form both backbone and side-chain radicals, with the latter being formed in larger quantities. For dipeptides, side-chain radicals were detected on either the carboxyl or amino terminal residues of both. The effect of pD on the e.s.r. sectrum of the spin-adducts of glycylglycine was studied and the pK of the carboxyl group of this radical was determined to be 2.5. For (Ala)3 and (Ala)n, with an average value of n = 1800, backbone and minor side-chain radicals were observed. For ribonucleases-S-peptide, containing 20 amino acid residues, both backbone and side-chain radicals were detected.  相似文献   

5.
Using an experimental in vitro glycation model, long-term incubations of bovine serum albumin with glucose (fructose) resulted in a significant increase in protein content of 2,4-dinitrophenylhydrazine (DNPH)-reactive carbonyl groups, which could be strongly inhibited by anaerobiosis and metal chelation. The pattern of yields of the protein-bound DNPH was not in accordance with that of the sugar-derived carbonyls determined as the ketoamine Amadori product. In spite of the fact that the contribution of the final advanced glycation end-products to the total DNPH-reactivity of glycation-altered protein remains unclear, the present results stress the need of oxidative steps in formation of most of the DNPH-reactive carbonyl compounds generated by glycation. The results provide evidence that, in protein glycoxidation, the DNPH assay is selective enough to discriminate between protein-bound carbonyls produced by metal-catalysed oxidations and those formed in the early glycation steps.  相似文献   

6.
Abstract

Using an experimental in vitro glycation model, long-term incubations of bovine serum albumin with glucose )fructose) resulted in a significant increase in protein content of 2,4-dinitrophenyl-hydrazine (DNPH)-reactive carbonyl groups, which could be strongly inhibited by anaerobiosis and metal chelation. The pattern of yields of the protein-bound DNPH was not in accordance with that of the sugar-derived carbonyls determined as the ketoamine Amadori product. In spite of the fact that the contribution of the final advanced glycation end-products to the total DNPH-reactivity of glycation-altered protein remains unclear, the present results stress the need of oxidative steps in formation of most of the DNPH-reactive carbonyl compounds generated by glycation. The results provide evidence that, in protein glycoxidation, the DNPH assay is selective enough to discriminate between protein-bound carbonyls produced by metal-catalysed oxidations and those formed in the early glycation steps.  相似文献   

7.
Hydroperoxides are major reaction products of radicals and singlet oxygen with amino acids, peptides, and proteins. However, there are few data on the distribution of hydroperoxides in biological samples and their sites of formation on peptides and proteins. In this study we show that normal-or reversed-phase gradient HPLC can be employed to separate hydroperoxides present in complex systems, with detection by postcolumn oxidation of ferrous xylenol orange to the ferric species and optical detection at 560 nm. The limit of detection (10-25 pmol) is comparable to chemiluminescence detection. This method has been used to separate and detect hydroperoxides, generated by hydroxyl radicals and singlet oxygen, on amino acids, peptides, proteins, plasma, and intact and lysed cells. In conjunction with EPR spin trapping and LC/MS/MS, we have obtained data on the sites of hydroperoxide formation. A unique fingerprint of hydroperoxides formed at alpha-carbon (backbone) positions has been identified; such backbone hydroperoxides are formed in significant yields only when the amino acid is part of a peptide or protein. Only side-chain hydroperoxides are detected with free amino acids. These data indicate that free amino acids are poor models of protein damage induced by radicals or other oxidants.  相似文献   

8.
There are four possible orientations of the substrate ribulose 1,5-bisphosphate in the active site of ribulose-1,5-bisphosphate carboxylase. Distinction between these four possible orientations has been made on the basis of 31P NMR and borohydride-trapping experiments. The orientation of the reaction-intermediate analog, 2'-carboxy-D-arabinitol 1,5-bisphosphate with respect to the divalent metal ion was determined by 31P NMR studies of the quaternary complex, enzyme.CO2.Ni2+.2'-carboxyarabinitol 1,5-bisphosphate. Assignment of the phosphorus resonances of this complex was made by labeling the phosphoryl group at either C-1 or C-5 with 17O. The phosphorus atom closer to the paramagnetic metal ion, Ni2+, to which the broader of the phosphorus resonances is attributed, has been identified as that attached to C-1. When bound to the active site of carbaminated enzyme, D-ribulose 1,5-bisphosphate was reduced by sodium borohydride with absolute stereospecificity to D-arabinitol 1,5-bisphosphate. The reduction of the enzyme-bound substrate thus occurred on the Si face of the C-2 carbonyl group. These two results together establish that ribulose 1,5-bisphosphate is oriented within the active site so that 1) the phosphoryl group at C-1 is closer to the divalent metal ion than that at C-5 and 2) the Si face of the carbonyl group points to the "outside world."  相似文献   

9.
The human eye is chronically exposed to light of wavelengths >300 nm. In the young human lens, light of wavelength 300-400 nm is predominantly absorbed by the free Trp derivatives kynurenine (Kyn), 3-hydroxykynurenine (3OHKyn), and 3-hydroxykynurenine-O-beta-D-glucoside (3OHKynG). These ultraviolet (UV) filter compounds are poor photosensitizers. With age, the levels of the free UV filters in the lens decreases and those of protein-bound UV filters increases. The photochemical behavior of these protein-bound UV filters and their role in UV damage are poorly elucidated and are examined here. UVA illumination of protein-bound UV filters generated peroxides (principally H2O2) in a metabolite-, photolysis-time-, and wavelength-dependent manner. Unmodified proteins, free Trp metabolites, and Trp metabolites that do not bind to lens proteins gave low peroxide yields. Protein-bound 3OHKyn (principally at Cys residues) yielded more peroxide than comparable Kyn and 3OHKynG adducts. Studies using D2O and sodium azide implicated 1O2 as a key intermediate. Illumination of the protein-bound adducts also yielded protein-bound Tyr oxidation products (DOPA, di-tyrosine) and protein cross-links via alternative mechanisms. These data indicate that the covalent modification of lens proteins by Kyn derivatives yields photosensitizers that may enhance oxidation in older lenses and contribute to age-related nuclear cataract.  相似文献   

10.
Dityrosine formation leads to the cross-linking of proteins intra- or intermolecularly. The formation of dityrosine in lens proteins oxidized by metal-catalyzed oxidation (MCO) systems was estimated by chemical and immunochemical methods. Among the four MCO systems examined (H(2)O(2)/Cu, H(2)O(2)/Fe-ethylenediaminetetraacetic acid (Fe-EDTA), ascorbate/Cu, ascorbate/Fe-EDTA), the treatment with H(2)O(2)/Cu preferentially caused dityrosine formation in the lens proteins. The success of oxidative protein modification with all the MCO systems was confirmed by carbonyl formation estimated using 2,4-dinitrophenylhydrazine. The loss of tyrosine by the MCO systems was partly due to the formation of protein-bound 3,4-dihydroxyphenylalanine. The formation of dityrosine specific to H(2)O(2)/Cu was confirmed by using poly-(Glu, Ala, Tyr) and N-acetyl-tyrosine as a substrate. The dissolved oxygen concentration in the H(2)O(2)/Cu system hardly affected the amount of dityrosine formation, suggesting that dityrosine generation by the H(2)O(2)/Cu system is independent of oxygen concentration. Moreover, the combination of copper ion with H(2)O(2) is the most effective system for dityrosine formation among various metal ions examined. The addition of reducing agents, glutathione or ascorbic acid, into the H(2)O(2)/Cu system suppressed the generation of the dityrosine moiety, suggesting effective quench of tyrosyl radicals by the reducing agents.  相似文献   

11.
N-Aminoazaaromatics were found to react with nitric oxide in the presence of oxygen to afford deaminated products in high yields. The reaction proceeded almost instantaneously in various solvents including water, and one to two equivalent of NO was consumed depending upon the amount of oxygen coexisted, and 1 equivalent of N2O was released in the reaction. In addition, N-aminoazoles were deaminated by potassium superoxide to give parent azoles in good yields. Two equivalents of superoxide was consumed, and about half equivalents of both nitrite and nitrate ion were released. The results demonstrated that N-aminoazoles have ability to protect the biological system against the oxidation promoted by radicals such as nitrogen oxides and superoxide.  相似文献   

12.
Asparagine and aspartate are known to adopt conformations in the left-handed alpha-helical region and other partially allowed regions of the Ramachandran plot more readily than any other non-glycyl amino acids. The reason for this preference has not been established. An examination of the local environments of asparagine and aspartic acid in protein structures with a resolution better than 1.5 A revealed that their side-chain carbonyls are frequently within 4 A of their own backbone carbonyl or the backbone carbonyl of the previous residue. Calculations using protein structures with a resolution better than 1.8 A reveal that this close contact occurs in more than 80% of cases. This carbonyl-carbonyl interaction offers an energetic sabilization for the partially allowed conformations of asparagine and aspartic acid with respect to all other non-glycyl amino acids. The non-covalent attractive interactions between the dipoles of two carbonyls has recently been calculated to have an energy comparable to that of a hydrogen bond. The preponderance of asparagine in the left-handed alpha-helical region, and in general of aspartic acid and asparagine in the partially allowed regions of the Ramachandran plot, may be a consequence of this carbonyl-carbonyl stacking interaction.  相似文献   

13.
The scavenging effects of (-)-epigallocatechin gallate (EGCG) and (-)-epicatechin gallate (ECG) on peroxyl radicals and their mechanisms were studied by investigating the products formed during the first stages by 2,2'-azobis(2-aminopropane) hydrochloride (AAPH)-induced oxidation, without any isolation, using LC/MS, spectrophotometry, chemiluminescence analyses, and semiempirical molecular orbital (MO) calculations. The results show that EGCG can be converted to an anthocyaninlike compound followed by cleavage of the gallate moiety by oxidation. On the other hand, ECG can be converted to an anthocyaninlike compound after cleavage of the gallate moiety. The calculated C-H bond dissociation enthalpies (BDEs) for EGCG and ECG at the C-2 position were quite low (62.7 and 66.8 kcal/mol, respectively) compared with O-H BDEs at the phenolic sites (ca. 70 kcal/mol), suggesting that the C-2 hydrogen can be abstracted by free radicals. The addition of superoxide dismutase (SOD) decreased the chemiluminescence in EGCG by one-half during the inhibitory action. Active oxygen including superoxide (O2-) would be produced in EGCG, but not in ECG. The authors proposed the antioxidative mechanisms of EGCG and ECG depending on the experimental results and theoretical calculations.  相似文献   

14.
To react with peptides, nitric oxide.NO has to be activated by oxidation, or by coupling with superoxide (O.-2) thereby producing peroxynitrite. In the course of.NO oxidation,.NO2 free radicals and N2O3 may be formed. Using gamma-irradiation methods, we characterized the products formed by these nitrogen oxides with angiotensin II. Angiotensin II is specifically nitrated at its tyrosinyl residue by.NO2 or peroxynitrite. Equimolecular amounts of each reagent in K+/Pi solutions at pH 7.4 led to 56% and 5% nitration yields, respectively. Nitrogen oxides produced by autoxidation of.NO, as well as.NO2 under.NO, reacted only with the arginine residue, giving a mixture of peptides containing citrulline, a N-(hydroxylamino-cyanamido-) instead of guanido group, and a conjugated diene derived from an arginine side-chain. However, nitrosation reactions by N2O3 occurred only when the initial concentration of.NO2 was 10 times that able to react with angiotensin II. Thus, in this case.NO appears to protect against.NO2 action.  相似文献   

15.
B H Oh  E S Mooberry  J L Markley 《Biochemistry》1990,29(16):4004-4011
Multinuclear two-dimensional NMR techniques were used to assign nearly all diamagnetic 13C and 15N resonances of the plant-type 2Fe.2S* ferredoxin from Anabaena sp. strain PCC 7120. Since a 13C spin system directed strategy had been used to identify the 1H spin systems [Oh, B.-H., Westler, W. M., & Markley, J. L. (1989) J. Am. Chem. Soc. 111, 3083-3085], the sequence-specific 1H assignments [Oh, B.-H., & Markley, J. L. (1990) Biochemistry (first paper of three in this issue)] also provided sequence-specific 13C assignments. Several resonances from 1H-13C groups were assigned independently of the 1H assignments by considering the distances between these nuclei and the paramagnetic 2Fe.2S* center. A 13C-15N correlation data set was used to assign additional carbonyl carbons and to analyze overlapping regions of the 13C-13C correlation spectrum. Sequence-specific assignments of backbone and side-chain nitrogens were based on 1H-15N and 13C-15N correlations obtained from various two-dimensional NMR experiments.  相似文献   

16.
An oxidized pterin species, termed compound Z, has been isolated from molybdenum cofactor-deficient mutants of Escherichia coli and shown to be the direct product of oxidation of a molybdopterin precursor which accumulates in these mutants. The complete structural characterization of compound Z has been accomplished. A carbonyl function at C-1' of the 6-alkyl side chain can be reacted with 2,4-dinitrophenylhydrazine to yield a phenylhydrazone and can be reduced with borohydride, producing a mixture of two enantiomers, each with a hydroxyl group on C-1'. Compound Z contains one phosphate/pterin and no sulfur. The phosphate group is insensitive to alkaline phosphatase and to a number of phosphodiesterases but is quantitatively released as inorganic phosphate by mild acid hydrolysis. From 31P and 1H NMR of compound Z it was inferred that the phosphate is bound to C-2' and C-4' of a 4-carbon side chain, forming a 6-membered cyclic structure. Mass spectral analysis showed an MH+ ion with an exact mass of 344.0401 corresponding to the molecular formula C10H11N5O7P, confirming the proposed structure.  相似文献   

17.
Zhu J  Dizin E  Hu X  Wavreille AS  Park J  Pei D 《Biochemistry》2003,42(16):4717-4726
S-Ribosylhomocysteinase (LuxS) catalyzes the cleavage of the thioether linkage of S-ribosylhomocysteine (SRH) to produce L-homocysteine and 4,5-dihydroxy-2,3-pentanedione (DHPD). This is a key step in the biosynthetic pathway of the type II autoinducer (AI-2) in both Gram-positive and Gram-negative bacteria. Previous studies demonstrated that LuxS contains a divalent metal cofactor, which has been proposed to be a Zn(2+) ion. To gain insight into the catalytic mechanism of this unusual reaction and the function of the metal cofactor, we developed an efficient expression and purification system to produce LuxS enriched in either Fe(2+), Co(2+), or Zn(2+). Comparison of the catalytic properties and stability of the metal-substituted LuxS with those of the native enzyme revealed that the native metal ion is Fe(2+). The electronic absorption spectrum of the Co(II)-substituted LuxS underwent dramatic catalysis-dependent changes, suggesting the direct involvement of the metal ion in catalysis. Site-directed mutagenesis studies showed that Glu-57 and Cys-84 are essential for catalysis, most likely acting as general acids/bases. Reaction in D(2)O resulted in the incorporation of deuterium at the C-1, C-2, and C-5 positions of the diketone product. These data suggest a catalytic mechanism in which the metal ion catalyzes an intramolecular redox reaction, shifting the carbonyl group from the C-1 position to the C-3 position of the ribose. Subsequent beta-elimination at the C-4 and C-5 positions releases homocysteine as a free thiol.  相似文献   

18.
食物氧化蛋白对小鼠肠道菌群及氧化还原状态的影响   总被引:2,自引:0,他引:2  
目的研究摄食不同方式氧化酪蛋白对小鼠肠道菌群和氧化还原状态的影响。方法分别以H2O2/Cu2+、HClO处理酪蛋白,丙二醛(MDA)处理酪蛋白、大豆蛋白。雄性KM小鼠分为6组:酪蛋白组,H2O2-Cu2+氧化酪蛋白组,HClO氧化酪蛋白组,MDA氧化酪蛋白组,大豆蛋白组和MDA氧化大豆蛋白组,饲喂10周。结果酪蛋白和大豆蛋白经氧化处理后羰基含量显著上升(P0.05),体外消化率下降。饲喂氧化蛋白饲粮的小鼠结肠内容物乳杆菌数量均显著低于对照组(P0.05);HClO和MDA氧化酪蛋白组大肠埃希菌、肠球菌数量显著高于对照组(P0.05),MDA氧化大豆蛋白组大肠埃希菌数量显著高于对照组(P0.05)。氧化蛋白处理引起小鼠结肠组织MDA上升,其中MDA氧化蛋白处理达显著水平(P0.05);结肠过氧化氢酶(CAT)活力上升,其中H2O2/Cu2+和MDA氧化蛋白组达显著水平(P0.05);H2O2/Cu2+氧化酪蛋白处理引起结肠GSH-Px显著升高(P0.05);氧化蛋白引起结肠总抗氧化能力(T-AOC)下降,其中H2O2/Cu2+、HClO氧化酪蛋白和MDA氧化大豆蛋白处理达显著水平(P0.05)。蛋白质体外消化率与结肠肠球菌呈负相关(R=-0.81,P=0.051);蛋白羰基含量与结肠乳杆菌呈显著负相关(R=-0.94,P0.01);大肠埃希菌(R=0.93,P0.01)和肠球菌(R=0.85,P0.05)分别与蛋白羰基含量呈正相关。结论氧化后蛋白消化率降低、羰基含量增高,导致肠道乳杆菌减少,大肠埃希菌和肠球菌上升;结肠黏膜脂质过氧化,氧化损伤程度与蛋白氧化处理方式有关。  相似文献   

19.
With computer-controlled circular dichroism (CD) spectrophotometry it is possible to obtain difference CD spectra which result from small perturbations to the environment of a chiral molecule. In the experiments described here a dry iso-octane solution of cyclobis-N-methyl-L-phenylalanine (c-(NMe-L-Phe)2) has been perturbed by exposure to water vapor. The resulting difference spectrum shows that water coordination to c-(NMe-L-Phe)2 eliminates negative ellipticity in the 244 nm region, while it simultaneously creates positive CD intensity in the 212 nm region. These two features of the difference spectrum plus related features of other direct spectra imply that water coordinated with p-orbital unpaired electrons of the carbonyl interferes sterically with the chi = 180 degrees side-chain rotamer. It can be expected that in this way hydrogen bonding of any species to backbone carbonyls can control the rotamer distribution of aromatic side-chains, if one of the rotamers occludes unpaired electrons of the carbonyl. Such control may offer an on-off switch for electron transport through proteins.  相似文献   

20.
Fibroblasts were exposed to various concentrations of hydrogen peroxide and the removal of oxidized proteins was followed by determining protein-bound carbonyls. Fibroblasts are able to increase the turnover of metabolically radiolabeled proteins after treatment with hydrogen peroxide. It was demonstrated for the first time, that the increased protein turnover was accompanied by a removal of protein-bound carbonyl groups. The proteasome-specific inhibitor lactacystin was able to inhibit the elimination of protein-bound carbonyl groups. Therefore, the key role of the proteasome in the degradation of oxidized proteins in fibroblasts could be demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号