首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coordination between adjacent tissues plays a crucial role during the morphogenesis of developing organs. In the embryonic heart, two tissues - the myocardium and the endocardium - are closely juxtaposed throughout their development. Myocardial and endocardial cells originate in neighboring regions of the lateral mesoderm, migrate medially in a synchronized fashion, collaborate to create concentric layers of the heart tube, and communicate during formation of the atrioventricular canal. Here, we identify a novel transmembrane protein, Tmem2, that has important functions during both myocardial and endocardial morphogenesis. We find that the zebrafish mutation frozen ventricle (frv) causes ectopic atrioventricular canal characteristics in the ventricular myocardium and endocardium, indicating a role of frv in the regional restriction of atrioventricular canal differentiation. Furthermore, in maternal-zygotic frv mutants, both myocardial and endocardial cells fail to move to the midline normally, indicating that frv facilitates cardiac fusion. Positional cloning reveals that the frv locus encodes Tmem2, a predicted type II single-pass transmembrane protein. Homologs of Tmem2 are present in all examined vertebrate genomes, but nothing is known about its molecular or cellular function in any context. By employing transgenes to drive tissue-specific expression of tmem2, we find that Tmem2 can function in the endocardium to repress atrioventricular differentiation within the ventricle. Additionally, Tmem2 can function in the myocardium to promote the medial movement of both myocardial and endocardial cells. Together, our data reveal that Tmem2 is an essential mediator of myocardium-endocardium coordination during cardiac morphogenesis.  相似文献   

2.
During vertebrate heart valve formation, Wnt/β-catenin signaling induces BMP signals in atrioventricular canal (AVC) myocardial cells and underlying AVC endocardial cells then undergo endothelial-mesenchymal transdifferentiation (EMT) by receiving this BMP signals. Histone deacetylases (HDACs) have been implicated in numerous developmental processes by regulating gene expression. However, their specific roles in controlling heart valve development are largely unexplored. To investigate the role of HDACs in vertebrate heart valve formation, we treated zebrafish embryos with trichostatin A (TSA), an inhibitor of class I and II HDACs, from 36 to 48 h post-fertilization (hpf) during which heart looping and valve formation occur. Following TSA treatment, abnormal linear heart tube development was observed. In these embryos, expression of AVC myocardial bmp4 and AVC endocardial notch1b genes was markedly reduced with subsequent failure of EMT in the AVC endocardial cells. However, LiCl-mediated activation of Wnt/β-catenin signaling was able to rescue defective heart tube formation, bmp4 and notch1b expression, and EMT in the AVC region. Taken together, our results demonstrated that HDAC activity plays a pivotal role in vertebrate heart tube formation by activating Wnt/β-catenin signaling which induces bmp4 expression in AVC myocardial cells.  相似文献   

3.
The initial step of atrioventricular (AV) valve development involves the deposition of extracellular matrix (ECM) components of the endocardial cushion and the endocardialmesenchymal transition. While the appropriately regulated expression of the major ECM components, Versican and Hyaluronan, that form the endocardial cushion is important for heart valve development, the underlying mechanism that regulates ECM gene expression remains unclear. We found that zebrafish crip2 expression is restricted to a subset of cells in the AV canal (AVC) endocardium at 55 hours post-fertilization (hpf). Knockdown of crip2 induced a heart-looping defect in zebrafish embryos, although the development of cardiac chambers appeared to be normal. In the AVC of Crip2-deficient embryos, the expression of both versican a and hyaluronan synthase 2 (has2) was highly upregulated, but the expression of bone morphogenetic protein 4 (bmp4) and T-box 2b (tbx2b) in the myocardium and of notch1b in the endocardium in the AVC did not change. Taken together, these results indicate that crip2 plays an important role in AV valve development by downregulating the expression of ECM components in the endocardial cushion.  相似文献   

4.
The extracellular matrix is crucial for organogenesis. It is a complex and dynamic component that regulates cell behavior by modulating the activity, bioavailability and presentation of growth factors to cell surface receptors. Here, we determined the role of the extracellular matrix protein Nephronectin (Npnt) in heart development using the zebrafish model system. The vertebrate heart is formed as a linear tube in which myocardium and endocardium are separated by a layer of extracellular matrix termed the cardiac jelly. During heart development, the cardiac jelly swells at the atrioventricular (AV) canal, which precedes valve formation. Here, we show that Npnt expression correlates with this process. Morpholino-mediated knockdown of Npnt prevents proper valve leaflet formation and trabeculation and results in greater than 85% lethality at 7 days post-fertilization. The earliest observed phenotype is an extended tube-like structure at the AV boundary. In addition, the expression of myocardial genes involved in cardiac valve formation (cspg2, fibulin 1, tbx2b, bmp4) is expanded and endocardial cells along the extended tube-like structure exhibit characteristics of AV cells (has2, notch1b and Alcam expression, cuboidal cell shape). Inhibition of has2 in npnt morphants rescues the endocardial, but not the myocardial, expansion. By contrast, reduction of BMP signaling in npnt morphants reduces the ectopic expression of myocardial and endocardial AV markers. Taken together, our results identify Npnt as a novel upstream regulator of Bmp4-Has2 signaling that plays a crucial role in AV canal differentiation.  相似文献   

5.
tbx2是早期心脏发育的关键基因。为进一步探究其对房室间隔(AVC)发育的影响,研究利用CRISPR/Cas9介导的基因敲除技术,成功构建了斑马鱼tbx2b突变体。通过T7E1酶切对其F0进行敲除效率检测,结果显示平均敲除效率约为57.5%。F1进一步筛选获得tbx2b杂合突变体,测序结果显示突变类型为11 bp碱基缺失的移码突变。tbx2b杂合子内交获得纯合子,tbx2b纯合突变体在5 dpf死亡并出现早期心脏环化异常表型。斑马鱼整胚原位杂交实验显示在3 dpf tbx2b纯合突变体中, 心脏腔室分化特异性标志基因nppanppb表达上调并异位表达在AVC,而AVC发育关键基因has2的表达消失。高效构建tbx2b突变体并初探其对下游基因的影响,为后续深入研究tbx2b对心脏AVC发育的作用奠定了基础,同时加深了人们对早期心脏调控网络的认识。  相似文献   

6.
7.
8.
In the developing heart, the atrioventricular canal (AVC) is essential for separation and alignment of the cardiac chambers, for valve formation, and serves to delay the electrical impulse from the atria to the ventricles. Defects in various aspects of its formation are the most common form of congenital heart defects. Using mutant and transgenic approaches in zebrafish, this study demonstrates that Wnt/β-catenin signaling is both sufficient and required for the induction of BMP4 and Tbx2b expression in the AVC and consequently the proper patterning of the myocardium. Furthermore, genetic analysis shows that Wnt/β-catenin signaling is upstream and in a linear pathway with BMP and Tbx2 during AVC specification.  相似文献   

9.
In Xenopus and zebrafish, BMP2, 4 and 7 have been implicated, after the onset of zygotic expression, in inducing and maintaining ventro-lateral cell fate during early development. We provide evidence here that a maternally expressed bone morphogenetic protein (BMP), Radar, may control early ventral specification in zebrafish. We show that Radar ventralizes zebrafish embryos and induces the early expression of bmp2b and bmp4. The analysis of Radar overexpression in both swirl/bmp2b mutants and embryos expressing truncated BMP receptors shows that Radar-induced ventralization is dependent on functional BMP2/4 pathways, and may initially rely on an Alk6-related signaling pathway. Finally, we show that while radar-injected swirl embryos still exhibit a strongly dorsalized phenotype, the overexpression of Radar into swirl/bmp2b mutant embryos restores ventral marker expression, including bmp4 expression. Our results suggest that a complex regulation of different BMP pathways controls dorso-ventral (DV) patterning from early cleavage stages until somitogenesis.  相似文献   

10.
肌间刺缺失对斑马鱼骨骼发育的影响   总被引:1,自引:0,他引:1  
利用斑马鱼(Danio rerio)野生型与肌间刺完全缺失突变型个体, 从骨骼染色和骨骼发育相关基因表达两方面, 初步评价了肌间刺缺失对斑马鱼骨骼发育的影响。通过骨骼染色对比观察了两种肌间刺表型个体受精后8dpf(days post fertilization, dpf)到56dpf的骨骼发育情况, 结果显示, 两种肌间刺表型除肌间刺外, 其他骨骼发育基本同步。此外, 通过qRT-PCR实验检测分析了6个骨骼发育相关基因(bmp2a、bmp4、smad1、smad4a、runx2a和sp7)在不同肌间刺表型5个胚胎发育时期(3hpf囊胚期、6hpf原肠胚期、12hpf体节期、24hpf咽囊期和72hpf孵化期)和5个胚后生长阶段(15、30、45、60和75dpf)的表达情况。结果显示:在胚胎发育时期, 野生型和突变型个体中bmp2a、bmp4、smad1、smad4a基因和突变型个体中sp7基因的表达均呈现先升后降的变化趋势, 且在体节期达到最高表达水平;野生型和突变型个体中runx2a基因和野生型个体中sp7基因则表现为逐渐上升的趋势。6个基因在囊胚期和原肠胚期表达量无显著差异, bmp2a的表达水平在体节期、咽囊期和孵化期无显著差异, 野生型个体bmp4、smad1、smad4a、runx2a基因在体节期、咽囊期和孵化期的表达水平明显高于突变型, 而sp7基因则表现为突变型明显高于野生型。胚后发育阶段 6个基因在5个生长阶段均呈现逐渐下降的趋势, 且在两种肌间刺表型间其表达仅在个别时期差异显著。综上所述, 肌间刺的缺失对斑马鱼骨骼发育表现型无显著影响, 只在胚胎发育时期影响骨骼相关基因表达水平的变化;结合骨骼染色结果, 推测肌间刺缺失对斑马鱼骨骼发育无显著影响。  相似文献   

11.
Organ morphogenesis requires cellular shape changes and tissue rearrangements that occur in a precisely timed manner. Here, we show that zebrafish heart and soul (Has)/protein kinase C iota (PRKCi) is required tissue-autonomously within the myocardium for normal heart morphogenesis and that this function depends on its catalytic activity. In addition, we demonstrate that nagie oko (Nok) is the functional homolog of mammalian protein associated with Lin-seven 1 (Pals1)/MAGUK p55 subfamily member 5 (Mpp5), and we dissect its earlier and later functions during myocardial morphogenesis. Has/PRKCi and Nok/Mpp5 are required early for the polarized epithelial organization and coherence of myocardial cells during heart cone formation. Zygotic nok/mpp5 mutants have later myocardial defects, including an incomplete heart tube elongation corresponding with a failure of myocardial cells to correctly expand in size. Furthermore, we show that nok/mpp5 acts within myocardial cells during heart tube elongation. Together, these results demonstrate that cardiac morphogenesis depends on the polarized organization and coherence of the myocardium, and that the expansion of myocardial cell size contributes to the transformation of the heart cone into an elongated tube.  相似文献   

12.
A bone morphogenetic protein (BMP) signaling pathway acts in the establishment of the dorsoventral axis of the vertebrate embryo. Here we demonstrate the genetic requirement for two different Bmp ligand subclass genes for dorsoventral pattern formation of the zebrafish embryo. From the relative efficiencies observed in Bmp ligand rescue experiments, conserved chromosomal synteny, and isolation of the zebrafish bmp7 gene, we determined that the strongly dorsalized snailhouse mutant phenotype is caused by a mutation in the bmp7 gene. We show that the original snailhouse allele is a hypomorphic mutation and we identify a snailhouse/bmp7 null mutant. We demonstrate that the snailhouse/bmp7 null mutant phenotype is identical to the presumptive null mutant phenotype of the strongest dorsalized zebrafish mutant swirl/bmp2b, revealing equivalent genetic roles for these two Bmp ligands. Double mutant snailhouse/bmp7; swirl/bmp2b embryos do not exhibit additional or stronger dorsalized phenotypes, indicating that these Bmp ligands do not function redundantly in early embryonic development. Furthermore, overexpression experiments reveal that Bmp2b and Bmp7 synergize in the ventralization of wild-type embryos through a cell-autonomous mechanism, suggesting that Bmp2b/Bmp7 heterodimers may act in vivo to specify ventral cell fates in the zebrafish embryo.  相似文献   

13.

Background

The Bone Morphogenetic Protein (BMP) genes bmp2 and bmp4 are expressed in highly conserved patterns in the developing vertebrate inner ear. It has, however, proved difficult to elucidate the function of BMPs during ear development as mutations in these genes cause early embryonic lethality. Previous studies using conditional approaches in mouse and chicken have shown that Bmp4 has a role in semicircular canal and crista development, but there is currently no direct evidence for the role of Bmp2 in the developing inner ear.

Methodology/Principal Findings

We have used an RNA rescue strategy to test the role of bmp2b in the zebrafish inner ear directly. Injection of bmp2b or smad5 mRNA into homozygous mutant swirl (bmp2b−/−) embryos rescues the early patterning defects in these mutants and the fish survive to adulthood. As injected RNA will only last, at most, for the first few days of embryogenesis, all later development occurs in the absence of bmp2b function. Although rescued swirl adult fish are viable, they have balance defects suggestive of vestibular dysfunction. Analysis of the inner ears of these fish reveals a total absence of semicircular canal ducts, structures involved in the detection of angular motion. All other regions of the ear, including the ampullae and cristae, are present and appear normal. Early stages of otic development in rescued swirl embryos are also normal.

Conclusions/Significance

Our findings demonstrate a critical late role for bmp2b in the morphogenesis of semicircular canals in the zebrafish inner ear. This is the first demonstration of a developmental role for any gene during post-embryonic stages of otic morphogenesis in the zebrafish. Despite differences in the early stages of semicircular canal formation between zebrafish and amniotes, the role of Bmp2 in semicircular canal duct outgrowth is likely to be conserved between different vertebrate species.  相似文献   

14.
Bone morphogenetic protein 2 plays an important role in the regulation of osteoblast proliferation and differentiation. Phylogenetic analysis showed that the bmp2 ortholog evolved from the same ancestral gene family in vertebrates and was duplicated in teleost, which were named bmp2a and bmp2b. The results of whole-mount in situ hybridization showed that the expression locations of bmp2a and bmp2b in zebrafish were different in different periods (24 hpf, 48 hpf, 72 hpf), which revealed potential functional differentiation between bmp2a and bmp2b. Phenotypic analysis showed that bmp2a mutations caused partial rib and vertebral deformities in zebrafish, while bmp2b−/− embryos died massively after 12 hpf due to abnormal somite formation. We further explored the expression pattern changes of genes (bmp2a, bmp2b, smad1, fgf4, runx2b, alp) related to skeletal development at different developmental stages (20 dpf, 60 dpf, 90 dpf) in wild-type and bmp2a−/− zebrafish. The results showed that the expression of runx2b in bmp2a−/− was significantly downregulated at three stages and the expression of other genes were significantly downregulated at 90 dpf compared with wild-type zebrafish. The study revealed functional differentiation of bmp2a and bmp2b in zebrafish embryonic and skeletal development.  相似文献   

15.
Signaling by members of the TGFbeta superfamily is thought to be transduced by Smad proteins. Here, we describe a zebrafish mutant in smad5, designated somitabun (sbn). The dominant maternal and zygotic effect of the sbntc24 mutation is caused by a change in a single amino acid in the L3 loop of Smad5 protein which transforms Smad5 into an antimorphic version, inhibiting wild-type Smad5 and related Smad proteins. sbn mutant embryos are strongly dorsalized, similarly to mutants in Bmp2b, its putative upstream signal. Double mutant analyses and RNA injection experiments show that sbn and bmp2b interact and that sbn acts downstream of Bmp2b signaling to mediate Bmp2b autoregulation during early dorsoventral (D-V) pattern formation. Comparison of early marker gene expression patterns, chimera analyses and rescue experiments involving temporally controlled misexpression of bmp or smad in mutant embryos reveal three phases of D-V patterning: an early sbn- and bmp2b-independent phase when a coarse initial D-V pattern is set up, an intermediate sbn- and bmp2b-dependent phase during which the putative morphogenetic Bmp2/4 gradient is established, and a later sbn-independent phase during gastrulation when the Bmp2/4 gradient is interpreted and cell fates are specified.  相似文献   

16.
NDRG4 is a novel member of the NDRG family (N-myc downstream-regulated gene). The roles of NDRG4 in development have not previously been evaluated. We show that, during zebrafish embryonic development, ndrg4 is expressed exclusively in the embryonic heart, the central nervous system (CNS) and the sensory system. Ndrg4 knockdown in zebrafish embryos causes a marked reduction in proliferative myocytes and results in hypoplastic hearts. This growth defect is associated with cardiac phenotypes in morphogenesis and function, including abnormal heart looping, inefficient circulation and weak contractility. We reveal that ndrg4 is required for restricting the expression of versican and bmp4 to the developing atrioventricular canal. This constellation of ndrg4 cardiac defects phenocopies those seen in mutant hearts of heartstrings (hst), the tbx5 loss-of-function mutants in zebrafish. We further show that ndrg4 expression is significantly decreased in hearts with reduced tbx5 activities. Conversely, increased expression of tbx5 that is due to tbx20 knockdown leads to an increase in ndrg4 expression. Together, our studies reveal an essential role of ndrg4 in regulating proliferation and growth of cardiomyocytes, suggesting that ndrg4 may function downstream of tbx5 during heart development and growth.  相似文献   

17.
Thymosin beta4 (TB4) has multiple functions in cellular response in processes as diverse as embryonic organ development and the pathogeneses of disease, especially those associated with cardiac coronary vessels. However, the specific roles played by TB4 during heart valve development in vertebrates are largely unknown. Here, we identified a novel function of TB4 in endothelialmesenchymal transformation (EMT) in cardiac valve endocardial cushions in zebrafish. The expressions of thymosin family members in developing zebrafish embryos were determined by whole mount in situ hybridization. Of the thymosin family members only zTB4 was expressed in the developing heart region. Cardiac valve development at 48 h post fertilization was defected in zebrafish TB4 (zTB4) morpholino-injected embryos (morphants). In zTB4 morphants, abnormal linear heart tube development was observed. The expressions of bone morphogenetic protein (BMP) 4, notch1b, and hyaluronic acid synthase (HAS) 2 genes were also markedly reduced in atrio-ventricular canal (AVC). Endocardial cells in the AVC region were stained with anti-Zn5 antibody reactive against Dm-grasp (an EMT marker) to observe EMT in developing cardiac valves in zTB4 morphants. EMT marker expression in valve endothelial cells was confirmed after transfection with TB4 siRNA in the presence of transforming growth factor β (TGFβ) by RT-PCR and immunofluorescent assay. Zn5-positive endocardial AVC cells were not observed in zTB4 morphants, and knockdown of TB4 suppressed TGF-β-induced EMT in ovine valve endothelial cells. Taken together, our results demonstrate that TB4 plays a pivotal role in cardiac valve formation by increasing EMT.  相似文献   

18.
The specification of an appropriate number of cardiomyocytes from the lateral plate mesoderm requires a careful balance of both positive and negative regulatory signals. To identify new regulators of cardiac specification, we performed a phenotype-driven ENU mutagenesis forward genetic screen in zebrafish. In our genetic screen we identified a zebrafish ctr9 mutant with a dramatic reduction in myocardial cell number as well as later defects in primitive heart tube elongation and atrioventricular boundary patterning. Ctr9, together with Paf1, Cdc73, Rtf1 and Leo1, constitute the RNA polymerase II associated protein complex, PAF1. We demonstrate that the PAF1 complex (PAF1C) is structurally conserved among zebrafish and other metazoans and that loss of any one of the components of the PAF1C results in abnormal development of the atrioventricular boundary of the heart. However, Ctr9, Cdc73, Paf1 and Rtf1, but not Leo1, are required for the specification of an appropriate number of cardiomyocytes and elongation of the heart tube. Interestingly, loss of Rtf1 function produced the most severe defects, resulting in a nearly complete absence of cardiac precursors. Based on gene expression analyses and transplantation studies, we found that the PAF1C regulates the developmental potential of the lateral plate mesoderm and is required cell autonomously for the specification of cardiac precursors. Our findings demonstrate critical but differential requirements for PAF1C components in zebrafish cardiac specification and heart morphogenesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号